
Enhancing Signal Processing Efficiency in
Software-Defined Radio Using Distributed Arithmetic
and Look-Up Table-Based FIR Filters

DECEMBER 2024 • VOLUME XVI • NUMBER 418

INFOCOMMUNICATIONS JOURNAL

*Hari Krishnan S / Sanskrithi School of Engineering, Behind Sri Sathya
Sai Super Speciality Hospital, Puttaparthi, Sathya Sai District, Andhra Pradesh
515134 (e-mail: hariprofsse@gmail.com)

Mr. S. Sadiqvali / Sanskrithi School of Engineering, Behind Sri Sathya Sai
Super Speciality Hospital, Puttaparthi, Sathya Sai District, Andhra Pradesh
515134 (e-mail: syedb6933@gmail.com)

Enhancing Signal Processing Efficiency in
Software-Defined Radio Using Distributed

Arithmetic and Look-Up Table-Based FIR Filters
Hari Krishnan S*, and Mr. S. Sadiqvali

Abstract—To meet the requirements of the wireless communi-
cation industry, digital communication systems require increas-
ingly advanced coding and modulation technologies. Software-
Defined Radio enables these advanced ideas to be easily adopted
by such systems. The Finite Impulse Response filter is frequently
used in wireless communication to pre-process detected signals
to reduce noise by utilizing delay elements, multipliers, and ad-
ders. Traditional multiplier-based finite impulse response fil-
ter designs result in hardware-intensive multipliers that use a
lot of space and energy and pose poor calculation speeds and
low performance in throughput and latency. To overcome the
existing issues, a novel Distributed Arithmetic with a Look Up
Table-based FIR filter is proposed, which reduces the Bit Error
Rate and latency and improves throughput by optimizing the
channel equalizer as a crucial part of Software Defined Radio
applications. Further, a key feature named the decimation factor
is incorporated to dynamically alter the filter's output frequency
response without altering the filter coefficients. Moreover, the
worst-case critical route latency of partial product accumula-
tion is reduced using a highly adaptable Parallel Prefix Adder.
Additionally, the finite impulse response filters are integrated
to decrease the number of Look-Up Tables, thereby saving time
and memory. It also investigates the filter efficiency using faster
multipliers and adders and validates it on an Artix-7 FPGA. As
a result, the proposed model improved the filter’s performance
over the other existing designs by achieving an operating speed
of 260 MHz, delay of 190 ps, power dissipation of 1 mW and
throughput of 938.12 Mbps with the number of Look-Up Tables
being 16504.

Index Terms—Software-Defined Radio, Noise Removal, Finite
Impulse Response, Digital Signal Processing, Field-Programma-
ble Gate Array, and Wireless Communication.

DOI: 10.36244/ICJ.2024.4.3

Enhancing Signal Processing Efficiency in
Software-Defined Radio Using Distributed

Arithmetic and Look-Up Table-Based FIR Filters

Hari Krishnan S*, Mr. S. Sadiqvali

Abstract- To meet the requirements of the wireless
communication industry, digital communication systems
require increasingly advanced coding and modulation
technologies. Software-Defined Radio enables these advanced
ideas to be easily adopted by such systems. The Finite Impulse
Response filter is frequently used in wireless communication to
pre-process detected signals to reduce noise by utilizing delay
elements, multipliers, and adders. Traditional multiplier-based
finite impulse response filter designs result in hardware-
intensive multipliers that use a lot of space and energy and
pose poor calculation speeds and low performance in
throughput and latency. To overcome the existing issues, a
novel Distributed Arithmetic with a Look Up Table-based FIR
filter is proposed, which reduces the Bit Error Rate and
latency and improves throughput by optimizing the channel
equalizer as a crucial part of Software Defined Radio
applications. Further, a key feature named the decimation
factor is incorporated to dynamically alter the filter's output
frequency response without altering the filter coefficients.
Moreover, the worst-case critical route latency of partial
product accumulation is reduced using a highly adaptable
Parallel Prefix Adder. Additionally, the finite impulse response
filters are integrated to decrease the number of Look-Up
Tables, thereby saving time and memory. It also investigates
the filter efficiency using faster multipliers and adders and
validates it on an Artix-7 FPGA. As a result, the proposed
model improved the filter’s performance over the other
existing designs by achieving an operating speed of 260 MHz,
delay of 190 ps, power dissipation of 1 mW and throughput of
938.12 Mbps with the number of Look-Up Tables being 16504.

Keywords- Software-Defined Radio, Noise Removal, Finite

Impulse Response, Digital Signal Processing, Field-
Programmable Gate Array, and Wireless Communication.

I. INTRODUCTION
Interference with symbols was one of the biggest problems
with the digital structure. This suggests that in digital
communication systems such as Software Defined Radio
(SDR) applications, SDR technology offers the flexibility to
implement adaptive filtering and real-time signal processing,
allowing for more effective interference management. This
capability enhances overall communication reliability,
making SDR a valuable tool in modern digital systems.

Hari Krishnan S*
Associate Professor -ECE
Sanskrithi School of Engineering
Behind Sri Sathya Sai Super Speciality Hospital,
Beedupalli, Road, Puttaparthi, Sathya Sai District , Andhra Pradesh 515134
hariprofsse@gmail.com
Mr. S. Sadiqvali
Assistant Professor - ECE
Sanskrithi School of Engineering
Behind Sri Sathya Sai Super Speciality Hospital,
Beedupalli, Road, Puttaparthi, Sathya Sai District , Andhra Pradesh 515134
syedb6933@gmail.com

However, interference with symbols can lead to distorted
channels, which may result in errors in data transmission.
Interference can occur due to various factors such as noise,
signal degradation, or electromagnetic interference.
Distorted channels can result in errors in data transmission,
making it essential to employ techniques to mitigate
interference and restore the integrity of the transmitted
symbols [1-3]. As the speed of data transfer systems goes
up, Digital Signal Processing (DSP) needs high-speed
communication systems. In DSP computers, the speed
couldn't go beyond 1 GHz and it plays a crucial role in
enhancing the quality of communication by processing and
analyzing signals in real-time. The limitation mentioned(1
GHz) likely pertains to a specific context or technology, as
modern DSP systems can operate at much higher
frequencies, depending on the application [4]. To support
multiple bit rates in communication systems, it's necessary
to develop new designs. Different bit rates require different
modulation schemes, coding techniques, and signal
processing methods. Adapting to multiple-bit rates allows
for more flexible and efficient data transmission in modern
communication systems [5]. Pipelining and parallel
processing are techniques used to improve the speed and
efficiency of computers in optical transmission systems.
Pipelining involves breaking down tasks into stages,
allowing for parallel execution of different stages
simultaneously. Parallel processing utilizes multiple
processing units to perform tasks in parallel, increasing
overall system throughput. These techniques are essential
for handling the high data rates in optical communication
systems [6].

Equalizers are devices or algorithms used on the
receiving end of a communication system to reduce
distortions like Inter-Symbol Interference (ISI). ISI occurs
when symbols interfere with each other in a digital
communication signal due to channel characteristics.
Equalizers help in recovering the original symbols by
compensating for the distortion caused by ISI, thus
improving the overall data reception quality [7]. Equalizing
Decision Feedback (EDF) is a nonlinear equalization
technique used to mitigate ISI in communication systems. It
works by making decisions about received symbols and then
using these decisions to feedback information to the
equalizer to compensate for post-cursor ISI. By doing so,
EDF helps in reducing errors caused by ISI and,
consequently, improves the SNR. This technique is
particularly effective in scenarios where ISI is a significant
challenge.

Maximum Likelihood Sequence Detection (MLSD) is
another technique used for ISI mitigation [8]. It considers all

Interference with symbols was one of the biggest problems
with the digital structure. This suggests that in digital commu-
nication systems such as Software Defined Radio (SDR) ap-
plications, SDR technology offers the flexibility to implement
adaptive filtering and real-time signal processing, allowing for
more effective interference management. This capability en-
hances overall communication reliability, making SDR a valu-
able tool in modern digital systems.

However, interference with symbols can lead to distorted
channels, which may result in errors in data transmission.
Interference can occur due to various factors such as noise,
signal degradation, or electromagnetic interference. Distorted
channels can result in errors in data transmission, making
it essential to employ techniques to mitigate interference
and restore the integrity of the transmitted symbols [1-
3]. As the speed of data transfer systems goes up, Digital
Signal Processing (DSP) needs high-speed communication
systems. In DSP computers, the speed couldn't go beyond
1 GHz and it plays a crucial role in enhancing the quality
of communication by processing and analyzing signals
in real-time. The limitation mentioned(1 GHz) likely
pertains to a specific context or technology, as modern
DSP systems can operate at much higher frequencies,
depending on the application [4]. To support multiple bit
rates in communication systems, it's necessary to develop
new designs. Different bit rates require different modulation
schemes, coding techniques, and signal processing methods.
Adapting to multiple-bit rates allows for more flexible and
efficient data transmission in modern communication systems
[5]. Pipelining and parallel processing are techniques used
to improve the speed and efficiency of computers in optical
transmission systems. Pipelining involves breaking down
tasks into stages, allowing for parallel execution of different
stages simultaneously. Parallel processing utilizes multiple
processing units to perform tasks in parallel, increasing
overall system throughput. These techniques are essential
for handling the high data rates in optical communication
systems [6].

Equalizers are devices or algorithms used on the receiving
end of a communication system to reduce distortions like
Inter-Symbol Interference (ISI). ISI occurs when symbols
interfere with each other in a digital communication
signal due to channel characteristics. Equalizers help in
recovering the original symbols by compensating for the
distortion caused by ISI, thus improving the overall data
reception quality [7]. Equalizing Decision Feedback (EDF)
is a nonlinear equalization technique used to mitigate ISI in
communication systems. It works by making decisions about
received symbols and then using these decisions to feedback
information to the equalizer to compensate for post-cursor
ISI. By doing so, EDF helps in reducing errors caused by

mailto:hariprofsse%40gmail.com?subject=
mailto:syedb6933%40gmail.com?subject=
https://doi.org/10.36244/ICJ.2024.4.3

Enhancing Signal Processing Efficiency in
Software-Defined Radio Using Distributed Arithmetic

and Look-Up Table-Based FIR Filters

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2024 • VOLUME XVI • NUMBER 4 19

possible symbol sequences and selects the one with the
highest likelihood, thereby reducing errors caused by ISI.
MLSD is especially effective in situations with severe ISI or
complex modulation schemes. In a digital communication
signal, post-cursor ISI that is, ISI that appears after the
primary symbol is eliminated in part by both MLSD and
EDF. Through their efficient handling of post-cursor ISI,
these methods help to enhance the quality of signals that are
received. Combining the various access strategies is
probably going to produce the greatest results in terms of
enhancing security, increasing data transfer speed, and
reducing ISI [9]. These techniques can also address
problems related to the way noise spreads, especially in the
presence of spectral nulls. Spectral nulls are frequencies
where the signal has little or no energy, making them
susceptible to noise interference. EDF and MLSD can help
mitigate the impact of noise, including noise related to
spectral nulls, thus improving overall signal quality [10]. In
addition to mitigating ISI and improving SNR, Speed-
testing techniques are used. It could refer to the
computational complexity and processing speed required for
implementing EDF and MLSD algorithms. These algorithms
can be computationally intensive, so optimizing their speed
is crucial for real-time applications [11-12]. The
improvement of Speed and Design Technology is necessary
to keep up with the demands of modern high-speed
communication systems, where fast and efficient
equalization is crucial for reliable data transmission [13].

Distributed Arithmetic (DA) architecture is becoming
more popular in DSP. This architecture is chosen due to its
simplicity in design and its utilization of Look-Up Tables
(LUTs) and transfer build blocks for obtaining partial
products. DA architecture offers advantages in terms of
efficient hardware implementation, making it a suitable
choice for various DSP applications [14]. DA architecture
uses two-way binary code complements or offsets for
representing the filter coefficients and input values. Binary
code complements involve representing numbers as positive
and negative complements, which simplifies arithmetic
operations. Using offsets can also simplify operations by
shifting the input values within a certain range. These
techniques contribute to the efficiency and simplicity of
DA-based DSP algorithms [15]. To reduce the amount of
memory required by a DA Finite Impulse Response (FIR)
filter, various strategies are suggested. Memory Divisions
refer to dividing the memory resources into smaller blocks
or segments to reduce the overall memory footprint, which
can help optimize memory usage while still performing the
filtering operations efficiently. In addition, Different
Memory Bank Approaches are utilized with varying access
speeds or capacities to efficiently store and access data. This
approach can be particularly useful when dealing with large
datasets and complex FIR filter structures [16-17].

The Look-Up Table (LUT) decomposition scheme is
used to simplify the LUT structures in FIR filters based on
the DA architecture. However, it may come at the cost of
using a few extra filters. The trade-off between complexity
and resource usage is common in DSP design. Over the past
few decades, there have been efforts to improve the
performance and efficiency of filters, including those based
on DA architecture. Advances in filter design, algorithm
optimization, and hardware capabilities have led to more
efficient DSP solutions. These improvements help narrow
the field of DA architecture as a powerful and viable design

choice for various filter applications [18-19]. The DA
architecture is particularly well-suited for FIR filters that are
based on Decision Feedback Equalizers (DFEs). DFEs are
used to mitigate ISI (Inter-Symbol Interference) in
communication systems. The DA architecture can offer an
efficient and effective way to implement FIR filters within
DFEs, contributing to the overall performance and reliability
of communication systems [20]. Hence there is a need to
design a novel FIR filter for improving the quality of
wireless communication applications.

The Major contributions in this paper are given as
follows:

 To design an FIR filter based on DA-LUT
multiplier for quicker multiplier and faster adder to
improve the speed of filter operation and to create a
channel equalizer as part of an SDR application
and apply it to FIR for validation.

 To use a decimation factor that dynamically
modifies the output frequency response of the
filter, a highly adaptive parallel prefix adder (PPA)
to lower the worst-case critical route latency and
verify the filter efficiency on Artix-7 FPGA.

 The content of the paper is organized as section 2
describes the literature survey, section 3 describes the
proposed design and its working process, and section 4
discusses the proposed design simulation, performance, and
comparative analysis. Finally, section 5 concludes the paper.

II. LITERATURE SURVEY
Kumar et al [21] developed a new architecture for a 2-D
block FIR filter by using the DA algorithm, which was
renowned for its effective design of the multiply and
accumulate block. The DA-LUT has a hardware-based
architecture that enables the 2-D FIR filter's architecture to
be changed. Additionally, sharing occurs among DA-LUTs
at different levels as a result of block processing. In order to
simplify the hardware complexity of DA-LUT, a common
DA-LUT was created for block inputs. Additionally, the
systolic architectures in the suggested design were decreased
over the designs that already exist thanks to memory
overlapping. By separating the internal block into parallel
and small blocks for higher-order 2-D FIR filters, the
complexity of DA-LUT was decreased. However, building
hardware for DSP applications was more challenging, and it
requires specialized knowledge and resources.

Amrita Rai [22] proposed a 4-bit FIR filter used in
Digital Signal Processing (DSP) employing completely
adiabatic technology (PAL) to decrease all parametric
performance and power consumption. The designs of a
completely adiabatic, low-power, high-speed FIR filter to
that of CMOS filters were compared. Reversible logic was
used in the design of the PAL FIR filter, and CADENCE
digital lab was used to simulate and synthesise it for a
variety of parameters, including changes in supply voltage,
load capacitance, and transition frequency. This architecture
used a logarithmic multiplier to lower the hardware needs
and adiabatic technology to provide low power dissipation.
However, achieving low area efficiency was more
challenging.

Prashanth et al [23] discussed the design of the DA-
FIR filter system construct, which was built on an
architecture with tightly coupled co-processor-based data
processing units. The designed DA-based FIR filter was

ISI and, consequently, improves the SNR. This technique is
particularly effective in scenarios where ISI is a significant
challenge.

Maximum Likelihood Sequence Detection (MLSD) is
another technique used for ISI mitigation [8]. It considers all
possible symbol sequences and selects the one with the
highest likelihood, thereby reducing errors caused by ISI.
MLSD is especially effective in situations with severe ISI or
complex modulation schemes. In a digital communication
signal, post-cursor ISI that is, ISI that appears after the
primary symbol is eliminated in part by both MLSD and
EDF. Through their efficient handling of post-cursor ISI,
these methods help to enhance the quality of signals that are
received. Combining the various access strategies is probably
going to produce the greatest results in terms of enhancing
security, increasing data transfer speed, and reducing ISI [9].
These techniques can also address problems related to the
way noise spreads, especially in the presence of spectral nulls.
Spectral nulls are frequencies where the signal has little or no
energy, making them susceptible to noise interference. EDF
and MLSD can help mitigate the impact of noise, including
noise related to spectral nulls, thus improving overall signal
quality [10]. In addition to mitigating ISI and improving
SNR, Speed- testing techniques are used. It could refer to the
computational complexity and processing speed required for
implementing EDF and MLSD algorithms. These algorithms
can be computationally intensive, so optimizing their speed is
crucial for real-time applications [11-12]. The improvement
of Speed and Design Technology is necessary to keep up with
the demands of modern high-speed communication systems,
where fast and efficient equalization is crucial for reliable data
transmission [13].

Distributed Arithmetic (DA) architecture is becoming more
popular in DSP. This architecture is chosen due to its simplicity
in design and its utilization of Look-Up Tables (LUTs) and
transfer build blocks for obtaining partial products. DA
architecture offers advantages in terms of efficient hardware
implementation, making it a suitable choice for various DSP
applications [14]. DA architecture uses two-way binary code
complements or offsets for representing the filter coefficients
and input values. Binary code complements involve
representing numbers as positive and negative complements,
which simplifies arithmetic operations. Using offsets can
also simplify operations by shifting the input values within a
certain range. These techniques contribute to the efficiency and
simplicity of DA-based DSP algorithms [15]. To reduce the
amount of memory required by a DA Finite Impulse Response
(FIR) filter, various strategies are suggested. Memory Divisions
refer to dividing the memory resources into smaller blocks
or segments to reduce the overall memory footprint, which
can help optimize memory usage while still performing the
filtering operations efficiently. In addition, Different Memory
Bank Approaches are utilized with varying access speeds or
capacities to efficiently store and access data. This approach

can be particularly useful when dealing with large datasets
and complex FIR filter structures [16-17].

The Look-Up Table (LUT) decomposition scheme is used
to simplify the LUT structures in FIR filters based on the DA
architecture. However, it may come at the cost of using a few
extra filters. The trade-off between complexity and resource
usage is common in DSP design. Over the past few decades, there
have been efforts to improve the performance and efficiency of
filters, including those based on DA architecture. Advances in
filter design, algorithm optimization, and hardware capabilities
have led to more efficient DSP solutions. These improvements
help narrow the field of DA architecture as a powerful and
viable design choice for various filter applications [18-19]. The
DA architecture is particularly well-suited for FIR filters that are
based on Decision Feedback Equalizers (DFEs). DFEs are used
to mitigate ISI (Inter-Symbol Interference) in communication
systems. The DA architecture can offer an efficient and effective
way to implement FIR filters within DFEs, contributing to the
overall performance and reliability of communication systems
[20]. Hence there is a need to design a novel FIR filter for
improving the quality of wireless communication applications.

Kumar et al [21] developed a new architecture for a 2-D block
FIR filter by using the DA algorithm, which was renowned
for its effective design of the multiply and accumulate block.
The DA-LUT has a hardware-based architecture that enables
the 2-D FIR filter's architecture to be changed. Additionally,
sharing occurs among DA-LUTs at different levels as a
result of block processing. In order to simplify the hardware
complexity of DA-LUT, a common DA-LUT was created for
block inputs. Additionally, the systolic architectures in the
suggested design were decreased over the designs that already
exist thanks to memory overlapping. By separating the internal
block into parallel and small blocks for higher-order 2-D FIR
filters, the complexity of DA-LUT was decreased. However,
building hardware for DSP applications was more challenging,
and it requires specialized knowledge and resources.

Enhancing Signal Processing Efficiency in
Software-Defined Radio Using Distributed Arithmetic
and Look-Up Table-Based FIR Filters

DECEMBER 2024 • VOLUME XVI • NUMBER 420

INFOCOMMUNICATIONS JOURNAL

Amrita Rai [22] proposed a 4-bit FIR filter used in Digital
Signal Processing (DSP) employing completely adiabatic
technology (PAL) to decrease all parametric performance and
power consumption. The designs of a completely adiabatic,
low-power, high-speed FIR filter to that of CMOS filters were
compared. Reversible logic was used in the design of the PAL
FIR filter, and CADENCE digital lab was used to simulate
and synthesise it for a variety of parameters, including
changes in supply voltage, load capacitance, and transition
frequency. This architecture used a logarithmic multiplier
to lower the hardware needs and adiabatic technology to
provide low power dissipation. However, achieving low area
efficiency was more challenging.

Prashanth et al [23] discussed the design of the DA- FIR
filter system construct, which was built on an architecture
with tightly coupled co-processor-based data processing
units. The designed DA-based FIR filter was implemented on
field programmable gate array (FPGA) using a series of LUT
accesses to simulate multiply and accumulate processes.
The proposed filter was implemented using the very high-
speed integrated circuit hardware description language
(VHDL), and the design is confirmed via simulation. In this
study, two optimization strategies were discussed, and the
improvements produced were applied to the LUT layer and
architecture extractions. The suggested approach provides an
optimized design in the form of average LUT minimizations,
populated slice reductions, and gate minimization for
a discrete impulse response filter. However, combining
digital and analog components was challenging, since they
have different design constraints, voltage levels, and noise
considerations. Hence ensuring seamless integration between
the two is crucial.

Maamoun et al [24] proposed an effective high-order FIR
filter structure with simultaneous DSP and LUT decreased
utilization for FPGA based applications. Also considered was
the real-time update of the filter coefficients. Both the speed
and the structure of the FPGA were effectively utilized to
accomplish these goals. In order to achieve more computation
sequences, the difference between the needed input sampling
frequency and the FPGA's permitted maximum frequency
was handled. Furthermore, the pipelining and selection of
the input samples make full use of the unique FPGA Look-
up-table Shift-Register (LUT-SR) architecture and internal
connections. Reconfigurable filter coefficients were handled
by FPGA Block RAMs (BRAMs), and FPGA DSP slices
were used to compute the output data of the BRAMs and
multiplexers. A single unit was employed for simultaneous
control to synchronize the LUT multiplexer selection with
the BRAM unit addressing. However, meeting real-time
processing requirements is more challenging.

Shrivastava et al [25] proposed an efficient architecture
for the DA algorithm-based two-dimensional (2-D) adaptive
FIR filter. Practically all DA-based filter topologies demand
LUT. The structure that creates the LUT value corresponding
to the input, based on adders and logic gates, replaces the

RAM- or ROM-based LUT in the proposed filter architecture.
As a result, in DA-based realization, the MAC unit needs
fewer logic gates and adders. Additionally, the architecture's
memory-sharing idea lessens the latency components.
Furthermore, the parallel division of the internal MAC block
for the DA decomposition, which provides a greater level of
flexibility and parallelism in the proposed design, reduces the
complexity of the LUT hardware of higher-order filters. The
filter coefficient weights were updated using the 2-D delayed
Least Mean Square (LMS) algorithm. However, processing
two- dimensional signals introduces challenges related to
data handling, such as memory organization and data flow
management.

Lakshmaiah et al [26] proposed a modified version
of the delayed μ-law proportionate normalised least mean
square (DMPNLMS) method. This method is an adapted
form of the μ-law proportionate normalised least mean square
(MPNLMS). To minimise the silicon area, the technique was
implemented through the use of a parallel prefix logarithmic
adder of the Ladner-Fischer type. VLSI architecture was
implemented and simulated using MATLAB, the Vivado suite,
and Cadence RTL and Genus Compiler for complementary
metal-oxide-semiconductor (CMOS) 90 nm technology
nodes. The DMPNLMS approach showed increased stability,
a faster rate of convergence, and a decrease in mean square
error. However, the proposed LMS algorithm was sensitive to
input noise and outliers and hence ensuring the filter remains
robust in noisy environments is more complex.

Khan et al [27] designed an LMS algorithm based on
the steepest descent technique presented with a potential
expansion to its power-normalized LMS version and examined
its convergence features. The design and development of non-
pipelined ADF systems was accomplished by transforming
the coefficient update equation of the LMS algorithm via TC
DA and OBC DA. The LUT pre-decomposition approach was
utilised by the suggested architectures to improve throughput
performance. It allowed the deconstructed LUTs to be updated
concurrently using the same mapping approach. Additionally
included was an effective fixed-point quantization model for
assessing suggested structures from a practical standpoint.
However, minimizing power consumption while maximizing
throughput is a constant challenge.

Murthy et al [28] presented multiple methods for
designing reconfigurable finite impulse response (RFIR)
filters. Software-defined radio (SDR) applications were
appropriate for programmable FIR filter designs based on
DA. Reusing registers, multipliers, and adders as well as
optimizing other factors including area, power consumption,
speed, throughput, latency, and flip-flop and slice hardware
utilizations were the key contributions of reconfiguration. In
light of the aforementioned factors, the efficient design of the
building blocks was optimized for the RFIR filter. However,
achieving high filter performance, such as sharp roll-off and
minimal distortion, is challenging, especially when trying to
optimize for reconfigurability.

Enhancing Signal Processing Efficiency in
Software-Defined Radio Using Distributed Arithmetic

and Look-Up Table-Based FIR Filters

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2024 • VOLUME XVI • NUMBER 4 21

Rammohan et al [29] presented the decimation filter's
hardware implementation and architecture for use in hearing
aids. Using Matlab Simulink, the CIC, half band filter, and
corrector FIR filters were created and tested for real-time
implementation. When compared to a basic decimation filter,
the suggested decimation filter architecture uses a compressor
adder-based DA FIR filter, which reduces the amount of
hardware needed by 69% and reduces power consumption
by 83%. FIR filters were used in decimation filters for audio
applications because they make it simple to establish a linear
phase. However, in the future, a linear phase across the entire
band is needed.

Uma et al [30] focused on applying DA based FIR filters
to remove baseline drift and muscle artifact noise. An area-
efficient modified DA-based FIR filter was used to filter out
noise and has no LUTs. The modified DA-based FIR filter's
performance was contrasted with that of the traditional DA
FIR filter. Baseline Wander noise, Muscle Artefact noises,
and an arbitrary real-time ECG record are all extracted from
the MIT-BIH noise stress test database. Signal to Noise Ratio
(SNR) and Mean Square Error (MSE) output metrics were
used to assess both filters' performance. The redesigned DA-
based FIR filter yields good output SNR and low MSE for
baseline wander noise reduction. However, a filter designed
for a stationary noise model was not as effective in removing
non-stationary noise components.

Nirmala et al [31] proposed a shared LUT updating system
for a reconfigurable offset-binary code (OBC) DA-based
FIR filter. With each additional filter, the LUTs in DA grow
exponentially larger. A way to lessen this significant memory
consumption for higher-order filters was a shared LUT-
based DA structure. The shared LUT updating method that
was being suggested makes use of LUT partitioning, which
divides coefficients into small length vectors and significantly
reduces the size of LUTs. CMOS 90 nm technology was
used to synthesize the suggested DA filter with Synapsis
ASIC Design Compiler. When compared to prior designs,
the suggested design delivers high speed at a smaller ADP.
However, high-speed, low-area OBC-based decimation filters
were quite complex to design and implement, especially when
dealing with high-order delta-sigma modulators.

Șorecău et al [32] introduced the SDR measurement
system for real-time spectrum monitoring. It enabled channel
power and complementary cumulative distribution function
measurements. It was validated against a high-performance
spectrum analyser (SA) in a laboratory setting and successfully
captured signals from modern communication standards. The
results demonstrated the SDR system's capability to perform
real-time measurements and provided valuable insights into
signal behaviour, highlighting its potential for advanced
spectrum analysis. However, achieving optimal performance
across diverse conditions remains a challenge.

Radu et al [33] proposed a system for identifying the
modulation of complex radio signals using an artificial
intelligence model integrated with a cloud-based platform. The

implementation controls a software-defined radio platform to
generate and receive real modulated signals, demonstrating the
viability of cloud computing for signal processing tasks. The
results indicate a high degree of success in identifying certain
modulation types, allowing users to access the system from
anywhere with an internet connection. However, a significant
limitation is the challenge of improving model accuracy under
varying signal-to-noise ratios.

From the analysis, [21] building hardware for DSP applications
was more challenging, [22] does not attain low power and
area efficiency, [23] challenges in combining digital and
analog components, [24] does not meet real-time processing
requirements, [25] data handling problem obtained, [26] need
to ensure the filter in noisy environments, [27] minimizing
power consumption is a constant challenge, [28] does not
achieve high filter performance, [29] linear phase over the entire
band is required, [30] not effective in removing non-stationary
noise components, and [31] quite complex in high-speed, low-
area OBC-based decimation filters. For [32] it is difficult to
perform under various circumstances and [33] indicates that
increasing model accuracy at different signal-to-noise ratios
is a challenge. Hence, to overcome the aforementioned issues
and to enhance the performance of DA-FIR filter, a new novel
approach has to be proposed.

III. FIR FILTERS IN SOFTWARE DEFINED RADIO WIRELESS
COMMUNICATION SYSTEMS

FIR filters are commonly used in wireless communication
systems for various purposes, including signal processing
and noise reduction. These filters are used to shape or modify
the frequency response of signals to improve communication
quality. In SDR systems, the Finite Impulse Response filters
play a crucial role in the channelization process, which
involves extracting narrowband channels from a wideband
signal. These FIR filters must be designed to operate at high
sampling rates and handle large-order filters to meet stringent
adjacent channel attenuation specifications. The design of
FIR filters for SDR applications often focuses on achieving
a balance between reconfigurability, high-speed operation,
and low power consumption, which are essential for next-
generation wireless communications. Advanced FIR filter
designs utilize techniques like Distributed Arithmetic and
Residue Number Systems (RNS) to improve performance. For
instance, DA-based FIR filters can offer significant area delay
and energy efficiency improvements, making them suitable for
high-throughput implementations. Similarly, RNS-based FIR
channel filters can be reconfigured to adapt to various channel
filtering specifications, providing speed improvements and
complexity reduction compared to traditional methods. These
innovations in FIR filter design contribute to the versatility and
efficiency of SDR systems, enabling them to support multi-
standard wireless communication protocols.
A. Problem Statement and Motivation for the Research
In a traditional FIR filter design, the filter coefficients are
multiplied with delayed versions of the input signal, and

Enhancing Signal Processing Efficiency in
Software-Defined Radio Using Distributed Arithmetic
and Look-Up Table-Based FIR Filters

DECEMBER 2024 • VOLUME XVI • NUMBER 422

INFOCOMMUNICATIONS JOURNAL

crucial for SDR systems, along with robust DSP resources
that efficiently handle complex DA operations without
relying on traditional multipliers, thus eliminating common
bottlenecks. Its optimized power efficiency reduces energy
consumption, making it ideal for energy-sensitive
applications. Additionally, the Artix-7's high memory
bandwidth and extensive LUT resources enhance processing
speed and conserve resources, supporting the filter's high-
performance demands. Notably, the filter's output frequency
response can be dynamically adjusted through a decimation
factor, all while keeping the filter coefficients unchanged. A
highly adaptive parallel prefix adder is used to lower the
worst-case critical route latency of partial product
accumulation. FIR filters reduce the amount of LUTs,
thereby conserving memory and processing time. To boost
performance while cutting down on processing time, this
study also suggests limiting the number of coefficients read
in parallel for FIR filter operations.

In this proposed design, DA optimizes multiply-
and-accumulate (MAC) operations in the FIR filters where
instead of directly multiplying filter coefficients with input
samples, it precomputes partial products and stores them in
memory (LUTs or RAMs). During filter operation, it
efficiently combines these precomputed values to compute
the final output thereby significantly reducing the need for
multipliers, which are resource-intensive in FPGA
implementations. Traditional FIR filters rely on multipliers
and adders to compute the convolution of input samples
with filter coefficients but the LUT-based FIR filters used in
this proposed approach replace multipliers with
precomputed LUT entries, which store the results of
coefficient multiplication thereby avoiding expensive
multiplication operations and achieving area and power
savings. The decimation factor used in this design
dynamically adjusts the output frequency response of the
filter and hence, if the original filter operates at a higher
sample rate, decimation reduces it to match the desired
output rate. The parallel prefix adder efficiently computes
the sum of partial products and limits the number of
coefficients read in parallel during filter operations. By
distributing the addition process across multiple stages, this
PPA carefully manages the parallelism and reduces critical
path delays thereby striking a balance between throughput
and resource utilization and improving performance.

The combination of these technical innovations,
including the use of Distributed Arithmetic, dynamic
decimation factor, parallel prefix adder, reduced LUT
utilization, and coefficient parallelization optimization,
collectively improve the efficiency and performance of FIR
filters in the proposed DA-LUT-FIR approach. These
enhancements enable more efficient and high-performance
FIR filtering solutions, particularly for applications where
resource constraints and real-time processing requirements
are critical, such as in SDR systems.

a. Block Level Diagram of the proposed FIR Filter
Figure 1 depicts the overall block-level diagram for the
proposed approach. The architecture of a proposed DA-
LUT-based FIR filter typically involves several key
components and stages. The filter receives input data, which
is the signal to be filtered and it is typically in the form of
discrete samples.

Figure 1: Proposed Block Level Diagram

The FIR filter uses a set of filter coefficients (taps) that

determine the filter's behavior. These coefficients are
usually constants and define the filter's impulse response.
The core of the DA-LUT-based FIR architecture is the use
of Look-Up Tables (LUTs), which store precomputed values
i.e., the result of multiplying each possible input value by
each filter coefficient. The number of LUTs is typically
minimized for efficiency. A multiplexer is used to select the
appropriate LUT entry based on the current input data value
and it effectively "looks up" the precomputed result for the
current data value and coefficient. Instead of using
traditional multipliers, the DA-LUT-based FIR filter uses
multiplier-less multiplication.

The selected LUT entry is treated as a partial product
and then the accumulator sums up the partial products
obtained from the multiplier less multiplication. This
accumulation process continues for multiple data samples,
producing the filtered output. The final output of the filter is
the result of the accumulation process and it represents the
filtered version of the input signal. Depending on the
proposed design and application, a decimation stage is
added to reduce the output data rate, and is often used in
cases where the filter output does not need to retain all the
input data points. To enhance performance and throughput,
the architecture incorporates parallel processing, which
involves the processing of multiple data points and
coefficients simultaneously, further improving filter speed.
The architecture is highly customizable, allowing for
adjustments such as filter length, word length, and the
number of LUT entries to be tailored to specific application
requirements. The number of LUTs required for a DA-LUT-
FIR filter scales with the filter length, particularly if all
coefficient multiplications are independently handled.
Overall, the DA-LUT-based FIR architecture is designed to
efficiently perform filtering operations by utilizing
precomputed values stored in LUTs and minimizing the
need for traditional multiplication hardware. This results in
an efficient and hardware-friendly FIR filter suitable for
SDR applications.

C. DA-LUT-FIR filter Formulation
Typically, DA is a well-known FIR filter method,

which focuses especially on the computation of the sum of
products, often known as the vector dot product that
includes several crucial DSP filtering and frequency-shifting
operations prompted by the possibilities of the Artix-7
FPGA look-up table architecture. To determine the total
number of products needed for FIR filters, DA effectively
uses LUTs, shifters, and adders. The DA-LUT-FIR filter

crucial for SDR systems, along with robust DSP resources
that efficiently handle complex DA operations without
relying on traditional multipliers, thus eliminating common
bottlenecks. Its optimized power efficiency reduces energy
consumption, making it ideal for energy-sensitive
applications. Additionally, the Artix-7's high memory
bandwidth and extensive LUT resources enhance processing
speed and conserve resources, supporting the filter's high-
performance demands. Notably, the filter's output frequency
response can be dynamically adjusted through a decimation
factor, all while keeping the filter coefficients unchanged. A
highly adaptive parallel prefix adder is used to lower the
worst-case critical route latency of partial product
accumulation. FIR filters reduce the amount of LUTs,
thereby conserving memory and processing time. To boost
performance while cutting down on processing time, this
study also suggests limiting the number of coefficients read
in parallel for FIR filter operations.

In this proposed design, DA optimizes multiply-
and-accumulate (MAC) operations in the FIR filters where
instead of directly multiplying filter coefficients with input
samples, it precomputes partial products and stores them in
memory (LUTs or RAMs). During filter operation, it
efficiently combines these precomputed values to compute
the final output thereby significantly reducing the need for
multipliers, which are resource-intensive in FPGA
implementations. Traditional FIR filters rely on multipliers
and adders to compute the convolution of input samples
with filter coefficients but the LUT-based FIR filters used in
this proposed approach replace multipliers with
precomputed LUT entries, which store the results of
coefficient multiplication thereby avoiding expensive
multiplication operations and achieving area and power
savings. The decimation factor used in this design
dynamically adjusts the output frequency response of the
filter and hence, if the original filter operates at a higher
sample rate, decimation reduces it to match the desired
output rate. The parallel prefix adder efficiently computes
the sum of partial products and limits the number of
coefficients read in parallel during filter operations. By
distributing the addition process across multiple stages, this
PPA carefully manages the parallelism and reduces critical
path delays thereby striking a balance between throughput
and resource utilization and improving performance.

The combination of these technical innovations,
including the use of Distributed Arithmetic, dynamic
decimation factor, parallel prefix adder, reduced LUT
utilization, and coefficient parallelization optimization,
collectively improve the efficiency and performance of FIR
filters in the proposed DA-LUT-FIR approach. These
enhancements enable more efficient and high-performance
FIR filtering solutions, particularly for applications where
resource constraints and real-time processing requirements
are critical, such as in SDR systems.

a. Block Level Diagram of the proposed FIR Filter
Figure 1 depicts the overall block-level diagram for the
proposed approach. The architecture of a proposed DA-
LUT-based FIR filter typically involves several key
components and stages. The filter receives input data, which
is the signal to be filtered and it is typically in the form of
discrete samples.

Figure 1: Proposed Block Level Diagram

The FIR filter uses a set of filter coefficients (taps) that

determine the filter's behavior. These coefficients are
usually constants and define the filter's impulse response.
The core of the DA-LUT-based FIR architecture is the use
of Look-Up Tables (LUTs), which store precomputed values
i.e., the result of multiplying each possible input value by
each filter coefficient. The number of LUTs is typically
minimized for efficiency. A multiplexer is used to select the
appropriate LUT entry based on the current input data value
and it effectively "looks up" the precomputed result for the
current data value and coefficient. Instead of using
traditional multipliers, the DA-LUT-based FIR filter uses
multiplier-less multiplication.

The selected LUT entry is treated as a partial product
and then the accumulator sums up the partial products
obtained from the multiplier less multiplication. This
accumulation process continues for multiple data samples,
producing the filtered output. The final output of the filter is
the result of the accumulation process and it represents the
filtered version of the input signal. Depending on the
proposed design and application, a decimation stage is
added to reduce the output data rate, and is often used in
cases where the filter output does not need to retain all the
input data points. To enhance performance and throughput,
the architecture incorporates parallel processing, which
involves the processing of multiple data points and
coefficients simultaneously, further improving filter speed.
The architecture is highly customizable, allowing for
adjustments such as filter length, word length, and the
number of LUT entries to be tailored to specific application
requirements. The number of LUTs required for a DA-LUT-
FIR filter scales with the filter length, particularly if all
coefficient multiplications are independently handled.
Overall, the DA-LUT-based FIR architecture is designed to
efficiently perform filtering operations by utilizing
precomputed values stored in LUTs and minimizing the
need for traditional multiplication hardware. This results in
an efficient and hardware-friendly FIR filter suitable for
SDR applications.

C. DA-LUT-FIR filter Formulation
Typically, DA is a well-known FIR filter method,

which focuses especially on the computation of the sum of
products, often known as the vector dot product that
includes several crucial DSP filtering and frequency-shifting
operations prompted by the possibilities of the Artix-7
FPGA look-up table architecture. To determine the total
number of products needed for FIR filters, DA effectively
uses LUTs, shifters, and adders. The DA-LUT-FIR filter

To address the limitations of traditional multiplier-based
FIR filters, a new innovative approach called Distributed
Arithmetic (DA) with Look Up Table-based FIR filter
(DA-LUT-FIR) is proposed, in which enhanced efficiency
of FIR filters is typically achieved by optimizing the
computational components of the filter, such as the multipliers
and adders thereby significantly speeding up the filter's
operation. This study utilizes an Artix-7 FPGA to implement
and test an optimized FIR filter design. The Artix-7 FPGA
provides high throughput and low latency, crucial for SDR
systems, along with robust DSP resources that efficiently
handle complex DA operations without relying on traditional
multipliers, thus eliminating common bottlenecks. Its
optimized power efficiency reduces energy consumption,
making it ideal for energy-sensitive applications. Additionally,
the Artix-7's high memory bandwidth and extensive LUT
resources enhance processing speed and conserve resources,
supporting the filter's high- performance demands. Notably,
the filter's output frequency response can be dynamically
adjusted through a decimation factor, all while keeping the
filter coefficients unchanged. A highly adaptive parallel prefix
adder is used to lower the worst-case critical route latency of
partial product accumulation. FIR filters reduce the amount of
LUTs, thereby conserving memory and processing time. To
boost performance while cutting down on processing time,
this study also suggests limiting the number of coefficients
read in parallel for FIR filter operations.

In this proposed design, DA optimizes multiply-and-
accumulate (MAC) operations in the FIR filters where instead
of directly multiplying filter coefficients with input samples,
it precomputes partial products and stores them in memory
(LUTs or RAMs). During filter operation, it efficiently
combines these precomputed values to compute the final output
thereby significantly reducing the need for multipliers, which
are resource-intensive in FPGA implementations. Traditional
FIR filters rely on multipliers and adders to compute the
convolution of input samples with filter coefficients but
the LUT-based FIR filters used in this proposed approach

replace multipliers with precomputed LUT entries, which
store the results of coefficient multiplication thereby avoiding
expensive multiplication operations and achieving area and
power savings. The decimation factor used in this design
dynamically adjusts the output frequency response of the filter
and hence, if the original filter operates at a higher sample
rate, decimation reduces it to match the desired output rate.
The parallel prefix adder efficiently computes the sum of
partial products and limits the number of coefficients read in
parallel during filter operations. By distributing the addition
process across multiple stages, this PPA carefully manages the
parallelism and reduces critical path delays thereby striking
a balance between throughput and resource utilization and
improving performance.

The combination of these technical innovations, including
the use of Distributed Arithmetic, dynamic decimation factor,
parallel prefix adder, reduced LUT utilization, and coefficient
parallelization optimization, collectively improve the efficien-
cy and performance of FIR filters in the proposed DA-LUT-
FIR approach. These enhancements enable more efficient and
high-performance FIR filtering solutions, particularly for ap-
plications where resource constraints and real-time processing
requirements are critical, such as in SDR systems.

crucial for SDR systems, along with robust DSP resources
that efficiently handle complex DA operations without
relying on traditional multipliers, thus eliminating common
bottlenecks. Its optimized power efficiency reduces energy
consumption, making it ideal for energy-sensitive
applications. Additionally, the Artix-7's high memory
bandwidth and extensive LUT resources enhance processing
speed and conserve resources, supporting the filter's high-
performance demands. Notably, the filter's output frequency
response can be dynamically adjusted through a decimation
factor, all while keeping the filter coefficients unchanged. A
highly adaptive parallel prefix adder is used to lower the
worst-case critical route latency of partial product
accumulation. FIR filters reduce the amount of LUTs,
thereby conserving memory and processing time. To boost
performance while cutting down on processing time, this
study also suggests limiting the number of coefficients read
in parallel for FIR filter operations.

In this proposed design, DA optimizes multiply-
and-accumulate (MAC) operations in the FIR filters where
instead of directly multiplying filter coefficients with input
samples, it precomputes partial products and stores them in
memory (LUTs or RAMs). During filter operation, it
efficiently combines these precomputed values to compute
the final output thereby significantly reducing the need for
multipliers, which are resource-intensive in FPGA
implementations. Traditional FIR filters rely on multipliers
and adders to compute the convolution of input samples
with filter coefficients but the LUT-based FIR filters used in
this proposed approach replace multipliers with
precomputed LUT entries, which store the results of
coefficient multiplication thereby avoiding expensive
multiplication operations and achieving area and power
savings. The decimation factor used in this design
dynamically adjusts the output frequency response of the
filter and hence, if the original filter operates at a higher
sample rate, decimation reduces it to match the desired
output rate. The parallel prefix adder efficiently computes
the sum of partial products and limits the number of
coefficients read in parallel during filter operations. By
distributing the addition process across multiple stages, this
PPA carefully manages the parallelism and reduces critical
path delays thereby striking a balance between throughput
and resource utilization and improving performance.

The combination of these technical innovations,
including the use of Distributed Arithmetic, dynamic
decimation factor, parallel prefix adder, reduced LUT
utilization, and coefficient parallelization optimization,
collectively improve the efficiency and performance of FIR
filters in the proposed DA-LUT-FIR approach. These
enhancements enable more efficient and high-performance
FIR filtering solutions, particularly for applications where
resource constraints and real-time processing requirements
are critical, such as in SDR systems.

a. Block Level Diagram of the proposed FIR Filter
Figure 1 depicts the overall block-level diagram for the
proposed approach. The architecture of a proposed DA-
LUT-based FIR filter typically involves several key
components and stages. The filter receives input data, which
is the signal to be filtered and it is typically in the form of
discrete samples.

Figure 1: Proposed Block Level Diagram

The FIR filter uses a set of filter coefficients (taps) that

determine the filter's behavior. These coefficients are
usually constants and define the filter's impulse response.
The core of the DA-LUT-based FIR architecture is the use
of Look-Up Tables (LUTs), which store precomputed values
i.e., the result of multiplying each possible input value by
each filter coefficient. The number of LUTs is typically
minimized for efficiency. A multiplexer is used to select the
appropriate LUT entry based on the current input data value
and it effectively "looks up" the precomputed result for the
current data value and coefficient. Instead of using
traditional multipliers, the DA-LUT-based FIR filter uses
multiplier-less multiplication.

The selected LUT entry is treated as a partial product
and then the accumulator sums up the partial products
obtained from the multiplier less multiplication. This
accumulation process continues for multiple data samples,
producing the filtered output. The final output of the filter is
the result of the accumulation process and it represents the
filtered version of the input signal. Depending on the
proposed design and application, a decimation stage is
added to reduce the output data rate, and is often used in
cases where the filter output does not need to retain all the
input data points. To enhance performance and throughput,
the architecture incorporates parallel processing, which
involves the processing of multiple data points and
coefficients simultaneously, further improving filter speed.
The architecture is highly customizable, allowing for
adjustments such as filter length, word length, and the
number of LUT entries to be tailored to specific application
requirements. The number of LUTs required for a DA-LUT-
FIR filter scales with the filter length, particularly if all
coefficient multiplications are independently handled.
Overall, the DA-LUT-based FIR architecture is designed to
efficiently perform filtering operations by utilizing
precomputed values stored in LUTs and minimizing the
need for traditional multiplication hardware. This results in
an efficient and hardware-friendly FIR filter suitable for
SDR applications.

C. DA-LUT-FIR filter Formulation
Typically, DA is a well-known FIR filter method,

which focuses especially on the computation of the sum of
products, often known as the vector dot product that
includes several crucial DSP filtering and frequency-shifting
operations prompted by the possibilities of the Artix-7
FPGA look-up table architecture. To determine the total
number of products needed for FIR filters, DA effectively
uses LUTs, shifters, and adders. The DA-LUT-FIR filter

the results are summed to produce the filtered output. This
operation requires multipliers, delay elements, and adders.
Multiplier-based FIR filters typically require dedicated
hardware multipliers, which is expensive in terms of
both space and energy consumption. This is a significant
drawback, particularly in applications where hardware
resources are constrained. The use of dedicated multipliers
leads to slower calculation speeds, especially for high-
speed signal processing. Multipliers tend to be relatively
slow compared to other operations, which limits the
filter's performance in applications that require real-time
processing. Due to their hardware-intensive nature and slow
speed potential, traditional multiplier-based FIR filters suffer
from low throughput and high latency. This is problematic in
applications where the timely processing of signals is crucial.
Hence, a novel FIR filter design that mitigates these issues is
imperative for enhancing the efficiency and responsiveness
of SDR systems.

B. Proposed Design of Novel FIR Filter for an Effective SDR
System

Enhancing Signal Processing Efficiency in
Software-Defined Radio Using Distributed Arithmetic

and Look-Up Table-Based FIR Filters

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2024 • VOLUME XVI • NUMBER 4 23

Formulation for analysis is discussed in further sections
below.

a. Distributed Arithmetic (DA) Computation
When the coefficients of the FIR filter are known,

the DA resolves the computation of the internal product, and
the output of an FIR filter is given by the convolution sum
in equation (1):

𝑌𝑌[𝑛𝑛] = ∑ ℎ[𝑘𝑘]𝑥𝑥[𝑛𝑛 − 𝑘𝑘] (1)
𝐾𝐾−1

𝑘𝑘=0

Where,

 Y[n] is the output signal at time n
 h[k] are the filter coefficients
 x[n−k] is the input signal at time n−k
 K is the number of filter coefficients

(filter length)
DA shifts the computation from the traditional

method of directly calculating the product of the input signal
and filter coefficients to a method that relies on bit-level
manipulations. This is especially efficient in FPGAs where
LUTs can store precomputed values. The step-by-step DA
process is given in the following equations.

Decompose the input data x[n−k] into its binary
representation. For simplicity, each input sample is
represented by B bits as given in equation (2):

𝑥𝑥[𝑛𝑛 − 𝑘𝑘] = ∑𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] (2)
𝐵𝐵−1

𝑏𝑏=0

Here, xb[n−k] represents the bth bit of the
input sample x[n−k].

Then precompute all possible values of the partial
products ℎ[𝑘𝑘] ⋅ 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] for each bit position and store
them in LUTs. This reduces the real-time computation to
simple LUT lookups and bit-shifting operations. The
precomputed partial products for each bit position are
accumulated across all filter taps which is given in equation
(3):

𝑌𝑌 = ∑∑ℎ[𝑘𝑘]. 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]
𝐵𝐵−1

𝑏𝑏=0
. 2𝑏𝑏 (3)

𝐾𝐾−1

𝑘𝑘=0

This step involves shifting the precomputed values
according to their bit positions and summing them up using
adders. Finally, the DA-based FIR filter output is
represented by equation (4) as given below:

𝑌𝑌 = ∑ℎ[𝑘𝑘]. 𝑥𝑥′[𝑘𝑘] (4)
𝐾𝐾−1

𝑘𝑘=0

Here, x′[k] is a function of the bit-level decomposition of
the input data x[n−k].
 Moreover, in the context of FIR filters, particularly
with the proposed DA-LUT-FIR approach, representing
input data using a two's complement B-bit binary format is
crucial. This representation accommodates both positive and
negative values and provides a precision level determined

by the number of bits B. The formulation of this
representation is provided in the below section.

b. Distributed Arithmetic (DA) for FIR Filters with Two's
Complement Representation

In the proposed DA-LUT-FIR filter, the input data x[k]
is represented using a two's complement BBB-bit binary
representation, allowing for an accurate representation of
both positive and negative values. The two's complement
representation of x[k] is crucial for handling negative
numbers in FIR filter calculations which is given in equation
(5);

𝑥𝑥′[𝑘𝑘] = −2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏 (5)
𝐵𝐵−1

𝑏𝑏=0

Where, 𝑥𝑥𝑏𝑏[𝑘𝑘] is 𝑏𝑏𝑡𝑡ℎ bit of 𝑥𝑥[𝑘𝑘], 𝑋𝑋𝐵𝐵[𝑘𝑘] ∈ {0,1}.

Substituting equation (5) in equation (4),

𝑌𝑌 = ∑ ℎ[𝑘𝑘] (−2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑ 𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏𝐵𝐵−1
𝑏𝑏=0)

𝐾𝐾−1

𝑘𝑘=0

      = −2𝐵𝐵∑ ℎ[𝑘𝑘]𝑋𝑋𝐵𝐵[𝑘𝑘] +∑ 2𝑏𝑏 ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]𝐾𝐾−1
𝑘𝑘=0

𝐵𝐵−1
𝑏𝑏=0

𝐾𝐾−1

𝑘𝑘=0

     Y = −2𝐵𝐵𝑓𝑓(ℎ[𝑘𝑘]. 𝑋𝑋𝐵𝐵[𝑘𝑘]) + ∑ 2𝑏𝑏𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘])𝐵𝐵−1
𝑏𝑏=0 (6)

The final output of the FIR filter with two’s complement
representation is given in equation (6); Thus, from equation
(6), the simplified input data of B-Bit binary data is given
below in equation (7):

𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]) = ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘] (7)
𝐾𝐾−1

𝑘𝑘=0

Therefore, the filter coefficient is further stored at LUT
and it is addressed by 𝑋𝑋𝑏𝑏[𝑘𝑘]. This reduces entry and
summation with LUT of the MAC blocks of FIR filters. The
digital filters are made with the use of registers, memory
resources, and a scale accumulator to perform this
arithmetic. One of the key features of the proposed
implementation is the use of a small number of LUTs which
is discussed in the following section.

c. Minimizing the LUT size
This proposed approach suggests that the design

optimizes the LUTs' usage, potentially by reusing or sharing
LUT resources for multiple coefficients to minimize the
LUT size while maintaining accuracy. Reducing the number
of LUTs leads to savings of hardware resources and power
consumption. To execute FIR filter operations efficiently,
the proposed approach allows parallel access to multiple
coefficients in LUTs. This means that multiple coefficients
are accessed simultaneously to perform filter calculations.
Parallelism in coefficient access leads to a significant
reduction in the processing delay and also enhances the
filter's throughput, making it suitable for real-time
applications. By minimizing the number of LUTs and
enabling parallel access to coefficients, the filter processes
the data with lower latency, which is essential for real-time
processing.

d. Decimation and Parallel Prefix Adder
Additionally, the frequency response of the filter output

is dynamically altered using the decimation factor.
Decimation is a process in DSP where the sampling rate of a
signal is reduced. By changing the decimation factor, the
effective bandwidth and characteristics of the filter output
are adjusted without modifying the filter coefficients. It's

crucial for SDR systems, along with robust DSP resources
that efficiently handle complex DA operations without
relying on traditional multipliers, thus eliminating common
bottlenecks. Its optimized power efficiency reduces energy
consumption, making it ideal for energy-sensitive
applications. Additionally, the Artix-7's high memory
bandwidth and extensive LUT resources enhance processing
speed and conserve resources, supporting the filter's high-
performance demands. Notably, the filter's output frequency
response can be dynamically adjusted through a decimation
factor, all while keeping the filter coefficients unchanged. A
highly adaptive parallel prefix adder is used to lower the
worst-case critical route latency of partial product
accumulation. FIR filters reduce the amount of LUTs,
thereby conserving memory and processing time. To boost
performance while cutting down on processing time, this
study also suggests limiting the number of coefficients read
in parallel for FIR filter operations.

In this proposed design, DA optimizes multiply-
and-accumulate (MAC) operations in the FIR filters where
instead of directly multiplying filter coefficients with input
samples, it precomputes partial products and stores them in
memory (LUTs or RAMs). During filter operation, it
efficiently combines these precomputed values to compute
the final output thereby significantly reducing the need for
multipliers, which are resource-intensive in FPGA
implementations. Traditional FIR filters rely on multipliers
and adders to compute the convolution of input samples
with filter coefficients but the LUT-based FIR filters used in
this proposed approach replace multipliers with
precomputed LUT entries, which store the results of
coefficient multiplication thereby avoiding expensive
multiplication operations and achieving area and power
savings. The decimation factor used in this design
dynamically adjusts the output frequency response of the
filter and hence, if the original filter operates at a higher
sample rate, decimation reduces it to match the desired
output rate. The parallel prefix adder efficiently computes
the sum of partial products and limits the number of
coefficients read in parallel during filter operations. By
distributing the addition process across multiple stages, this
PPA carefully manages the parallelism and reduces critical
path delays thereby striking a balance between throughput
and resource utilization and improving performance.

The combination of these technical innovations,
including the use of Distributed Arithmetic, dynamic
decimation factor, parallel prefix adder, reduced LUT
utilization, and coefficient parallelization optimization,
collectively improve the efficiency and performance of FIR
filters in the proposed DA-LUT-FIR approach. These
enhancements enable more efficient and high-performance
FIR filtering solutions, particularly for applications where
resource constraints and real-time processing requirements
are critical, such as in SDR systems.

a. Block Level Diagram of the proposed FIR Filter
Figure 1 depicts the overall block-level diagram for the
proposed approach. The architecture of a proposed DA-
LUT-based FIR filter typically involves several key
components and stages. The filter receives input data, which
is the signal to be filtered and it is typically in the form of
discrete samples.

Figure 1: Proposed Block Level Diagram

The FIR filter uses a set of filter coefficients (taps) that

determine the filter's behavior. These coefficients are
usually constants and define the filter's impulse response.
The core of the DA-LUT-based FIR architecture is the use
of Look-Up Tables (LUTs), which store precomputed values
i.e., the result of multiplying each possible input value by
each filter coefficient. The number of LUTs is typically
minimized for efficiency. A multiplexer is used to select the
appropriate LUT entry based on the current input data value
and it effectively "looks up" the precomputed result for the
current data value and coefficient. Instead of using
traditional multipliers, the DA-LUT-based FIR filter uses
multiplier-less multiplication.

The selected LUT entry is treated as a partial product
and then the accumulator sums up the partial products
obtained from the multiplier less multiplication. This
accumulation process continues for multiple data samples,
producing the filtered output. The final output of the filter is
the result of the accumulation process and it represents the
filtered version of the input signal. Depending on the
proposed design and application, a decimation stage is
added to reduce the output data rate, and is often used in
cases where the filter output does not need to retain all the
input data points. To enhance performance and throughput,
the architecture incorporates parallel processing, which
involves the processing of multiple data points and
coefficients simultaneously, further improving filter speed.
The architecture is highly customizable, allowing for
adjustments such as filter length, word length, and the
number of LUT entries to be tailored to specific application
requirements. The number of LUTs required for a DA-LUT-
FIR filter scales with the filter length, particularly if all
coefficient multiplications are independently handled.
Overall, the DA-LUT-based FIR architecture is designed to
efficiently perform filtering operations by utilizing
precomputed values stored in LUTs and minimizing the
need for traditional multiplication hardware. This results in
an efficient and hardware-friendly FIR filter suitable for
SDR applications.

C. DA-LUT-FIR filter Formulation
Typically, DA is a well-known FIR filter method,

which focuses especially on the computation of the sum of
products, often known as the vector dot product that
includes several crucial DSP filtering and frequency-shifting
operations prompted by the possibilities of the Artix-7
FPGA look-up table architecture. To determine the total
number of products needed for FIR filters, DA effectively
uses LUTs, shifters, and adders. The DA-LUT-FIR filter

The architecture is highly customizable, allowing for
adjustments such as filter length, word length, and the number of
LUT entries to be tailored to specific application requirements.
The number of LUTs required for a DA-LUT- FIR filter
scales with the filter length, particularly if all coefficient
multiplications are independently handled. Overall, the DA-
LUT-based FIR architecture is designed to efficiently perform
filtering operations by utilizing precomputed values stored in
LUTs and minimizing the need for traditional multiplication
hardware. This results in an efficient and hardware-friendly
FIR filter suitable for SDR applications.
C. DA-LUT-FIR filter Formulation

Typically, DA is a well-known FIR filter method, which
focuses especially on the computation of the sum of products,
often known as the vector dot product that includes several
crucial DSP filtering and frequency-shifting operations
prompted by the possibilities of the Artix-7 FPGA look-up
table architecture. To determine the total number of products
needed for FIR filters, DA effectively uses LUTs, shifters, and
adders. The DA-LUT-FIR filter Formulation for analysis is
discussed in further sections below.

a. Distributed Arithmetic (DA) Computation
When the coefficients of the FIR filter are known, the

DA resolves the computation of the internal product, and the
output of an FIR filter is given by the convolution sum in
equation (1):

Formulation for analysis is discussed in further sections
below.

a. Distributed Arithmetic (DA) Computation
When the coefficients of the FIR filter are known,

the DA resolves the computation of the internal product, and
the output of an FIR filter is given by the convolution sum
in equation (1):

𝑌𝑌[𝑛𝑛] = ∑ ℎ[𝑘𝑘]𝑥𝑥[𝑛𝑛 − 𝑘𝑘] (1)
𝐾𝐾−1

𝑘𝑘=0

Where,

 Y[n] is the output signal at time n
 h[k] are the filter coefficients
 x[n−k] is the input signal at time n−k
 K is the number of filter coefficients

(filter length)
DA shifts the computation from the traditional

method of directly calculating the product of the input signal
and filter coefficients to a method that relies on bit-level
manipulations. This is especially efficient in FPGAs where
LUTs can store precomputed values. The step-by-step DA
process is given in the following equations.

Decompose the input data x[n−k] into its binary
representation. For simplicity, each input sample is
represented by B bits as given in equation (2):

𝑥𝑥[𝑛𝑛 − 𝑘𝑘] = ∑𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] (2)
𝐵𝐵−1

𝑏𝑏=0

Here, xb[n−k] represents the bth bit of the
input sample x[n−k].

Then precompute all possible values of the partial
products ℎ[𝑘𝑘] ⋅ 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] for each bit position and store
them in LUTs. This reduces the real-time computation to
simple LUT lookups and bit-shifting operations. The
precomputed partial products for each bit position are
accumulated across all filter taps which is given in equation
(3):

𝑌𝑌 = ∑∑ℎ[𝑘𝑘]. 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]
𝐵𝐵−1

𝑏𝑏=0
. 2𝑏𝑏 (3)

𝐾𝐾−1

𝑘𝑘=0

This step involves shifting the precomputed values
according to their bit positions and summing them up using
adders. Finally, the DA-based FIR filter output is
represented by equation (4) as given below:

𝑌𝑌 = ∑ℎ[𝑘𝑘]. 𝑥𝑥′[𝑘𝑘] (4)
𝐾𝐾−1

𝑘𝑘=0

Here, x′[k] is a function of the bit-level decomposition of
the input data x[n−k].
 Moreover, in the context of FIR filters, particularly
with the proposed DA-LUT-FIR approach, representing
input data using a two's complement B-bit binary format is
crucial. This representation accommodates both positive and
negative values and provides a precision level determined

by the number of bits B. The formulation of this
representation is provided in the below section.

b. Distributed Arithmetic (DA) for FIR Filters with Two's
Complement Representation

In the proposed DA-LUT-FIR filter, the input data x[k]
is represented using a two's complement BBB-bit binary
representation, allowing for an accurate representation of
both positive and negative values. The two's complement
representation of x[k] is crucial for handling negative
numbers in FIR filter calculations which is given in equation
(5);

𝑥𝑥′[𝑘𝑘] = −2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏 (5)
𝐵𝐵−1

𝑏𝑏=0

Where, 𝑥𝑥𝑏𝑏[𝑘𝑘] is 𝑏𝑏𝑡𝑡ℎ bit of 𝑥𝑥[𝑘𝑘], 𝑋𝑋𝐵𝐵[𝑘𝑘] ∈ {0,1}.

Substituting equation (5) in equation (4),

𝑌𝑌 = ∑ ℎ[𝑘𝑘] (−2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑ 𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏𝐵𝐵−1
𝑏𝑏=0)

𝐾𝐾−1

𝑘𝑘=0

      = −2𝐵𝐵∑ ℎ[𝑘𝑘]𝑋𝑋𝐵𝐵[𝑘𝑘] +∑ 2𝑏𝑏 ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]𝐾𝐾−1
𝑘𝑘=0

𝐵𝐵−1
𝑏𝑏=0

𝐾𝐾−1

𝑘𝑘=0

     Y = −2𝐵𝐵𝑓𝑓(ℎ[𝑘𝑘]. 𝑋𝑋𝐵𝐵[𝑘𝑘]) + ∑ 2𝑏𝑏𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘])𝐵𝐵−1
𝑏𝑏=0 (6)

The final output of the FIR filter with two’s complement
representation is given in equation (6); Thus, from equation
(6), the simplified input data of B-Bit binary data is given
below in equation (7):

𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]) = ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘] (7)
𝐾𝐾−1

𝑘𝑘=0

Therefore, the filter coefficient is further stored at LUT
and it is addressed by 𝑋𝑋𝑏𝑏[𝑘𝑘]. This reduces entry and
summation with LUT of the MAC blocks of FIR filters. The
digital filters are made with the use of registers, memory
resources, and a scale accumulator to perform this
arithmetic. One of the key features of the proposed
implementation is the use of a small number of LUTs which
is discussed in the following section.

c. Minimizing the LUT size
This proposed approach suggests that the design

optimizes the LUTs' usage, potentially by reusing or sharing
LUT resources for multiple coefficients to minimize the
LUT size while maintaining accuracy. Reducing the number
of LUTs leads to savings of hardware resources and power
consumption. To execute FIR filter operations efficiently,
the proposed approach allows parallel access to multiple
coefficients in LUTs. This means that multiple coefficients
are accessed simultaneously to perform filter calculations.
Parallelism in coefficient access leads to a significant
reduction in the processing delay and also enhances the
filter's throughput, making it suitable for real-time
applications. By minimizing the number of LUTs and
enabling parallel access to coefficients, the filter processes
the data with lower latency, which is essential for real-time
processing.

d. Decimation and Parallel Prefix Adder
Additionally, the frequency response of the filter output

is dynamically altered using the decimation factor.
Decimation is a process in DSP where the sampling rate of a
signal is reduced. By changing the decimation factor, the
effective bandwidth and characteristics of the filter output
are adjusted without modifying the filter coefficients. It's

Formulation for analysis is discussed in further sections
below.

a. Distributed Arithmetic (DA) Computation
When the coefficients of the FIR filter are known,

the DA resolves the computation of the internal product, and
the output of an FIR filter is given by the convolution sum
in equation (1):

𝑌𝑌[𝑛𝑛] = ∑ ℎ[𝑘𝑘]𝑥𝑥[𝑛𝑛 − 𝑘𝑘] (1)
𝐾𝐾−1

𝑘𝑘=0

Where,

 Y[n] is the output signal at time n
 h[k] are the filter coefficients
 x[n−k] is the input signal at time n−k
 K is the number of filter coefficients

(filter length)
DA shifts the computation from the traditional

method of directly calculating the product of the input signal
and filter coefficients to a method that relies on bit-level
manipulations. This is especially efficient in FPGAs where
LUTs can store precomputed values. The step-by-step DA
process is given in the following equations.

Decompose the input data x[n−k] into its binary
representation. For simplicity, each input sample is
represented by B bits as given in equation (2):

𝑥𝑥[𝑛𝑛 − 𝑘𝑘] = ∑𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] (2)
𝐵𝐵−1

𝑏𝑏=0

Here, xb[n−k] represents the bth bit of the
input sample x[n−k].

Then precompute all possible values of the partial
products ℎ[𝑘𝑘] ⋅ 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] for each bit position and store
them in LUTs. This reduces the real-time computation to
simple LUT lookups and bit-shifting operations. The
precomputed partial products for each bit position are
accumulated across all filter taps which is given in equation
(3):

𝑌𝑌 = ∑∑ℎ[𝑘𝑘]. 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]
𝐵𝐵−1

𝑏𝑏=0
. 2𝑏𝑏 (3)

𝐾𝐾−1

𝑘𝑘=0

This step involves shifting the precomputed values
according to their bit positions and summing them up using
adders. Finally, the DA-based FIR filter output is
represented by equation (4) as given below:

𝑌𝑌 = ∑ℎ[𝑘𝑘]. 𝑥𝑥′[𝑘𝑘] (4)
𝐾𝐾−1

𝑘𝑘=0

Here, x′[k] is a function of the bit-level decomposition of
the input data x[n−k].
 Moreover, in the context of FIR filters, particularly
with the proposed DA-LUT-FIR approach, representing
input data using a two's complement B-bit binary format is
crucial. This representation accommodates both positive and
negative values and provides a precision level determined

by the number of bits B. The formulation of this
representation is provided in the below section.

b. Distributed Arithmetic (DA) for FIR Filters with Two's
Complement Representation

In the proposed DA-LUT-FIR filter, the input data x[k]
is represented using a two's complement BBB-bit binary
representation, allowing for an accurate representation of
both positive and negative values. The two's complement
representation of x[k] is crucial for handling negative
numbers in FIR filter calculations which is given in equation
(5);

𝑥𝑥′[𝑘𝑘] = −2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏 (5)
𝐵𝐵−1

𝑏𝑏=0

Where, 𝑥𝑥𝑏𝑏[𝑘𝑘] is 𝑏𝑏𝑡𝑡ℎ bit of 𝑥𝑥[𝑘𝑘], 𝑋𝑋𝐵𝐵[𝑘𝑘] ∈ {0,1}.

Substituting equation (5) in equation (4),

𝑌𝑌 = ∑ ℎ[𝑘𝑘] (−2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑ 𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏𝐵𝐵−1
𝑏𝑏=0)

𝐾𝐾−1

𝑘𝑘=0

      = −2𝐵𝐵∑ ℎ[𝑘𝑘]𝑋𝑋𝐵𝐵[𝑘𝑘] +∑ 2𝑏𝑏 ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]𝐾𝐾−1
𝑘𝑘=0

𝐵𝐵−1
𝑏𝑏=0

𝐾𝐾−1

𝑘𝑘=0

     Y = −2𝐵𝐵𝑓𝑓(ℎ[𝑘𝑘]. 𝑋𝑋𝐵𝐵[𝑘𝑘]) + ∑ 2𝑏𝑏𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘])𝐵𝐵−1
𝑏𝑏=0 (6)

The final output of the FIR filter with two’s complement
representation is given in equation (6); Thus, from equation
(6), the simplified input data of B-Bit binary data is given
below in equation (7):

𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]) = ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘] (7)
𝐾𝐾−1

𝑘𝑘=0

Therefore, the filter coefficient is further stored at LUT
and it is addressed by 𝑋𝑋𝑏𝑏[𝑘𝑘]. This reduces entry and
summation with LUT of the MAC blocks of FIR filters. The
digital filters are made with the use of registers, memory
resources, and a scale accumulator to perform this
arithmetic. One of the key features of the proposed
implementation is the use of a small number of LUTs which
is discussed in the following section.

c. Minimizing the LUT size
This proposed approach suggests that the design

optimizes the LUTs' usage, potentially by reusing or sharing
LUT resources for multiple coefficients to minimize the
LUT size while maintaining accuracy. Reducing the number
of LUTs leads to savings of hardware resources and power
consumption. To execute FIR filter operations efficiently,
the proposed approach allows parallel access to multiple
coefficients in LUTs. This means that multiple coefficients
are accessed simultaneously to perform filter calculations.
Parallelism in coefficient access leads to a significant
reduction in the processing delay and also enhances the
filter's throughput, making it suitable for real-time
applications. By minimizing the number of LUTs and
enabling parallel access to coefficients, the filter processes
the data with lower latency, which is essential for real-time
processing.

d. Decimation and Parallel Prefix Adder
Additionally, the frequency response of the filter output

is dynamically altered using the decimation factor.
Decimation is a process in DSP where the sampling rate of a
signal is reduced. By changing the decimation factor, the
effective bandwidth and characteristics of the filter output
are adjusted without modifying the filter coefficients. It's

Formulation for analysis is discussed in further sections
below.

a. Distributed Arithmetic (DA) Computation
When the coefficients of the FIR filter are known,

the DA resolves the computation of the internal product, and
the output of an FIR filter is given by the convolution sum
in equation (1):

𝑌𝑌[𝑛𝑛] = ∑ ℎ[𝑘𝑘]𝑥𝑥[𝑛𝑛 − 𝑘𝑘] (1)
𝐾𝐾−1

𝑘𝑘=0

Where,

 Y[n] is the output signal at time n
 h[k] are the filter coefficients
 x[n−k] is the input signal at time n−k
 K is the number of filter coefficients

(filter length)
DA shifts the computation from the traditional

method of directly calculating the product of the input signal
and filter coefficients to a method that relies on bit-level
manipulations. This is especially efficient in FPGAs where
LUTs can store precomputed values. The step-by-step DA
process is given in the following equations.

Decompose the input data x[n−k] into its binary
representation. For simplicity, each input sample is
represented by B bits as given in equation (2):

𝑥𝑥[𝑛𝑛 − 𝑘𝑘] = ∑𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] (2)
𝐵𝐵−1

𝑏𝑏=0

Here, xb[n−k] represents the bth bit of the
input sample x[n−k].

Then precompute all possible values of the partial
products ℎ[𝑘𝑘] ⋅ 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] for each bit position and store
them in LUTs. This reduces the real-time computation to
simple LUT lookups and bit-shifting operations. The
precomputed partial products for each bit position are
accumulated across all filter taps which is given in equation
(3):

𝑌𝑌 = ∑∑ℎ[𝑘𝑘]. 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]
𝐵𝐵−1

𝑏𝑏=0
. 2𝑏𝑏 (3)

𝐾𝐾−1

𝑘𝑘=0

This step involves shifting the precomputed values
according to their bit positions and summing them up using
adders. Finally, the DA-based FIR filter output is
represented by equation (4) as given below:

𝑌𝑌 = ∑ℎ[𝑘𝑘]. 𝑥𝑥′[𝑘𝑘] (4)
𝐾𝐾−1

𝑘𝑘=0

Here, x′[k] is a function of the bit-level decomposition of
the input data x[n−k].
 Moreover, in the context of FIR filters, particularly
with the proposed DA-LUT-FIR approach, representing
input data using a two's complement B-bit binary format is
crucial. This representation accommodates both positive and
negative values and provides a precision level determined

by the number of bits B. The formulation of this
representation is provided in the below section.

b. Distributed Arithmetic (DA) for FIR Filters with Two's
Complement Representation

In the proposed DA-LUT-FIR filter, the input data x[k]
is represented using a two's complement BBB-bit binary
representation, allowing for an accurate representation of
both positive and negative values. The two's complement
representation of x[k] is crucial for handling negative
numbers in FIR filter calculations which is given in equation
(5);

𝑥𝑥′[𝑘𝑘] = −2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏 (5)
𝐵𝐵−1

𝑏𝑏=0

Where, 𝑥𝑥𝑏𝑏[𝑘𝑘] is 𝑏𝑏𝑡𝑡ℎ bit of 𝑥𝑥[𝑘𝑘], 𝑋𝑋𝐵𝐵[𝑘𝑘] ∈ {0,1}.

Substituting equation (5) in equation (4),

𝑌𝑌 = ∑ ℎ[𝑘𝑘] (−2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑ 𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏𝐵𝐵−1
𝑏𝑏=0)

𝐾𝐾−1

𝑘𝑘=0

      = −2𝐵𝐵∑ ℎ[𝑘𝑘]𝑋𝑋𝐵𝐵[𝑘𝑘] +∑ 2𝑏𝑏 ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]𝐾𝐾−1
𝑘𝑘=0

𝐵𝐵−1
𝑏𝑏=0

𝐾𝐾−1

𝑘𝑘=0

     Y = −2𝐵𝐵𝑓𝑓(ℎ[𝑘𝑘]. 𝑋𝑋𝐵𝐵[𝑘𝑘]) + ∑ 2𝑏𝑏𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘])𝐵𝐵−1
𝑏𝑏=0 (6)

The final output of the FIR filter with two’s complement
representation is given in equation (6); Thus, from equation
(6), the simplified input data of B-Bit binary data is given
below in equation (7):

𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]) = ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘] (7)
𝐾𝐾−1

𝑘𝑘=0

Therefore, the filter coefficient is further stored at LUT
and it is addressed by 𝑋𝑋𝑏𝑏[𝑘𝑘]. This reduces entry and
summation with LUT of the MAC blocks of FIR filters. The
digital filters are made with the use of registers, memory
resources, and a scale accumulator to perform this
arithmetic. One of the key features of the proposed
implementation is the use of a small number of LUTs which
is discussed in the following section.

c. Minimizing the LUT size
This proposed approach suggests that the design

optimizes the LUTs' usage, potentially by reusing or sharing
LUT resources for multiple coefficients to minimize the
LUT size while maintaining accuracy. Reducing the number
of LUTs leads to savings of hardware resources and power
consumption. To execute FIR filter operations efficiently,
the proposed approach allows parallel access to multiple
coefficients in LUTs. This means that multiple coefficients
are accessed simultaneously to perform filter calculations.
Parallelism in coefficient access leads to a significant
reduction in the processing delay and also enhances the
filter's throughput, making it suitable for real-time
applications. By minimizing the number of LUTs and
enabling parallel access to coefficients, the filter processes
the data with lower latency, which is essential for real-time
processing.

d. Decimation and Parallel Prefix Adder
Additionally, the frequency response of the filter output

is dynamically altered using the decimation factor.
Decimation is a process in DSP where the sampling rate of a
signal is reduced. By changing the decimation factor, the
effective bandwidth and characteristics of the filter output
are adjusted without modifying the filter coefficients. It's

DA shifts the computation from the traditional method of
directly calculating the product of the input signal and filter
coefficients to a method that relies on bit-level manipulations.
This is especially efficient in FPGAs where LUTs can store
precomputed values. The step-by-step DA process is given in
the following equations.

Decompose the input data x[n−k] into its binary repre-
sentation. For simplicity, each input sample is represented
by B bits as given in equation (2):

Then precompute all possible values of the partial products
h[k] · xb [n − k] for each bit position and store them in LUTs.
This reduces the real-time computation to simple LUT lookups
and bit-shifting operations. The precomputed partial products
for each bit position are accumulated across all filter taps
which is given in equation (3):

This step involves shifting the precomputed values
according to their bit positions and summing them up using
adders. Finally, the DA-based FIR filter output is represented
by equation (4) as given below:

Here, x'[k] is a function of the bit-level decomposition of
the input data x[n−k].

Moreover, in the context of FIR filters, particularly with
the proposed DA-LUT-FIR approach, representing input data
using a two's complement B-bit binary format is crucial. This
representation accommodates both positive and negative
values and provides a precision level determined by the
number of bits B. The formulation of this representation is
provided in the below section.

b. Distributed Arithmetic (DA) for FIR Filters with Two's
Complement Representation

In the proposed DA-LUT-FIR filter, the input data x[k]
is represented using a two's complement BBB-bit binary
representation, allowing for an accurate representation of
both positive and negative values. The two's complement
representation of x[k] is crucial for handling negative numbers
in FIR filter calculations which is given in equation (5);

Formulation for analysis is discussed in further sections
below.

a. Distributed Arithmetic (DA) Computation
When the coefficients of the FIR filter are known,

the DA resolves the computation of the internal product, and
the output of an FIR filter is given by the convolution sum
in equation (1):

𝑌𝑌[𝑛𝑛] = ∑ ℎ[𝑘𝑘]𝑥𝑥[𝑛𝑛 − 𝑘𝑘] (1)
𝐾𝐾−1

𝑘𝑘=0

Where,

 Y[n] is the output signal at time n
 h[k] are the filter coefficients
 x[n−k] is the input signal at time n−k
 K is the number of filter coefficients

(filter length)
DA shifts the computation from the traditional

method of directly calculating the product of the input signal
and filter coefficients to a method that relies on bit-level
manipulations. This is especially efficient in FPGAs where
LUTs can store precomputed values. The step-by-step DA
process is given in the following equations.

Decompose the input data x[n−k] into its binary
representation. For simplicity, each input sample is
represented by B bits as given in equation (2):

𝑥𝑥[𝑛𝑛 − 𝑘𝑘] = ∑𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] (2)
𝐵𝐵−1

𝑏𝑏=0

Here, xb[n−k] represents the bth bit of the
input sample x[n−k].

Then precompute all possible values of the partial
products ℎ[𝑘𝑘] ⋅ 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] for each bit position and store
them in LUTs. This reduces the real-time computation to
simple LUT lookups and bit-shifting operations. The
precomputed partial products for each bit position are
accumulated across all filter taps which is given in equation
(3):

𝑌𝑌 = ∑∑ℎ[𝑘𝑘]. 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]
𝐵𝐵−1

𝑏𝑏=0
. 2𝑏𝑏 (3)

𝐾𝐾−1

𝑘𝑘=0

This step involves shifting the precomputed values
according to their bit positions and summing them up using
adders. Finally, the DA-based FIR filter output is
represented by equation (4) as given below:

𝑌𝑌 = ∑ℎ[𝑘𝑘]. 𝑥𝑥′[𝑘𝑘] (4)
𝐾𝐾−1

𝑘𝑘=0

Here, x′[k] is a function of the bit-level decomposition of
the input data x[n−k].
 Moreover, in the context of FIR filters, particularly
with the proposed DA-LUT-FIR approach, representing
input data using a two's complement B-bit binary format is
crucial. This representation accommodates both positive and
negative values and provides a precision level determined

by the number of bits B. The formulation of this
representation is provided in the below section.

b. Distributed Arithmetic (DA) for FIR Filters with Two's
Complement Representation

In the proposed DA-LUT-FIR filter, the input data x[k]
is represented using a two's complement BBB-bit binary
representation, allowing for an accurate representation of
both positive and negative values. The two's complement
representation of x[k] is crucial for handling negative
numbers in FIR filter calculations which is given in equation
(5);

𝑥𝑥′[𝑘𝑘] = −2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏 (5)
𝐵𝐵−1

𝑏𝑏=0

Where, 𝑥𝑥𝑏𝑏[𝑘𝑘] is 𝑏𝑏𝑡𝑡ℎ bit of 𝑥𝑥[𝑘𝑘], 𝑋𝑋𝐵𝐵[𝑘𝑘] ∈ {0,1}.

Substituting equation (5) in equation (4),

𝑌𝑌 = ∑ ℎ[𝑘𝑘] (−2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑ 𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏𝐵𝐵−1
𝑏𝑏=0)

𝐾𝐾−1

𝑘𝑘=0

      = −2𝐵𝐵∑ ℎ[𝑘𝑘]𝑋𝑋𝐵𝐵[𝑘𝑘] +∑ 2𝑏𝑏 ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]𝐾𝐾−1
𝑘𝑘=0

𝐵𝐵−1
𝑏𝑏=0

𝐾𝐾−1

𝑘𝑘=0

     Y = −2𝐵𝐵𝑓𝑓(ℎ[𝑘𝑘]. 𝑋𝑋𝐵𝐵[𝑘𝑘]) + ∑ 2𝑏𝑏𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘])𝐵𝐵−1
𝑏𝑏=0 (6)

The final output of the FIR filter with two’s complement
representation is given in equation (6); Thus, from equation
(6), the simplified input data of B-Bit binary data is given
below in equation (7):

𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]) = ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘] (7)
𝐾𝐾−1

𝑘𝑘=0

Therefore, the filter coefficient is further stored at LUT
and it is addressed by 𝑋𝑋𝑏𝑏[𝑘𝑘]. This reduces entry and
summation with LUT of the MAC blocks of FIR filters. The
digital filters are made with the use of registers, memory
resources, and a scale accumulator to perform this
arithmetic. One of the key features of the proposed
implementation is the use of a small number of LUTs which
is discussed in the following section.

c. Minimizing the LUT size
This proposed approach suggests that the design

optimizes the LUTs' usage, potentially by reusing or sharing
LUT resources for multiple coefficients to minimize the
LUT size while maintaining accuracy. Reducing the number
of LUTs leads to savings of hardware resources and power
consumption. To execute FIR filter operations efficiently,
the proposed approach allows parallel access to multiple
coefficients in LUTs. This means that multiple coefficients
are accessed simultaneously to perform filter calculations.
Parallelism in coefficient access leads to a significant
reduction in the processing delay and also enhances the
filter's throughput, making it suitable for real-time
applications. By minimizing the number of LUTs and
enabling parallel access to coefficients, the filter processes
the data with lower latency, which is essential for real-time
processing.

d. Decimation and Parallel Prefix Adder
Additionally, the frequency response of the filter output

is dynamically altered using the decimation factor.
Decimation is a process in DSP where the sampling rate of a
signal is reduced. By changing the decimation factor, the
effective bandwidth and characteristics of the filter output
are adjusted without modifying the filter coefficients. It's Formulation for analysis is discussed in further sections

below.

a. Distributed Arithmetic (DA) Computation
When the coefficients of the FIR filter are known,

the DA resolves the computation of the internal product, and
the output of an FIR filter is given by the convolution sum
in equation (1):

𝑌𝑌[𝑛𝑛] = ∑ ℎ[𝑘𝑘]𝑥𝑥[𝑛𝑛 − 𝑘𝑘] (1)
𝐾𝐾−1

𝑘𝑘=0

Where,

 Y[n] is the output signal at time n
 h[k] are the filter coefficients
 x[n−k] is the input signal at time n−k
 K is the number of filter coefficients

(filter length)
DA shifts the computation from the traditional

method of directly calculating the product of the input signal
and filter coefficients to a method that relies on bit-level
manipulations. This is especially efficient in FPGAs where
LUTs can store precomputed values. The step-by-step DA
process is given in the following equations.

Decompose the input data x[n−k] into its binary
representation. For simplicity, each input sample is
represented by B bits as given in equation (2):

𝑥𝑥[𝑛𝑛 − 𝑘𝑘] = ∑𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] (2)
𝐵𝐵−1

𝑏𝑏=0

Here, xb[n−k] represents the bth bit of the
input sample x[n−k].

Then precompute all possible values of the partial
products ℎ[𝑘𝑘] ⋅ 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] for each bit position and store
them in LUTs. This reduces the real-time computation to
simple LUT lookups and bit-shifting operations. The
precomputed partial products for each bit position are
accumulated across all filter taps which is given in equation
(3):

𝑌𝑌 = ∑∑ℎ[𝑘𝑘]. 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]
𝐵𝐵−1

𝑏𝑏=0
. 2𝑏𝑏 (3)

𝐾𝐾−1

𝑘𝑘=0

This step involves shifting the precomputed values
according to their bit positions and summing them up using
adders. Finally, the DA-based FIR filter output is
represented by equation (4) as given below:

𝑌𝑌 = ∑ℎ[𝑘𝑘]. 𝑥𝑥′[𝑘𝑘] (4)
𝐾𝐾−1

𝑘𝑘=0

Here, x′[k] is a function of the bit-level decomposition of
the input data x[n−k].
 Moreover, in the context of FIR filters, particularly
with the proposed DA-LUT-FIR approach, representing
input data using a two's complement B-bit binary format is
crucial. This representation accommodates both positive and
negative values and provides a precision level determined

by the number of bits B. The formulation of this
representation is provided in the below section.

b. Distributed Arithmetic (DA) for FIR Filters with Two's
Complement Representation

In the proposed DA-LUT-FIR filter, the input data x[k]
is represented using a two's complement BBB-bit binary
representation, allowing for an accurate representation of
both positive and negative values. The two's complement
representation of x[k] is crucial for handling negative
numbers in FIR filter calculations which is given in equation
(5);

𝑥𝑥′[𝑘𝑘] = −2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏 (5)
𝐵𝐵−1

𝑏𝑏=0

Where, 𝑥𝑥𝑏𝑏[𝑘𝑘] is 𝑏𝑏𝑡𝑡ℎ bit of 𝑥𝑥[𝑘𝑘], 𝑋𝑋𝐵𝐵[𝑘𝑘] ∈ {0,1}.

Substituting equation (5) in equation (4),

𝑌𝑌 = ∑ ℎ[𝑘𝑘] (−2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑ 𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏𝐵𝐵−1
𝑏𝑏=0)

𝐾𝐾−1

𝑘𝑘=0

      = −2𝐵𝐵∑ ℎ[𝑘𝑘]𝑋𝑋𝐵𝐵[𝑘𝑘] +∑ 2𝑏𝑏 ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]𝐾𝐾−1
𝑘𝑘=0

𝐵𝐵−1
𝑏𝑏=0

𝐾𝐾−1

𝑘𝑘=0

     Y = −2𝐵𝐵𝑓𝑓(ℎ[𝑘𝑘]. 𝑋𝑋𝐵𝐵[𝑘𝑘]) + ∑ 2𝑏𝑏𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘])𝐵𝐵−1
𝑏𝑏=0 (6)

The final output of the FIR filter with two’s complement
representation is given in equation (6); Thus, from equation
(6), the simplified input data of B-Bit binary data is given
below in equation (7):

𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]) = ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘] (7)
𝐾𝐾−1

𝑘𝑘=0

Therefore, the filter coefficient is further stored at LUT
and it is addressed by 𝑋𝑋𝑏𝑏[𝑘𝑘]. This reduces entry and
summation with LUT of the MAC blocks of FIR filters. The
digital filters are made with the use of registers, memory
resources, and a scale accumulator to perform this
arithmetic. One of the key features of the proposed
implementation is the use of a small number of LUTs which
is discussed in the following section.

c. Minimizing the LUT size
This proposed approach suggests that the design

optimizes the LUTs' usage, potentially by reusing or sharing
LUT resources for multiple coefficients to minimize the
LUT size while maintaining accuracy. Reducing the number
of LUTs leads to savings of hardware resources and power
consumption. To execute FIR filter operations efficiently,
the proposed approach allows parallel access to multiple
coefficients in LUTs. This means that multiple coefficients
are accessed simultaneously to perform filter calculations.
Parallelism in coefficient access leads to a significant
reduction in the processing delay and also enhances the
filter's throughput, making it suitable for real-time
applications. By minimizing the number of LUTs and
enabling parallel access to coefficients, the filter processes
the data with lower latency, which is essential for real-time
processing.

d. Decimation and Parallel Prefix Adder
Additionally, the frequency response of the filter output

is dynamically altered using the decimation factor.
Decimation is a process in DSP where the sampling rate of a
signal is reduced. By changing the decimation factor, the
effective bandwidth and characteristics of the filter output
are adjusted without modifying the filter coefficients. It's

Formulation for analysis is discussed in further sections
below.

a. Distributed Arithmetic (DA) Computation
When the coefficients of the FIR filter are known,

the DA resolves the computation of the internal product, and
the output of an FIR filter is given by the convolution sum
in equation (1):

𝑌𝑌[𝑛𝑛] = ∑ ℎ[𝑘𝑘]𝑥𝑥[𝑛𝑛 − 𝑘𝑘] (1)
𝐾𝐾−1

𝑘𝑘=0

Where,

 Y[n] is the output signal at time n
 h[k] are the filter coefficients
 x[n−k] is the input signal at time n−k
 K is the number of filter coefficients

(filter length)
DA shifts the computation from the traditional

method of directly calculating the product of the input signal
and filter coefficients to a method that relies on bit-level
manipulations. This is especially efficient in FPGAs where
LUTs can store precomputed values. The step-by-step DA
process is given in the following equations.

Decompose the input data x[n−k] into its binary
representation. For simplicity, each input sample is
represented by B bits as given in equation (2):

𝑥𝑥[𝑛𝑛 − 𝑘𝑘] = ∑𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] (2)
𝐵𝐵−1

𝑏𝑏=0

Here, xb[n−k] represents the bth bit of the
input sample x[n−k].

Then precompute all possible values of the partial
products ℎ[𝑘𝑘] ⋅ 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] for each bit position and store
them in LUTs. This reduces the real-time computation to
simple LUT lookups and bit-shifting operations. The
precomputed partial products for each bit position are
accumulated across all filter taps which is given in equation
(3):

𝑌𝑌 = ∑∑ℎ[𝑘𝑘]. 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]
𝐵𝐵−1

𝑏𝑏=0
. 2𝑏𝑏 (3)

𝐾𝐾−1

𝑘𝑘=0

This step involves shifting the precomputed values
according to their bit positions and summing them up using
adders. Finally, the DA-based FIR filter output is
represented by equation (4) as given below:

𝑌𝑌 = ∑ℎ[𝑘𝑘]. 𝑥𝑥′[𝑘𝑘] (4)
𝐾𝐾−1

𝑘𝑘=0

Here, x′[k] is a function of the bit-level decomposition of
the input data x[n−k].
 Moreover, in the context of FIR filters, particularly
with the proposed DA-LUT-FIR approach, representing
input data using a two's complement B-bit binary format is
crucial. This representation accommodates both positive and
negative values and provides a precision level determined

by the number of bits B. The formulation of this
representation is provided in the below section.

b. Distributed Arithmetic (DA) for FIR Filters with Two's
Complement Representation

In the proposed DA-LUT-FIR filter, the input data x[k]
is represented using a two's complement BBB-bit binary
representation, allowing for an accurate representation of
both positive and negative values. The two's complement
representation of x[k] is crucial for handling negative
numbers in FIR filter calculations which is given in equation
(5);

𝑥𝑥′[𝑘𝑘] = −2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏 (5)
𝐵𝐵−1

𝑏𝑏=0

Where, 𝑥𝑥𝑏𝑏[𝑘𝑘] is 𝑏𝑏𝑡𝑡ℎ bit of 𝑥𝑥[𝑘𝑘], 𝑋𝑋𝐵𝐵[𝑘𝑘] ∈ {0,1}.

Substituting equation (5) in equation (4),

𝑌𝑌 = ∑ ℎ[𝑘𝑘] (−2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑ 𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏𝐵𝐵−1
𝑏𝑏=0)

𝐾𝐾−1

𝑘𝑘=0

      = −2𝐵𝐵∑ ℎ[𝑘𝑘]𝑋𝑋𝐵𝐵[𝑘𝑘] +∑ 2𝑏𝑏 ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]𝐾𝐾−1
𝑘𝑘=0

𝐵𝐵−1
𝑏𝑏=0

𝐾𝐾−1

𝑘𝑘=0

     Y = −2𝐵𝐵𝑓𝑓(ℎ[𝑘𝑘]. 𝑋𝑋𝐵𝐵[𝑘𝑘]) + ∑ 2𝑏𝑏𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘])𝐵𝐵−1
𝑏𝑏=0 (6)

The final output of the FIR filter with two’s complement
representation is given in equation (6); Thus, from equation
(6), the simplified input data of B-Bit binary data is given
below in equation (7):

𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]) = ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘] (7)
𝐾𝐾−1

𝑘𝑘=0

Therefore, the filter coefficient is further stored at LUT
and it is addressed by 𝑋𝑋𝑏𝑏[𝑘𝑘]. This reduces entry and
summation with LUT of the MAC blocks of FIR filters. The
digital filters are made with the use of registers, memory
resources, and a scale accumulator to perform this
arithmetic. One of the key features of the proposed
implementation is the use of a small number of LUTs which
is discussed in the following section.

c. Minimizing the LUT size
This proposed approach suggests that the design

optimizes the LUTs' usage, potentially by reusing or sharing
LUT resources for multiple coefficients to minimize the
LUT size while maintaining accuracy. Reducing the number
of LUTs leads to savings of hardware resources and power
consumption. To execute FIR filter operations efficiently,
the proposed approach allows parallel access to multiple
coefficients in LUTs. This means that multiple coefficients
are accessed simultaneously to perform filter calculations.
Parallelism in coefficient access leads to a significant
reduction in the processing delay and also enhances the
filter's throughput, making it suitable for real-time
applications. By minimizing the number of LUTs and
enabling parallel access to coefficients, the filter processes
the data with lower latency, which is essential for real-time
processing.

d. Decimation and Parallel Prefix Adder
Additionally, the frequency response of the filter output

is dynamically altered using the decimation factor.
Decimation is a process in DSP where the sampling rate of a
signal is reduced. By changing the decimation factor, the
effective bandwidth and characteristics of the filter output
are adjusted without modifying the filter coefficients. It's

Enhancing Signal Processing Efficiency in
Software-Defined Radio Using Distributed Arithmetic
and Look-Up Table-Based FIR Filters

DECEMBER 2024 • VOLUME XVI • NUMBER 424

INFOCOMMUNICATIONS JOURNAL

emphasized that the filter coefficients remain unchanged
while altering the frequency response through decimation.
This suggests that the filter is designed to be flexible in its
application, allowing for real-time adjustments without the
need for recalculating or modifying the filter coefficients.
To reduce the worst-case critical path time during partial
product accumulation, a highly customizable parallel prefix
adder is implemented. It is a type of digital adder that
efficiently adds multiple numbers of LUT in parallel. By
customizing this adder, the design optimizes its performance
for the specific requirements of the FIR filter design.

Figure 2: DA-LUT-based RFIR filter with PPA

Figure 2 shows the DA-LUT-based Reconfigurable

Finite Impulse Response (RFIR) filter with PPA. The DA
with LUT-based RFIR filter, when combined with Power,
Performance, and Area (PPA) considerations, offers a
versatile and efficient approach to DSP. In order to achieve
optimal power efficiency, high performance and minimal
hardware footprint, the DA-LUT-based RFIR filter is
provided, in which the RFIR filter is a powerful tool for
processing digital signals. It allows for adaptability, making
it ideal for a wide range of applications in wireless
communication systems. This not only reduces power
consumption but also accelerates the processing speed of the
DA-RFIR filter. The LUT stores precomputed products of
filter coefficients and input data, thereby effectively
transforming more multipliers into simple LUT. The
optimization problem formulation for channel equalizer in
terms of the objective function and system constraints is
discussed below.

e. Optimization Problem Formulation
The primary objective of this research is to

minimize the Bit Error Rate (BER) and latency while
maximizing the throughput of the FIR filter system, which is
integral to the performance of SDR applications. This
section clearly outlines the optimization objectives and
constraints associated with the channel equalizer in SDR
applications.
 Objective Function:

The goal is to minimize latency and BER
while maximizing throughput. This can be
mathematically represented as:
Objective: min BER (H, X, C), min
Latency (H, X, C), and max Throughput
(H, X, C)

Where,
 H represents the filter

coefficients.

 X denotes the input data.
 C symbolizes the system

configurations, including the
decimation factor and hardware
resources.

Constraints:

Hardware Resource Constraint: The total
number of Look-Up Tables (LUTs) and slices used
should not exceed the available resources on the
Artix-7 FPGA.

LUTs(H) ≤ 17,000
Slices(H) ≤ 10,000

Power Consumption Constraint: The power
dissipation should be within acceptable limits for
SDR applications.

Power (H, X, C) ≤ 100 mW
Latency Constraint: The latency must be
minimized while ensuring it supports real-time data
processing.

Latency (H, X, C) ≤ 20 ns
Throughput Constraint: The filter must maintain
a high throughput to handle real-time data
processing.

Throughput (H, X, C) ≥ 900 Mbps
Optimization Approach:

Filter Coefficient Optimization: Use DA to
precompute possible outcomes for each filter
coefficient, reducing the need for real-time
multipliers and thus decreasing latency and power
consumption.
Parallel Processing: Implement parallel prefix
adders to handle partial product accumulations
efficiently, enhancing throughput.
Dynamic Decimation: Adjust the decimation factor
dynamically to balance the trade-off between
processing speed and frequency response.
Adaptive Channel Equalization: Optimize the
channel equalizer settings to minimize BER by
dynamically adjusting the filter coefficients in
response to changing channel conditions.

This approach is not only space-efficient but also
reduces the need for resource-intensive multiplication
hardware. By carefully analyzing and optimizing the DA-
RFIR filter's architecture, the best trade-offs between power
efficiency, high performance, and a minimal hardware
footprint are achieved. The DA-LUT-based RFIR filter is
fine-tuned with PPA, this ensures that signal processing
applications operate at peak efficiency, and deliver results
that meet the most demanding requirements. With the DA-
LUT-based RFIR filter, the power of PPA is unlocked,
thereby making it possible to process digital signals with
unparalleled efficiency. To perform a performance analysis
and optimization of a LUT layer, the proposed model
follows a systematic process involving the LUT, identifying
bottlenecks, and implementing optimizations. Thereby, the
existing technique's drawbacks are overcome by this
proposed method. In the next section, the performance and
comparison of the proposed method are discussed.

IV. RESULT AND DISCUSSION
In this section, the results for the proposed DA-LUT-FIR
filter are presented and engaged in a thorough discussion on

Formulation for analysis is discussed in further sections
below.

a. Distributed Arithmetic (DA) Computation
When the coefficients of the FIR filter are known,

the DA resolves the computation of the internal product, and
the output of an FIR filter is given by the convolution sum
in equation (1):

𝑌𝑌[𝑛𝑛] = ∑ ℎ[𝑘𝑘]𝑥𝑥[𝑛𝑛 − 𝑘𝑘] (1)
𝐾𝐾−1

𝑘𝑘=0

Where,

 Y[n] is the output signal at time n
 h[k] are the filter coefficients
 x[n−k] is the input signal at time n−k
 K is the number of filter coefficients

(filter length)
DA shifts the computation from the traditional

method of directly calculating the product of the input signal
and filter coefficients to a method that relies on bit-level
manipulations. This is especially efficient in FPGAs where
LUTs can store precomputed values. The step-by-step DA
process is given in the following equations.

Decompose the input data x[n−k] into its binary
representation. For simplicity, each input sample is
represented by B bits as given in equation (2):

𝑥𝑥[𝑛𝑛 − 𝑘𝑘] = ∑𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] (2)
𝐵𝐵−1

𝑏𝑏=0

Here, xb[n−k] represents the bth bit of the
input sample x[n−k].

Then precompute all possible values of the partial
products ℎ[𝑘𝑘] ⋅ 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] for each bit position and store
them in LUTs. This reduces the real-time computation to
simple LUT lookups and bit-shifting operations. The
precomputed partial products for each bit position are
accumulated across all filter taps which is given in equation
(3):

𝑌𝑌 = ∑∑ℎ[𝑘𝑘]. 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]
𝐵𝐵−1

𝑏𝑏=0
. 2𝑏𝑏 (3)

𝐾𝐾−1

𝑘𝑘=0

This step involves shifting the precomputed values
according to their bit positions and summing them up using
adders. Finally, the DA-based FIR filter output is
represented by equation (4) as given below:

𝑌𝑌 = ∑ℎ[𝑘𝑘]. 𝑥𝑥′[𝑘𝑘] (4)
𝐾𝐾−1

𝑘𝑘=0

Here, x′[k] is a function of the bit-level decomposition of
the input data x[n−k].
 Moreover, in the context of FIR filters, particularly
with the proposed DA-LUT-FIR approach, representing
input data using a two's complement B-bit binary format is
crucial. This representation accommodates both positive and
negative values and provides a precision level determined

by the number of bits B. The formulation of this
representation is provided in the below section.

b. Distributed Arithmetic (DA) for FIR Filters with Two's
Complement Representation

In the proposed DA-LUT-FIR filter, the input data x[k]
is represented using a two's complement BBB-bit binary
representation, allowing for an accurate representation of
both positive and negative values. The two's complement
representation of x[k] is crucial for handling negative
numbers in FIR filter calculations which is given in equation
(5);

𝑥𝑥′[𝑘𝑘] = −2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏 (5)
𝐵𝐵−1

𝑏𝑏=0

Where, 𝑥𝑥𝑏𝑏[𝑘𝑘] is 𝑏𝑏𝑡𝑡ℎ bit of 𝑥𝑥[𝑘𝑘], 𝑋𝑋𝐵𝐵[𝑘𝑘] ∈ {0,1}.

Substituting equation (5) in equation (4),

𝑌𝑌 = ∑ ℎ[𝑘𝑘] (−2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑ 𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏𝐵𝐵−1
𝑏𝑏=0)

𝐾𝐾−1

𝑘𝑘=0

      = −2𝐵𝐵∑ ℎ[𝑘𝑘]𝑋𝑋𝐵𝐵[𝑘𝑘] +∑ 2𝑏𝑏 ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]𝐾𝐾−1
𝑘𝑘=0

𝐵𝐵−1
𝑏𝑏=0

𝐾𝐾−1

𝑘𝑘=0

     Y = −2𝐵𝐵𝑓𝑓(ℎ[𝑘𝑘]. 𝑋𝑋𝐵𝐵[𝑘𝑘]) + ∑ 2𝑏𝑏𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘])𝐵𝐵−1
𝑏𝑏=0 (6)

The final output of the FIR filter with two’s complement
representation is given in equation (6); Thus, from equation
(6), the simplified input data of B-Bit binary data is given
below in equation (7):

𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]) = ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘] (7)
𝐾𝐾−1

𝑘𝑘=0

Therefore, the filter coefficient is further stored at LUT
and it is addressed by 𝑋𝑋𝑏𝑏[𝑘𝑘]. This reduces entry and
summation with LUT of the MAC blocks of FIR filters. The
digital filters are made with the use of registers, memory
resources, and a scale accumulator to perform this
arithmetic. One of the key features of the proposed
implementation is the use of a small number of LUTs which
is discussed in the following section.

c. Minimizing the LUT size
This proposed approach suggests that the design

optimizes the LUTs' usage, potentially by reusing or sharing
LUT resources for multiple coefficients to minimize the
LUT size while maintaining accuracy. Reducing the number
of LUTs leads to savings of hardware resources and power
consumption. To execute FIR filter operations efficiently,
the proposed approach allows parallel access to multiple
coefficients in LUTs. This means that multiple coefficients
are accessed simultaneously to perform filter calculations.
Parallelism in coefficient access leads to a significant
reduction in the processing delay and also enhances the
filter's throughput, making it suitable for real-time
applications. By minimizing the number of LUTs and
enabling parallel access to coefficients, the filter processes
the data with lower latency, which is essential for real-time
processing.

d. Decimation and Parallel Prefix Adder
Additionally, the frequency response of the filter output

is dynamically altered using the decimation factor.
Decimation is a process in DSP where the sampling rate of a
signal is reduced. By changing the decimation factor, the
effective bandwidth and characteristics of the filter output
are adjusted without modifying the filter coefficients. It's
emphasized that the filter coefficients remain unchanged
while altering the frequency response through decimation.
This suggests that the filter is designed to be flexible in its
application, allowing for real-time adjustments without the
need for recalculating or modifying the filter coefficients.
To reduce the worst-case critical path time during partial
product accumulation, a highly customizable parallel prefix
adder is implemented. It is a type of digital adder that
efficiently adds multiple numbers of LUT in parallel. By
customizing this adder, the design optimizes its performance
for the specific requirements of the FIR filter design.

Figure 2: DA-LUT-based RFIR filter with PPA

Figure 2 shows the DA-LUT-based Reconfigurable

Finite Impulse Response (RFIR) filter with PPA. The DA
with LUT-based RFIR filter, when combined with Power,
Performance, and Area (PPA) considerations, offers a
versatile and efficient approach to DSP. In order to achieve
optimal power efficiency, high performance and minimal
hardware footprint, the DA-LUT-based RFIR filter is
provided, in which the RFIR filter is a powerful tool for
processing digital signals. It allows for adaptability, making
it ideal for a wide range of applications in wireless
communication systems. This not only reduces power
consumption but also accelerates the processing speed of the
DA-RFIR filter. The LUT stores precomputed products of
filter coefficients and input data, thereby effectively
transforming more multipliers into simple LUT. The
optimization problem formulation for channel equalizer in
terms of the objective function and system constraints is
discussed below.

e. Optimization Problem Formulation
The primary objective of this research is to

minimize the Bit Error Rate (BER) and latency while
maximizing the throughput of the FIR filter system, which is
integral to the performance of SDR applications. This
section clearly outlines the optimization objectives and
constraints associated with the channel equalizer in SDR
applications.
 Objective Function:

The goal is to minimize latency and BER
while maximizing throughput. This can be
mathematically represented as:
Objective: min BER (H, X, C), min
Latency (H, X, C), and max Throughput
(H, X, C)

Where,
 H represents the filter

coefficients.

 X denotes the input data.
 C symbolizes the system

configurations, including the
decimation factor and hardware
resources.

Constraints:

Hardware Resource Constraint: The total
number of Look-Up Tables (LUTs) and slices used
should not exceed the available resources on the
Artix-7 FPGA.

LUTs(H) ≤ 17,000
Slices(H) ≤ 10,000

Power Consumption Constraint: The power
dissipation should be within acceptable limits for
SDR applications.

Power (H, X, C) ≤ 100 mW
Latency Constraint: The latency must be
minimized while ensuring it supports real-time data
processing.

Latency (H, X, C) ≤ 20 ns
Throughput Constraint: The filter must maintain
a high throughput to handle real-time data
processing.

Throughput (H, X, C) ≥ 900 Mbps
Optimization Approach:

Filter Coefficient Optimization: Use DA to
precompute possible outcomes for each filter
coefficient, reducing the need for real-time
multipliers and thus decreasing latency and power
consumption.
Parallel Processing: Implement parallel prefix
adders to handle partial product accumulations
efficiently, enhancing throughput.
Dynamic Decimation: Adjust the decimation factor
dynamically to balance the trade-off between
processing speed and frequency response.
Adaptive Channel Equalization: Optimize the
channel equalizer settings to minimize BER by
dynamically adjusting the filter coefficients in
response to changing channel conditions.

This approach is not only space-efficient but also
reduces the need for resource-intensive multiplication
hardware. By carefully analyzing and optimizing the DA-
RFIR filter's architecture, the best trade-offs between power
efficiency, high performance, and a minimal hardware
footprint are achieved. The DA-LUT-based RFIR filter is
fine-tuned with PPA, this ensures that signal processing
applications operate at peak efficiency, and deliver results
that meet the most demanding requirements. With the DA-
LUT-based RFIR filter, the power of PPA is unlocked,
thereby making it possible to process digital signals with
unparalleled efficiency. To perform a performance analysis
and optimization of a LUT layer, the proposed model
follows a systematic process involving the LUT, identifying
bottlenecks, and implementing optimizations. Thereby, the
existing technique's drawbacks are overcome by this
proposed method. In the next section, the performance and
comparison of the proposed method are discussed.

IV. RESULT AND DISCUSSION
In this section, the results for the proposed DA-LUT-FIR
filter are presented and engaged in a thorough discussion on

emphasized that the filter coefficients remain unchanged
while altering the frequency response through decimation.
This suggests that the filter is designed to be flexible in its
application, allowing for real-time adjustments without the
need for recalculating or modifying the filter coefficients.
To reduce the worst-case critical path time during partial
product accumulation, a highly customizable parallel prefix
adder is implemented. It is a type of digital adder that
efficiently adds multiple numbers of LUT in parallel. By
customizing this adder, the design optimizes its performance
for the specific requirements of the FIR filter design.

Figure 2: DA-LUT-based RFIR filter with PPA

Figure 2 shows the DA-LUT-based Reconfigurable

Finite Impulse Response (RFIR) filter with PPA. The DA
with LUT-based RFIR filter, when combined with Power,
Performance, and Area (PPA) considerations, offers a
versatile and efficient approach to DSP. In order to achieve
optimal power efficiency, high performance and minimal
hardware footprint, the DA-LUT-based RFIR filter is
provided, in which the RFIR filter is a powerful tool for
processing digital signals. It allows for adaptability, making
it ideal for a wide range of applications in wireless
communication systems. This not only reduces power
consumption but also accelerates the processing speed of the
DA-RFIR filter. The LUT stores precomputed products of
filter coefficients and input data, thereby effectively
transforming more multipliers into simple LUT. The
optimization problem formulation for channel equalizer in
terms of the objective function and system constraints is
discussed below.

e. Optimization Problem Formulation
The primary objective of this research is to

minimize the Bit Error Rate (BER) and latency while
maximizing the throughput of the FIR filter system, which is
integral to the performance of SDR applications. This
section clearly outlines the optimization objectives and
constraints associated with the channel equalizer in SDR
applications.
 Objective Function:

The goal is to minimize latency and BER
while maximizing throughput. This can be
mathematically represented as:
Objective: min BER (H, X, C), min
Latency (H, X, C), and max Throughput
(H, X, C)

Where,
 H represents the filter

coefficients.

 X denotes the input data.
 C symbolizes the system

configurations, including the
decimation factor and hardware
resources.

Constraints:

Hardware Resource Constraint: The total
number of Look-Up Tables (LUTs) and slices used
should not exceed the available resources on the
Artix-7 FPGA.

LUTs(H) ≤ 17,000
Slices(H) ≤ 10,000

Power Consumption Constraint: The power
dissipation should be within acceptable limits for
SDR applications.

Power (H, X, C) ≤ 100 mW
Latency Constraint: The latency must be
minimized while ensuring it supports real-time data
processing.

Latency (H, X, C) ≤ 20 ns
Throughput Constraint: The filter must maintain
a high throughput to handle real-time data
processing.

Throughput (H, X, C) ≥ 900 Mbps
Optimization Approach:

Filter Coefficient Optimization: Use DA to
precompute possible outcomes for each filter
coefficient, reducing the need for real-time
multipliers and thus decreasing latency and power
consumption.
Parallel Processing: Implement parallel prefix
adders to handle partial product accumulations
efficiently, enhancing throughput.
Dynamic Decimation: Adjust the decimation factor
dynamically to balance the trade-off between
processing speed and frequency response.
Adaptive Channel Equalization: Optimize the
channel equalizer settings to minimize BER by
dynamically adjusting the filter coefficients in
response to changing channel conditions.

This approach is not only space-efficient but also
reduces the need for resource-intensive multiplication
hardware. By carefully analyzing and optimizing the DA-
RFIR filter's architecture, the best trade-offs between power
efficiency, high performance, and a minimal hardware
footprint are achieved. The DA-LUT-based RFIR filter is
fine-tuned with PPA, this ensures that signal processing
applications operate at peak efficiency, and deliver results
that meet the most demanding requirements. With the DA-
LUT-based RFIR filter, the power of PPA is unlocked,
thereby making it possible to process digital signals with
unparalleled efficiency. To perform a performance analysis
and optimization of a LUT layer, the proposed model
follows a systematic process involving the LUT, identifying
bottlenecks, and implementing optimizations. Thereby, the
existing technique's drawbacks are overcome by this
proposed method. In the next section, the performance and
comparison of the proposed method are discussed.

IV. RESULT AND DISCUSSION
In this section, the results for the proposed DA-LUT-FIR
filter are presented and engaged in a thorough discussion on

Formulation for analysis is discussed in further sections
below.

a. Distributed Arithmetic (DA) Computation
When the coefficients of the FIR filter are known,

the DA resolves the computation of the internal product, and
the output of an FIR filter is given by the convolution sum
in equation (1):

𝑌𝑌[𝑛𝑛] = ∑ ℎ[𝑘𝑘]𝑥𝑥[𝑛𝑛 − 𝑘𝑘] (1)
𝐾𝐾−1

𝑘𝑘=0

Where,

 Y[n] is the output signal at time n
 h[k] are the filter coefficients
 x[n−k] is the input signal at time n−k
 K is the number of filter coefficients

(filter length)
DA shifts the computation from the traditional

method of directly calculating the product of the input signal
and filter coefficients to a method that relies on bit-level
manipulations. This is especially efficient in FPGAs where
LUTs can store precomputed values. The step-by-step DA
process is given in the following equations.

Decompose the input data x[n−k] into its binary
representation. For simplicity, each input sample is
represented by B bits as given in equation (2):

𝑥𝑥[𝑛𝑛 − 𝑘𝑘] = ∑𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] (2)
𝐵𝐵−1

𝑏𝑏=0

Here, xb[n−k] represents the bth bit of the
input sample x[n−k].

Then precompute all possible values of the partial
products ℎ[𝑘𝑘] ⋅ 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] for each bit position and store
them in LUTs. This reduces the real-time computation to
simple LUT lookups and bit-shifting operations. The
precomputed partial products for each bit position are
accumulated across all filter taps which is given in equation
(3):

𝑌𝑌 = ∑∑ℎ[𝑘𝑘]. 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]
𝐵𝐵−1

𝑏𝑏=0
. 2𝑏𝑏 (3)

𝐾𝐾−1

𝑘𝑘=0

This step involves shifting the precomputed values
according to their bit positions and summing them up using
adders. Finally, the DA-based FIR filter output is
represented by equation (4) as given below:

𝑌𝑌 = ∑ℎ[𝑘𝑘]. 𝑥𝑥′[𝑘𝑘] (4)
𝐾𝐾−1

𝑘𝑘=0

Here, x′[k] is a function of the bit-level decomposition of
the input data x[n−k].
 Moreover, in the context of FIR filters, particularly
with the proposed DA-LUT-FIR approach, representing
input data using a two's complement B-bit binary format is
crucial. This representation accommodates both positive and
negative values and provides a precision level determined

by the number of bits B. The formulation of this
representation is provided in the below section.

b. Distributed Arithmetic (DA) for FIR Filters with Two's
Complement Representation

In the proposed DA-LUT-FIR filter, the input data x[k]
is represented using a two's complement BBB-bit binary
representation, allowing for an accurate representation of
both positive and negative values. The two's complement
representation of x[k] is crucial for handling negative
numbers in FIR filter calculations which is given in equation
(5);

𝑥𝑥′[𝑘𝑘] = −2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏 (5)
𝐵𝐵−1

𝑏𝑏=0

Where, 𝑥𝑥𝑏𝑏[𝑘𝑘] is 𝑏𝑏𝑡𝑡ℎ bit of 𝑥𝑥[𝑘𝑘], 𝑋𝑋𝐵𝐵[𝑘𝑘] ∈ {0,1}.

Substituting equation (5) in equation (4),

𝑌𝑌 = ∑ ℎ[𝑘𝑘] (−2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑ 𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏𝐵𝐵−1
𝑏𝑏=0)

𝐾𝐾−1

𝑘𝑘=0

      = −2𝐵𝐵∑ ℎ[𝑘𝑘]𝑋𝑋𝐵𝐵[𝑘𝑘] +∑ 2𝑏𝑏 ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]𝐾𝐾−1
𝑘𝑘=0

𝐵𝐵−1
𝑏𝑏=0

𝐾𝐾−1

𝑘𝑘=0

     Y = −2𝐵𝐵𝑓𝑓(ℎ[𝑘𝑘]. 𝑋𝑋𝐵𝐵[𝑘𝑘]) + ∑ 2𝑏𝑏𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘])𝐵𝐵−1
𝑏𝑏=0 (6)

The final output of the FIR filter with two’s complement
representation is given in equation (6); Thus, from equation
(6), the simplified input data of B-Bit binary data is given
below in equation (7):

𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]) = ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘] (7)
𝐾𝐾−1

𝑘𝑘=0

Therefore, the filter coefficient is further stored at LUT
and it is addressed by 𝑋𝑋𝑏𝑏[𝑘𝑘]. This reduces entry and
summation with LUT of the MAC blocks of FIR filters. The
digital filters are made with the use of registers, memory
resources, and a scale accumulator to perform this
arithmetic. One of the key features of the proposed
implementation is the use of a small number of LUTs which
is discussed in the following section.

c. Minimizing the LUT size
This proposed approach suggests that the design

optimizes the LUTs' usage, potentially by reusing or sharing
LUT resources for multiple coefficients to minimize the
LUT size while maintaining accuracy. Reducing the number
of LUTs leads to savings of hardware resources and power
consumption. To execute FIR filter operations efficiently,
the proposed approach allows parallel access to multiple
coefficients in LUTs. This means that multiple coefficients
are accessed simultaneously to perform filter calculations.
Parallelism in coefficient access leads to a significant
reduction in the processing delay and also enhances the
filter's throughput, making it suitable for real-time
applications. By minimizing the number of LUTs and
enabling parallel access to coefficients, the filter processes
the data with lower latency, which is essential for real-time
processing.

d. Decimation and Parallel Prefix Adder
Additionally, the frequency response of the filter output

is dynamically altered using the decimation factor.
Decimation is a process in DSP where the sampling rate of a
signal is reduced. By changing the decimation factor, the
effective bandwidth and characteristics of the filter output
are adjusted without modifying the filter coefficients. It's

Enhancing Signal Processing Efficiency in
Software-Defined Radio Using Distributed Arithmetic

and Look-Up Table-Based FIR Filters

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2024 • VOLUME XVI • NUMBER 4 25

emphasized that the filter coefficients remain unchanged
while altering the frequency response through decimation.
This suggests that the filter is designed to be flexible in its
application, allowing for real-time adjustments without the
need for recalculating or modifying the filter coefficients.
To reduce the worst-case critical path time during partial
product accumulation, a highly customizable parallel prefix
adder is implemented. It is a type of digital adder that
efficiently adds multiple numbers of LUT in parallel. By
customizing this adder, the design optimizes its performance
for the specific requirements of the FIR filter design.

Figure 2: DA-LUT-based RFIR filter with PPA

Figure 2 shows the DA-LUT-based Reconfigurable

Finite Impulse Response (RFIR) filter with PPA. The DA
with LUT-based RFIR filter, when combined with Power,
Performance, and Area (PPA) considerations, offers a
versatile and efficient approach to DSP. In order to achieve
optimal power efficiency, high performance and minimal
hardware footprint, the DA-LUT-based RFIR filter is
provided, in which the RFIR filter is a powerful tool for
processing digital signals. It allows for adaptability, making
it ideal for a wide range of applications in wireless
communication systems. This not only reduces power
consumption but also accelerates the processing speed of the
DA-RFIR filter. The LUT stores precomputed products of
filter coefficients and input data, thereby effectively
transforming more multipliers into simple LUT. The
optimization problem formulation for channel equalizer in
terms of the objective function and system constraints is
discussed below.

e. Optimization Problem Formulation
The primary objective of this research is to

minimize the Bit Error Rate (BER) and latency while
maximizing the throughput of the FIR filter system, which is
integral to the performance of SDR applications. This
section clearly outlines the optimization objectives and
constraints associated with the channel equalizer in SDR
applications.
 Objective Function:

The goal is to minimize latency and BER
while maximizing throughput. This can be
mathematically represented as:
Objective: min BER (H, X, C), min
Latency (H, X, C), and max Throughput
(H, X, C)

Where,
 H represents the filter

coefficients.

 X denotes the input data.
 C symbolizes the system

configurations, including the
decimation factor and hardware
resources.

Constraints:

Hardware Resource Constraint: The total
number of Look-Up Tables (LUTs) and slices used
should not exceed the available resources on the
Artix-7 FPGA.

LUTs(H) ≤ 17,000
Slices(H) ≤ 10,000

Power Consumption Constraint: The power
dissipation should be within acceptable limits for
SDR applications.

Power (H, X, C) ≤ 100 mW
Latency Constraint: The latency must be
minimized while ensuring it supports real-time data
processing.

Latency (H, X, C) ≤ 20 ns
Throughput Constraint: The filter must maintain
a high throughput to handle real-time data
processing.

Throughput (H, X, C) ≥ 900 Mbps
Optimization Approach:

Filter Coefficient Optimization: Use DA to
precompute possible outcomes for each filter
coefficient, reducing the need for real-time
multipliers and thus decreasing latency and power
consumption.
Parallel Processing: Implement parallel prefix
adders to handle partial product accumulations
efficiently, enhancing throughput.
Dynamic Decimation: Adjust the decimation factor
dynamically to balance the trade-off between
processing speed and frequency response.
Adaptive Channel Equalization: Optimize the
channel equalizer settings to minimize BER by
dynamically adjusting the filter coefficients in
response to changing channel conditions.

This approach is not only space-efficient but also
reduces the need for resource-intensive multiplication
hardware. By carefully analyzing and optimizing the DA-
RFIR filter's architecture, the best trade-offs between power
efficiency, high performance, and a minimal hardware
footprint are achieved. The DA-LUT-based RFIR filter is
fine-tuned with PPA, this ensures that signal processing
applications operate at peak efficiency, and deliver results
that meet the most demanding requirements. With the DA-
LUT-based RFIR filter, the power of PPA is unlocked,
thereby making it possible to process digital signals with
unparalleled efficiency. To perform a performance analysis
and optimization of a LUT layer, the proposed model
follows a systematic process involving the LUT, identifying
bottlenecks, and implementing optimizations. Thereby, the
existing technique's drawbacks are overcome by this
proposed method. In the next section, the performance and
comparison of the proposed method are discussed.

IV. RESULT AND DISCUSSION
In this section, the results for the proposed DA-LUT-FIR
filter are presented and engaged in a thorough discussion on

its performance and efficiency. The filter was designed and
implemented to address the challenges associated with finite
impulse response filtering while harnessing the power of
distributed arithmetic and lookup tables for optimized
multiplication.

A. Experimental Setup
The simulation results are discussed below. This work has
been implemented in the MATLAB working platform using
the following system specifications.

Software : MATLAB
OS : Windows 10 (64-bit)
Processor : Intel i5
RAM : 8GB RAM

B. Simulated output of the proposed method
The proposed structure has been added to Xilinx System
Generator and Matlab Simulink. For the execution of the
proposed design, a string of channel impulses that have been
BPSK message modulated for implementation is considered.
The signal was transmitted to adaptive DFE for ISI error
correction and noise removal. The algorithm is programmed
directly into the FPGA integrated within the SDR. This
allows for efficient processing and real-time performance,
utilizing the FPGA's parallel processing capabilities while
minimizing latency and maximizing throughput.

Figure 3: Verilog output of FIR

Figure 3 depicts the Verilog output of the FIR filter. This

FIR input module is responsible for receiving the incoming
digital data stream and buffering it for processing. It feeds
the data into the filter's main processing engine. Multiplier
and Accumulator components perform the core filtering
operation. The multiplier module multiplies each data
sample by the corresponding coefficient, and the
accumulator sums up these products to produce the filter's
output. The coefficients used by the filter are stored in a
memory module. This memory is accessed based on the
current position of the sliding window. To slide the window
over the input data, there is a control module that manages
the window's position and ensures the correct samples are
selected for multiplication. Finally, the filtered output data is
sent to the output module, which makes it available for
further processing.

Figure 4: FIR Output Response

Figure 4 depicts the output response for the FIR filter

which is characterized by its ability to effectively filter and
modify the input signals in a precise and controlled manner.
As the input signal progresses through the filter, it
encounters each tap and undergoes a series of multipliers
and adders. At each tap, the input is multiplied by the
corresponding coefficient, and the results are summed
together. It represents the frequency response of two
bandpass filters where the blue trace (M=1) illustrates a
filter that allows a lower range of frequencies to pass
through, effectively filtering out frequencies outside this
range. Conversely, the orange trace (M=2) demonstrates a
filter with a passband at higher frequencies. The graph
clearly outlines the effective frequency ranges for each
filter, with the passbands being the regions where the
magnitude does not exhibit significant attenuation.

Figure 5: LMS filter output

Figure 5 shows the Least Mean Square (LMS) filter

output for the proposed approach. In this figure, the top
waveform, labelled “test_bench/data_in” represents the
gradient of the input error signal for the first test bench. This
is crucial as it indicates how the LMS filter’s predictions
deviate from the desired outcome. The waveform below,
labelled “test_bench/desired_response” is the target or
reference signal that the LMS filter aims to replicate or
predict accurately. Then the next waveform, labelled
“test_bench/FILTER_OUT,” shows the output of the filter
applied to the first test bench’s data. This output is what the
LMS filter has produced as its prediction or filtered signal.
As the input signal flows through the LMS filter, a
remarkable transformation takes place and also this
filter armed with its adaptive capabilities meticulously
analyses the incoming data in real time. It constantly refines
its internal coefficients to minimize the error between the
desired signal and the filtered output.

C. Performance metrics of the proposed methodology
The performance metrics collectively provide a

comprehensive evaluation of the proposed DA-LUT-FIR

its performance and efficiency. The filter was designed and
implemented to address the challenges associated with finite
impulse response filtering while harnessing the power of
distributed arithmetic and lookup tables for optimized
multiplication.

A. Experimental Setup
The simulation results are discussed below. This work has
been implemented in the MATLAB working platform using
the following system specifications.

Software : MATLAB
OS : Windows 10 (64-bit)
Processor : Intel i5
RAM : 8GB RAM

B. Simulated output of the proposed method
The proposed structure has been added to Xilinx System
Generator and Matlab Simulink. For the execution of the
proposed design, a string of channel impulses that have been
BPSK message modulated for implementation is considered.
The signal was transmitted to adaptive DFE for ISI error
correction and noise removal. The algorithm is programmed
directly into the FPGA integrated within the SDR. This
allows for efficient processing and real-time performance,
utilizing the FPGA's parallel processing capabilities while
minimizing latency and maximizing throughput.

Figure 3: Verilog output of FIR

Figure 3 depicts the Verilog output of the FIR filter. This

FIR input module is responsible for receiving the incoming
digital data stream and buffering it for processing. It feeds
the data into the filter's main processing engine. Multiplier
and Accumulator components perform the core filtering
operation. The multiplier module multiplies each data
sample by the corresponding coefficient, and the
accumulator sums up these products to produce the filter's
output. The coefficients used by the filter are stored in a
memory module. This memory is accessed based on the
current position of the sliding window. To slide the window
over the input data, there is a control module that manages
the window's position and ensures the correct samples are
selected for multiplication. Finally, the filtered output data is
sent to the output module, which makes it available for
further processing.

Figure 4: FIR Output Response

Figure 4 depicts the output response for the FIR filter

which is characterized by its ability to effectively filter and
modify the input signals in a precise and controlled manner.
As the input signal progresses through the filter, it
encounters each tap and undergoes a series of multipliers
and adders. At each tap, the input is multiplied by the
corresponding coefficient, and the results are summed
together. It represents the frequency response of two
bandpass filters where the blue trace (M=1) illustrates a
filter that allows a lower range of frequencies to pass
through, effectively filtering out frequencies outside this
range. Conversely, the orange trace (M=2) demonstrates a
filter with a passband at higher frequencies. The graph
clearly outlines the effective frequency ranges for each
filter, with the passbands being the regions where the
magnitude does not exhibit significant attenuation.

Figure 5: LMS filter output

Figure 5 shows the Least Mean Square (LMS) filter

output for the proposed approach. In this figure, the top
waveform, labelled “test_bench/data_in” represents the
gradient of the input error signal for the first test bench. This
is crucial as it indicates how the LMS filter’s predictions
deviate from the desired outcome. The waveform below,
labelled “test_bench/desired_response” is the target or
reference signal that the LMS filter aims to replicate or
predict accurately. Then the next waveform, labelled
“test_bench/FILTER_OUT,” shows the output of the filter
applied to the first test bench’s data. This output is what the
LMS filter has produced as its prediction or filtered signal.
As the input signal flows through the LMS filter, a
remarkable transformation takes place and also this
filter armed with its adaptive capabilities meticulously
analyses the incoming data in real time. It constantly refines
its internal coefficients to minimize the error between the
desired signal and the filtered output.

C. Performance metrics of the proposed methodology
The performance metrics collectively provide a

comprehensive evaluation of the proposed DA-LUT-FIR

B. Simulated output of the proposed method
The proposed structure has been added to Xilinx System
Generator and Matlab Simulink. For the execution of the
proposed design, a string of channel impulses that have been
BPSK message modulated for implementation is considered.
The signal was transmitted to adaptive DFE for ISI error
correction and noise removal. The algorithm is programmed
directly into the FPGA integrated within the SDR. This allows
for efficient processing and real-time performance, utilizing
the FPGA's parallel processing capabilities while minimizing
latency and maximizing throughput.

its performance and efficiency. The filter was designed and
implemented to address the challenges associated with finite
impulse response filtering while harnessing the power of
distributed arithmetic and lookup tables for optimized
multiplication.

A. Experimental Setup
The simulation results are discussed below. This work has
been implemented in the MATLAB working platform using
the following system specifications.

Software : MATLAB
OS : Windows 10 (64-bit)
Processor : Intel i5
RAM : 8GB RAM

B. Simulated output of the proposed method
The proposed structure has been added to Xilinx System
Generator and Matlab Simulink. For the execution of the
proposed design, a string of channel impulses that have been
BPSK message modulated for implementation is considered.
The signal was transmitted to adaptive DFE for ISI error
correction and noise removal. The algorithm is programmed
directly into the FPGA integrated within the SDR. This
allows for efficient processing and real-time performance,
utilizing the FPGA's parallel processing capabilities while
minimizing latency and maximizing throughput.

Figure 3: Verilog output of FIR

Figure 3 depicts the Verilog output of the FIR filter. This

FIR input module is responsible for receiving the incoming
digital data stream and buffering it for processing. It feeds
the data into the filter's main processing engine. Multiplier
and Accumulator components perform the core filtering
operation. The multiplier module multiplies each data
sample by the corresponding coefficient, and the
accumulator sums up these products to produce the filter's
output. The coefficients used by the filter are stored in a
memory module. This memory is accessed based on the
current position of the sliding window. To slide the window
over the input data, there is a control module that manages
the window's position and ensures the correct samples are
selected for multiplication. Finally, the filtered output data is
sent to the output module, which makes it available for
further processing.

Figure 4: FIR Output Response

Figure 4 depicts the output response for the FIR filter

which is characterized by its ability to effectively filter and
modify the input signals in a precise and controlled manner.
As the input signal progresses through the filter, it
encounters each tap and undergoes a series of multipliers
and adders. At each tap, the input is multiplied by the
corresponding coefficient, and the results are summed
together. It represents the frequency response of two
bandpass filters where the blue trace (M=1) illustrates a
filter that allows a lower range of frequencies to pass
through, effectively filtering out frequencies outside this
range. Conversely, the orange trace (M=2) demonstrates a
filter with a passband at higher frequencies. The graph
clearly outlines the effective frequency ranges for each
filter, with the passbands being the regions where the
magnitude does not exhibit significant attenuation.

Figure 5: LMS filter output

Figure 5 shows the Least Mean Square (LMS) filter

output for the proposed approach. In this figure, the top
waveform, labelled “test_bench/data_in” represents the
gradient of the input error signal for the first test bench. This
is crucial as it indicates how the LMS filter’s predictions
deviate from the desired outcome. The waveform below,
labelled “test_bench/desired_response” is the target or
reference signal that the LMS filter aims to replicate or
predict accurately. Then the next waveform, labelled
“test_bench/FILTER_OUT,” shows the output of the filter
applied to the first test bench’s data. This output is what the
LMS filter has produced as its prediction or filtered signal.
As the input signal flows through the LMS filter, a
remarkable transformation takes place and also this
filter armed with its adaptive capabilities meticulously
analyses the incoming data in real time. It constantly refines
its internal coefficients to minimize the error between the
desired signal and the filtered output.

C. Performance metrics of the proposed methodology
The performance metrics collectively provide a

comprehensive evaluation of the proposed DA-LUT-FIR

Figure 3: Verilog output of FIR

Enhancing Signal Processing Efficiency in
Software-Defined Radio Using Distributed Arithmetic
and Look-Up Table-Based FIR Filters

DECEMBER 2024 • VOLUME XVI • NUMBER 426

INFOCOMMUNICATIONS JOURNAL

its performance and efficiency. The filter was designed and
implemented to address the challenges associated with finite
impulse response filtering while harnessing the power of
distributed arithmetic and lookup tables for optimized
multiplication.

A. Experimental Setup
The simulation results are discussed below. This work has
been implemented in the MATLAB working platform using
the following system specifications.

Software : MATLAB
OS : Windows 10 (64-bit)
Processor : Intel i5
RAM : 8GB RAM

B. Simulated output of the proposed method
The proposed structure has been added to Xilinx System
Generator and Matlab Simulink. For the execution of the
proposed design, a string of channel impulses that have been
BPSK message modulated for implementation is considered.
The signal was transmitted to adaptive DFE for ISI error
correction and noise removal. The algorithm is programmed
directly into the FPGA integrated within the SDR. This
allows for efficient processing and real-time performance,
utilizing the FPGA's parallel processing capabilities while
minimizing latency and maximizing throughput.

Figure 3: Verilog output of FIR

Figure 3 depicts the Verilog output of the FIR filter. This

FIR input module is responsible for receiving the incoming
digital data stream and buffering it for processing. It feeds
the data into the filter's main processing engine. Multiplier
and Accumulator components perform the core filtering
operation. The multiplier module multiplies each data
sample by the corresponding coefficient, and the
accumulator sums up these products to produce the filter's
output. The coefficients used by the filter are stored in a
memory module. This memory is accessed based on the
current position of the sliding window. To slide the window
over the input data, there is a control module that manages
the window's position and ensures the correct samples are
selected for multiplication. Finally, the filtered output data is
sent to the output module, which makes it available for
further processing.

Figure 4: FIR Output Response

Figure 4 depicts the output response for the FIR filter

which is characterized by its ability to effectively filter and
modify the input signals in a precise and controlled manner.
As the input signal progresses through the filter, it
encounters each tap and undergoes a series of multipliers
and adders. At each tap, the input is multiplied by the
corresponding coefficient, and the results are summed
together. It represents the frequency response of two
bandpass filters where the blue trace (M=1) illustrates a
filter that allows a lower range of frequencies to pass
through, effectively filtering out frequencies outside this
range. Conversely, the orange trace (M=2) demonstrates a
filter with a passband at higher frequencies. The graph
clearly outlines the effective frequency ranges for each
filter, with the passbands being the regions where the
magnitude does not exhibit significant attenuation.

Figure 5: LMS filter output

Figure 5 shows the Least Mean Square (LMS) filter

output for the proposed approach. In this figure, the top
waveform, labelled “test_bench/data_in” represents the
gradient of the input error signal for the first test bench. This
is crucial as it indicates how the LMS filter’s predictions
deviate from the desired outcome. The waveform below,
labelled “test_bench/desired_response” is the target or
reference signal that the LMS filter aims to replicate or
predict accurately. Then the next waveform, labelled
“test_bench/FILTER_OUT,” shows the output of the filter
applied to the first test bench’s data. This output is what the
LMS filter has produced as its prediction or filtered signal.
As the input signal flows through the LMS filter, a
remarkable transformation takes place and also this
filter armed with its adaptive capabilities meticulously
analyses the incoming data in real time. It constantly refines
its internal coefficients to minimize the error between the
desired signal and the filtered output.

C. Performance metrics of the proposed methodology
The performance metrics collectively provide a

comprehensive evaluation of the proposed DA-LUT-FIR

its performance and efficiency. The filter was designed and
implemented to address the challenges associated with finite
impulse response filtering while harnessing the power of
distributed arithmetic and lookup tables for optimized
multiplication.

A. Experimental Setup
The simulation results are discussed below. This work has
been implemented in the MATLAB working platform using
the following system specifications.

Software : MATLAB
OS : Windows 10 (64-bit)
Processor : Intel i5
RAM : 8GB RAM

B. Simulated output of the proposed method
The proposed structure has been added to Xilinx System
Generator and Matlab Simulink. For the execution of the
proposed design, a string of channel impulses that have been
BPSK message modulated for implementation is considered.
The signal was transmitted to adaptive DFE for ISI error
correction and noise removal. The algorithm is programmed
directly into the FPGA integrated within the SDR. This
allows for efficient processing and real-time performance,
utilizing the FPGA's parallel processing capabilities while
minimizing latency and maximizing throughput.

Figure 3: Verilog output of FIR

Figure 3 depicts the Verilog output of the FIR filter. This

FIR input module is responsible for receiving the incoming
digital data stream and buffering it for processing. It feeds
the data into the filter's main processing engine. Multiplier
and Accumulator components perform the core filtering
operation. The multiplier module multiplies each data
sample by the corresponding coefficient, and the
accumulator sums up these products to produce the filter's
output. The coefficients used by the filter are stored in a
memory module. This memory is accessed based on the
current position of the sliding window. To slide the window
over the input data, there is a control module that manages
the window's position and ensures the correct samples are
selected for multiplication. Finally, the filtered output data is
sent to the output module, which makes it available for
further processing.

Figure 4: FIR Output Response

Figure 4 depicts the output response for the FIR filter

which is characterized by its ability to effectively filter and
modify the input signals in a precise and controlled manner.
As the input signal progresses through the filter, it
encounters each tap and undergoes a series of multipliers
and adders. At each tap, the input is multiplied by the
corresponding coefficient, and the results are summed
together. It represents the frequency response of two
bandpass filters where the blue trace (M=1) illustrates a
filter that allows a lower range of frequencies to pass
through, effectively filtering out frequencies outside this
range. Conversely, the orange trace (M=2) demonstrates a
filter with a passband at higher frequencies. The graph
clearly outlines the effective frequency ranges for each
filter, with the passbands being the regions where the
magnitude does not exhibit significant attenuation.

Figure 5: LMS filter output

Figure 5 shows the Least Mean Square (LMS) filter

output for the proposed approach. In this figure, the top
waveform, labelled “test_bench/data_in” represents the
gradient of the input error signal for the first test bench. This
is crucial as it indicates how the LMS filter’s predictions
deviate from the desired outcome. The waveform below,
labelled “test_bench/desired_response” is the target or
reference signal that the LMS filter aims to replicate or
predict accurately. Then the next waveform, labelled
“test_bench/FILTER_OUT,” shows the output of the filter
applied to the first test bench’s data. This output is what the
LMS filter has produced as its prediction or filtered signal.
As the input signal flows through the LMS filter, a
remarkable transformation takes place and also this
filter armed with its adaptive capabilities meticulously
analyses the incoming data in real time. It constantly refines
its internal coefficients to minimize the error between the
desired signal and the filtered output.

C. Performance metrics of the proposed methodology
The performance metrics collectively provide a

comprehensive evaluation of the proposed DA-LUT-FIR

Figure 4: FIR Output Response

Figure 5: LMS filter output

Figure 6: Delay of the proposed design

Figure 7: Power consumed by the proposed design

C. Performance metrics of the proposed methodology
The performance metrics collectively provide a

comprehensive evaluation of the proposed DA-LUT-FIR filter,
helping to assess its efficiency, effectiveness, and suitability for
specific applications. The effectiveness of the proposed design
is discussed in this section by analysing the performance
parameters such as delay, power consumption, number of slice
registers, AND/OR gates, LUTs, frequency and the number of
adders used.

The graph in figure 6 compares the delay between two FIR
filter designs for SDR systems. The first design, using tradi-
tional Distributed Arithmetic (DA), has a delay of about 21.41
ns. The second design, which incorporates DA with an adap-
tive Channel Equalizer, shows a significantly reduced delay
of approximately 9.627 ns. This improvement is due to more
efficient MAC operations, dynamic adjustment of filter coeffi-
cients, and optimized coefficient management. Consequently,
the adaptive design ensures faster data processing and lower
latency, making it ideal for real-time applications.

Figure 4 depicts the output response for the FIR filter which
is characterized by its ability to effectively filter and modify
the input signals in a precise and controlled manner. As the
input signal progresses through the filter, it encounters each tap
and undergoes a series of multipliers and adders. At each tap,
the input is multiplied by the corresponding coefficient, and
the results are summed together. It represents the frequency
response of two bandpass filters where the blue trace (M=1)
illustrates a filter that allows a lower range of frequencies to
pass through, effectively filtering out frequencies outside this
range. Conversely, the orange trace (M=2) demonstrates a
filter with a passband at higher frequencies. The graph clearly
outlines the effective frequency ranges for each filter, with the
passbands being the regions where the magnitude does not
exhibit significant attenuation.

Figure 5 shows the Least Mean Square (LMS) filter output
for the proposed approach. In this figure, the top waveform,
labelled “test_bench/data_in” represents the gradient of the
input error signal for the first test bench. This is crucial as it
indicates how the LMS filter’s predictions deviate from the
desired outcome. The waveform below, labelled “test_bench/
desired_response” is the target or reference signal that the
LMS filter aims to replicate or predict accurately. Then the
next waveform, labelled “test_bench/FILTER_OUT,” shows
the output of the filter applied to the first test bench’s data. This
output is what the LMS filter has produced as its prediction or
filtered signal. As the input signal flows through the LMS filter,
a remarkable transformation takes place and also this filter
armed with its adaptive capabilities meticulously analyses the
incoming data in real time. It constantly refines its internal
coefficients to minimize the error between the desired signal
and the filtered output.

filter, helping to assess its efficiency, effectiveness, and
suitability for specific applications. The effectiveness of the
proposed design is discussed in this section by analysing the
performance parameters such as delay, power consumption,
number of slice registers, AND/OR gates, LUTs, frequency
and the number of adders used.

Figure 6: Delay of the proposed design

The graph in figure 6 compares the delay between

two FIR filter designs for SDR systems. The first design,
using traditional Distributed Arithmetic (DA), has a delay of
about 21.41 ns. The second design, which incorporates DA
with an adaptive Channel Equalizer, shows a significantly
reduced delay of approximately 9.627 ns. This improvement
is due to more efficient MAC operations, dynamic
adjustment of filter coefficients, and optimized coefficient
management. Consequently, the adaptive design ensures
faster data processing and lower latency, making it ideal for
real-time applications.

Figure 7: Power consumed by the proposed design

The graph in figure 7 compares the power

consumption of the proposed FIR filter design. Both designs
show similar power consumption, close to 95 mW.
However, the proposed work using DA with an adaptive
Channel Equalizer achieves this power efficiency while also
significantly reducing delay, as seen in the previous graph.
This is due to the optimized use of resources, efficient
coefficient management, and reduced need for multipliers,
which all contribute to maintaining power consumption at a
low level without sacrificing performance. This balance
ensures that the adaptive design is suitable for real-time
applications, offering both speed and energy efficiency.

Figure 8: Number of slice registers used in the proposed design

The figure 8 illustrates the number of slice registers
used in the proposed work in which using DA design
requires 2062 slice registers, whereas the proposed work
using DA with an adaptive Channel Equalizer significantly
reduces this number t0 1182. The reduction in slice registers
is by the efficient design of the adaptive filter, which
optimizes resource usage by minimizing redundant or
unnecessary computations. This leads to a more streamlined
architecture, reducing the hardware complexity and
enhancing overall efficiency without compromising
performance.

Figure 9: Number of gates used in the proposed approach

The figure 9 shows the number of AND/OR gates used in
two different FIR filter designs. The proposed work using
DA design requires 14,568 gates, while the proposed work
using DA with an adaptive Channel Equalizer uses
significantly fewer gates, totalling 9,715. This reduction in
the number of gates is because of the adaptive Channel
Equalizer's ability to streamline the logic design, minimizing
the need for excess logical operations. As a result, the
overall gate count is reduced, leading to a more efficient and
compact design that maintains functionality while lowering
the hardware complexity.

filter, helping to assess its efficiency, effectiveness, and
suitability for specific applications. The effectiveness of the
proposed design is discussed in this section by analysing the
performance parameters such as delay, power consumption,
number of slice registers, AND/OR gates, LUTs, frequency
and the number of adders used.

Figure 6: Delay of the proposed design

The graph in figure 6 compares the delay between

two FIR filter designs for SDR systems. The first design,
using traditional Distributed Arithmetic (DA), has a delay of
about 21.41 ns. The second design, which incorporates DA
with an adaptive Channel Equalizer, shows a significantly
reduced delay of approximately 9.627 ns. This improvement
is due to more efficient MAC operations, dynamic
adjustment of filter coefficients, and optimized coefficient
management. Consequently, the adaptive design ensures
faster data processing and lower latency, making it ideal for
real-time applications.

Figure 7: Power consumed by the proposed design

The graph in figure 7 compares the power

consumption of the proposed FIR filter design. Both designs
show similar power consumption, close to 95 mW.
However, the proposed work using DA with an adaptive
Channel Equalizer achieves this power efficiency while also
significantly reducing delay, as seen in the previous graph.
This is due to the optimized use of resources, efficient
coefficient management, and reduced need for multipliers,
which all contribute to maintaining power consumption at a
low level without sacrificing performance. This balance
ensures that the adaptive design is suitable for real-time
applications, offering both speed and energy efficiency.

Figure 8: Number of slice registers used in the proposed design

The figure 8 illustrates the number of slice registers
used in the proposed work in which using DA design
requires 2062 slice registers, whereas the proposed work
using DA with an adaptive Channel Equalizer significantly
reduces this number t0 1182. The reduction in slice registers
is by the efficient design of the adaptive filter, which
optimizes resource usage by minimizing redundant or
unnecessary computations. This leads to a more streamlined
architecture, reducing the hardware complexity and
enhancing overall efficiency without compromising
performance.

Figure 9: Number of gates used in the proposed approach

The figure 9 shows the number of AND/OR gates used in
two different FIR filter designs. The proposed work using
DA design requires 14,568 gates, while the proposed work
using DA with an adaptive Channel Equalizer uses
significantly fewer gates, totalling 9,715. This reduction in
the number of gates is because of the adaptive Channel
Equalizer's ability to streamline the logic design, minimizing
the need for excess logical operations. As a result, the
overall gate count is reduced, leading to a more efficient and
compact design that maintains functionality while lowering
the hardware complexity.

The graph in figure 7 compares the power consumption
of the proposed FIR filter design. Both designs show similar
power consumption, close to 95 mW. However, the proposed
work using DA with an adaptive Channel Equalizer achieves
this power efficiency while also significantly reducing delay,
as seen in the previous graph. This is due to the optimized use
of resources, efficient coefficient management, and reduced
need for multipliers, which all contribute to maintaining power

Enhancing Signal Processing Efficiency in
Software-Defined Radio Using Distributed Arithmetic

and Look-Up Table-Based FIR Filters

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2024 • VOLUME XVI • NUMBER 4 27

filter, helping to assess its efficiency, effectiveness, and
suitability for specific applications. The effectiveness of the
proposed design is discussed in this section by analysing the
performance parameters such as delay, power consumption,
number of slice registers, AND/OR gates, LUTs, frequency
and the number of adders used.

Figure 6: Delay of the proposed design

The graph in figure 6 compares the delay between

two FIR filter designs for SDR systems. The first design,
using traditional Distributed Arithmetic (DA), has a delay of
about 21.41 ns. The second design, which incorporates DA
with an adaptive Channel Equalizer, shows a significantly
reduced delay of approximately 9.627 ns. This improvement
is due to more efficient MAC operations, dynamic
adjustment of filter coefficients, and optimized coefficient
management. Consequently, the adaptive design ensures
faster data processing and lower latency, making it ideal for
real-time applications.

Figure 7: Power consumed by the proposed design

The graph in figure 7 compares the power

consumption of the proposed FIR filter design. Both designs
show similar power consumption, close to 95 mW.
However, the proposed work using DA with an adaptive
Channel Equalizer achieves this power efficiency while also
significantly reducing delay, as seen in the previous graph.
This is due to the optimized use of resources, efficient
coefficient management, and reduced need for multipliers,
which all contribute to maintaining power consumption at a
low level without sacrificing performance. This balance
ensures that the adaptive design is suitable for real-time
applications, offering both speed and energy efficiency.

Figure 8: Number of slice registers used in the proposed design

The figure 8 illustrates the number of slice registers
used in the proposed work in which using DA design
requires 2062 slice registers, whereas the proposed work
using DA with an adaptive Channel Equalizer significantly
reduces this number t0 1182. The reduction in slice registers
is by the efficient design of the adaptive filter, which
optimizes resource usage by minimizing redundant or
unnecessary computations. This leads to a more streamlined
architecture, reducing the hardware complexity and
enhancing overall efficiency without compromising
performance.

Figure 9: Number of gates used in the proposed approach

The figure 9 shows the number of AND/OR gates used in
two different FIR filter designs. The proposed work using
DA design requires 14,568 gates, while the proposed work
using DA with an adaptive Channel Equalizer uses
significantly fewer gates, totalling 9,715. This reduction in
the number of gates is because of the adaptive Channel
Equalizer's ability to streamline the logic design, minimizing
the need for excess logical operations. As a result, the
overall gate count is reduced, leading to a more efficient and
compact design that maintains functionality while lowering
the hardware complexity.

Figure 8: Number of slice registers used in the proposed design

Figure 9: Number of gates used in the proposed approach

Figure 11: Frequency of the proposed design

Figure 10: Number of LUTs used in the proposed design

The figure 8 illustrates the number of slice registers used
in the proposed work in which using DA design requires
2062 slice registers, whereas the proposed work using DA
with an adaptive Channel Equalizer significantly reduces
this number t0 1182. The reduction in slice registers is by
the efficient design of the adaptive filter, which optimizes
resource usage by minimizing redundant or unnecessary
computations. This leads to a more streamlined architecture,
reducing the hardware complexity and enhancing overall ef-
ficiency without compromising performance.

The graph in figure 10 illustrates the number of LUTs
used in two different FIR filter designs where the proposed
work using DA design requires 15,914 LUTs, while
the proposed work using DA with an adaptive Channel
Equalizer uses slightly more, totalling 16,504 LUTs. This
slight increase in the number of LUTs is by the additional
complexity introduced by the adaptive Channel Equalizer,
which enhances the system's ability to dynamically adjust
to varying channel conditions. Although there is a small
increase in the number of LUTs, this trade-off results
in improved performance and adaptability, making the
design more robust and efficient in handling diverse signal
environments.

The figure 11 compares the operating frequencies of
filters in two different designs. The proposed work using
DA design attains a frequency of 78.617 MHz, while
the proposed work using DA with an adaptive Channel
Equalizer operates at a slightly reduced frequency of 77.825
MHz. This minor decrease in frequency is due to the added
complexity and functionality of the adaptive Channel
Equalizer, which allows the system to better adapt to varying
channel conditions. Despite the small reduction in frequency,
the enhanced adaptability and performance benefits of the
adaptive equalizer outweigh this trade-off, resulting in a
more robust and versatile system.

The figure 9 shows the number of AND/OR gates used in
two different FIR filter designs. The proposed work using DA
design requires 14,568 gates, while the proposed work using
DA with an adaptive Channel Equalizer uses significantly
fewer gates, totalling 9,715. This reduction in the number of
gates is because of the adaptive Channel Equalizer's ability
to streamline the logic design, minimizing the need for
excess logical operations. As a result, the overall gate count
is reduced, leading to a more efficient and compact design
that maintains functionality while lowering the hardware
complexity.

consumption at a low level without sacrificing performance.
This balance ensures that the adaptive design is suitable
for real-time applications, offering both speed and energy
efficiency.

filter, helping to assess its efficiency, effectiveness, and
suitability for specific applications. The effectiveness of the
proposed design is discussed in this section by analysing the
performance parameters such as delay, power consumption,
number of slice registers, AND/OR gates, LUTs, frequency
and the number of adders used.

Figure 6: Delay of the proposed design

The graph in figure 6 compares the delay between

two FIR filter designs for SDR systems. The first design,
using traditional Distributed Arithmetic (DA), has a delay of
about 21.41 ns. The second design, which incorporates DA
with an adaptive Channel Equalizer, shows a significantly
reduced delay of approximately 9.627 ns. This improvement
is due to more efficient MAC operations, dynamic
adjustment of filter coefficients, and optimized coefficient
management. Consequently, the adaptive design ensures
faster data processing and lower latency, making it ideal for
real-time applications.

Figure 7: Power consumed by the proposed design

The graph in figure 7 compares the power

consumption of the proposed FIR filter design. Both designs
show similar power consumption, close to 95 mW.
However, the proposed work using DA with an adaptive
Channel Equalizer achieves this power efficiency while also
significantly reducing delay, as seen in the previous graph.
This is due to the optimized use of resources, efficient
coefficient management, and reduced need for multipliers,
which all contribute to maintaining power consumption at a
low level without sacrificing performance. This balance
ensures that the adaptive design is suitable for real-time
applications, offering both speed and energy efficiency.

Figure 8: Number of slice registers used in the proposed design

The figure 8 illustrates the number of slice registers
used in the proposed work in which using DA design
requires 2062 slice registers, whereas the proposed work
using DA with an adaptive Channel Equalizer significantly
reduces this number t0 1182. The reduction in slice registers
is by the efficient design of the adaptive filter, which
optimizes resource usage by minimizing redundant or
unnecessary computations. This leads to a more streamlined
architecture, reducing the hardware complexity and
enhancing overall efficiency without compromising
performance.

Figure 9: Number of gates used in the proposed approach

The figure 9 shows the number of AND/OR gates used in
two different FIR filter designs. The proposed work using
DA design requires 14,568 gates, while the proposed work
using DA with an adaptive Channel Equalizer uses
significantly fewer gates, totalling 9,715. This reduction in
the number of gates is because of the adaptive Channel
Equalizer's ability to streamline the logic design, minimizing
the need for excess logical operations. As a result, the
overall gate count is reduced, leading to a more efficient and
compact design that maintains functionality while lowering
the hardware complexity.

Figure 10: Number of LUTs used in the proposed design

The graph in figure 10 illustrates the number of LUTs used
in two different FIR filter designs where the proposed work
using DA design requires 15,914 LUTs, while the proposed
work using DA with an adaptive Channel Equalizer uses
slightly more, totalling 16,504 LUTs. This slight increase in
the number of LUTs is by the additional complexity
introduced by the adaptive Channel Equalizer, which
enhances the system's ability to dynamically adjust to
varying channel conditions. Although there is a small
increase in the number of LUTs, this trade-off results in
improved performance and adaptability, making the design
more robust and efficient in handling diverse signal
environments.

Figure 11: Frequency of the proposed design

The figure 11 compares the operating frequencies
of filters in two different designs. The proposed work using
DA design attains a frequency of 78.617 MHz, while the
proposed work using DA with an adaptive Channel
Equalizer operates at a slightly reduced frequency of 77.825
MHz. This minor decrease in frequency is due to the added
complexity and functionality of the adaptive Channel
Equalizer, which allows the system to better adapt to
varying channel conditions. Despite the small reduction in
frequency, the enhanced adaptability and performance
benefits of the adaptive equalizer outweigh this trade-off,
resulting in a more robust and versatile system.

Figure 12: Number of adders used in the proposed filter design

Figure 12 shows the comparison between two

proposed designs for digital adders, one employing a
conventional DA design and the other integrating an
adaptive Channel Equalizer (CE). Interestingly, the latter
design, featuring the DA with an adaptive CE, demonstrates
a slight reduction in the number of adders required
compared to the former, with counts of 1026 and 1027,
respectively. This marginal decrease is attributed to the
enhanced efficiency achieved through the adaptive CE,
which dynamically adjusts to channel variations, optimizing
the performance and reducing the demand for additional
adders. Hence, while both designs offer competitive
functionality, the incorporation of adaptive CE showcases a
subtle but notable improvement in resource utilization.

D. Comparison of the proposed methodology
This section highlights the proposed method’s

performance by comparing it to the outcomes of existing
approaches and showing their results based on various
metrics. The performance of the existing approaches such as
conventional DA-based filter, LUT-Less 2, Separated LUT-
DA, and DA-LUT using buffer [34], GBoost Classifier,
Light GBM and Gradient Boosting [33] GFSK, GMSK and
BPSK OFDM [35], are compared to that of the proposed
DA-based LUT-FIR filter.

Figure 13: Comparison of area of various filter designs

Figure 13 compares the area efficiency of proposed DA-

LUT-FIR filter model with existing approaches, including
the conventional DA-based filter, LUT-Less 2, Separated
LUT-DA, and DA-LUT using buffer. The conventional DA-
based filter occupies 10279 μm², while LUT-Less 2,
Separated LUT-DA, and DA-LUT using buffer require 5854
μm², 4554 μm², and 5356 μm², respectively. In contrast, the
proposed model achieves a compact area of 5500 μm² by

Figure 10: Number of LUTs used in the proposed design

The graph in figure 10 illustrates the number of LUTs used
in two different FIR filter designs where the proposed work
using DA design requires 15,914 LUTs, while the proposed
work using DA with an adaptive Channel Equalizer uses
slightly more, totalling 16,504 LUTs. This slight increase in
the number of LUTs is by the additional complexity
introduced by the adaptive Channel Equalizer, which
enhances the system's ability to dynamically adjust to
varying channel conditions. Although there is a small
increase in the number of LUTs, this trade-off results in
improved performance and adaptability, making the design
more robust and efficient in handling diverse signal
environments.

Figure 11: Frequency of the proposed design

The figure 11 compares the operating frequencies
of filters in two different designs. The proposed work using
DA design attains a frequency of 78.617 MHz, while the
proposed work using DA with an adaptive Channel
Equalizer operates at a slightly reduced frequency of 77.825
MHz. This minor decrease in frequency is due to the added
complexity and functionality of the adaptive Channel
Equalizer, which allows the system to better adapt to
varying channel conditions. Despite the small reduction in
frequency, the enhanced adaptability and performance
benefits of the adaptive equalizer outweigh this trade-off,
resulting in a more robust and versatile system.

Figure 12: Number of adders used in the proposed filter design

Figure 12 shows the comparison between two

proposed designs for digital adders, one employing a
conventional DA design and the other integrating an
adaptive Channel Equalizer (CE). Interestingly, the latter
design, featuring the DA with an adaptive CE, demonstrates
a slight reduction in the number of adders required
compared to the former, with counts of 1026 and 1027,
respectively. This marginal decrease is attributed to the
enhanced efficiency achieved through the adaptive CE,
which dynamically adjusts to channel variations, optimizing
the performance and reducing the demand for additional
adders. Hence, while both designs offer competitive
functionality, the incorporation of adaptive CE showcases a
subtle but notable improvement in resource utilization.

D. Comparison of the proposed methodology
This section highlights the proposed method’s

performance by comparing it to the outcomes of existing
approaches and showing their results based on various
metrics. The performance of the existing approaches such as
conventional DA-based filter, LUT-Less 2, Separated LUT-
DA, and DA-LUT using buffer [34], GBoost Classifier,
Light GBM and Gradient Boosting [33] GFSK, GMSK and
BPSK OFDM [35], are compared to that of the proposed
DA-based LUT-FIR filter.

Figure 13: Comparison of area of various filter designs

Figure 13 compares the area efficiency of proposed DA-

LUT-FIR filter model with existing approaches, including
the conventional DA-based filter, LUT-Less 2, Separated
LUT-DA, and DA-LUT using buffer. The conventional DA-
based filter occupies 10279 μm², while LUT-Less 2,
Separated LUT-DA, and DA-LUT using buffer require 5854
μm², 4554 μm², and 5356 μm², respectively. In contrast, the
proposed model achieves a compact area of 5500 μm² by

Enhancing Signal Processing Efficiency in
Software-Defined Radio Using Distributed Arithmetic
and Look-Up Table-Based FIR Filters

DECEMBER 2024 • VOLUME XVI • NUMBER 428

INFOCOMMUNICATIONS JOURNAL

optimally combining precomputed products of filter
coefficients with input data, thereby simplifying complex
multiplication operations. With streamlined footprint, the
DA-LUT-FIR filter offers a significant advancement for
efficient signal filtering.

Figure 14: Comparison of Delay

Figure 14 compares the time delay of the proposed DA-
LUT-FIR filter model with existing techniques, including
the conventional DA-based filter, LUT-Less 2, Separated
LUT-DA, and DA-LUT using buffer. The conventional DA-
based filter experiences a delay of 459 ps, while LUT-Less
2, Separated LUT-DA, and DA-LUT using buffer have
delays of 920 ps, 254 ps, and 201 ps, respectively. In
contrast, the proposed approach achieves an impressive
delay of just 190 ps. By using the DA-LUT architecture, this
innovative filter minimizes the delays typically associated
with more resource-intensive FIR filter implementations,
showcasing its potential for enhancing performance in time-
sensitive scenarios.

Figure 15: Comparison of Power dissipation

Figure 15 illustrates the power dissipation of the proposed
DA-LUT-FIR filter, which is particularly lower than that of
traditional FIR filters, making it an appealing option for
SDR applications. Existing approaches, including the
conventional DA-based filter, LUT-Less 2, Separated LUT-
DA, and DA-LUT using buffer, show power dissipation
values of 2.14 mW, 7.52 mW, 8.99 mW, and 1.02 mW,
respectively. In contrast, the proposed model achieves a
power dissipation of just 1 mW. By integrating DA and
LUT technologie, the proposed filter minimizes power
consumption, making it ideal for power-sensitive
environments in SDR applications.

Figure 16: Comparison of Design Complexity

Figure 16 compares the design complexity of the proposed
DA-LUT-FIR filter model with existing approaches,
including the array multiplier, booth radix-4, and booth
radix-MAC unit, which exhibit design complexities of 327
LE, 285 LE, and 261 LE, respectively. Compare to this, the
proposed model achieves a design complexity of just 250
LE. This reduction demonstrates the innovative nature of the
DA-LUT-FIR filter, significantly decreasing the inherent
complexity typically associated with conventional FIR
filters and highlighting its efficiency in filter design.

Figure 17: Comparison of processing speed

Figure 17 compares speed of the proposed DA-LUT-FIR
filter model with existing models, including the array
multiplier, booth radix-4, and booth radix-MAC unit, which
achieve speeds of 129.57 MHz, 244.02 MHz, and 255.43
MHz, respectively. The proposed model reaches a speed of
260 MHz. By integrating DA with the LUT approach, it
accelerates multiplication operations through precomputed
values stored in its LUT, eliminating the need for resource-
intensive multipliers.

Figure 18: Comparison of latency

Figure 10: Number of LUTs used in the proposed design

The graph in figure 10 illustrates the number of LUTs used
in two different FIR filter designs where the proposed work
using DA design requires 15,914 LUTs, while the proposed
work using DA with an adaptive Channel Equalizer uses
slightly more, totalling 16,504 LUTs. This slight increase in
the number of LUTs is by the additional complexity
introduced by the adaptive Channel Equalizer, which
enhances the system's ability to dynamically adjust to
varying channel conditions. Although there is a small
increase in the number of LUTs, this trade-off results in
improved performance and adaptability, making the design
more robust and efficient in handling diverse signal
environments.

Figure 11: Frequency of the proposed design

The figure 11 compares the operating frequencies
of filters in two different designs. The proposed work using
DA design attains a frequency of 78.617 MHz, while the
proposed work using DA with an adaptive Channel
Equalizer operates at a slightly reduced frequency of 77.825
MHz. This minor decrease in frequency is due to the added
complexity and functionality of the adaptive Channel
Equalizer, which allows the system to better adapt to
varying channel conditions. Despite the small reduction in
frequency, the enhanced adaptability and performance
benefits of the adaptive equalizer outweigh this trade-off,
resulting in a more robust and versatile system.

Figure 12: Number of adders used in the proposed filter design

Figure 12 shows the comparison between two

proposed designs for digital adders, one employing a
conventional DA design and the other integrating an
adaptive Channel Equalizer (CE). Interestingly, the latter
design, featuring the DA with an adaptive CE, demonstrates
a slight reduction in the number of adders required
compared to the former, with counts of 1026 and 1027,
respectively. This marginal decrease is attributed to the
enhanced efficiency achieved through the adaptive CE,
which dynamically adjusts to channel variations, optimizing
the performance and reducing the demand for additional
adders. Hence, while both designs offer competitive
functionality, the incorporation of adaptive CE showcases a
subtle but notable improvement in resource utilization.

D. Comparison of the proposed methodology
This section highlights the proposed method’s

performance by comparing it to the outcomes of existing
approaches and showing their results based on various
metrics. The performance of the existing approaches such as
conventional DA-based filter, LUT-Less 2, Separated LUT-
DA, and DA-LUT using buffer [34], GBoost Classifier,
Light GBM and Gradient Boosting [33] GFSK, GMSK and
BPSK OFDM [35], are compared to that of the proposed
DA-based LUT-FIR filter.

Figure 13: Comparison of area of various filter designs

Figure 13 compares the area efficiency of proposed DA-

LUT-FIR filter model with existing approaches, including
the conventional DA-based filter, LUT-Less 2, Separated
LUT-DA, and DA-LUT using buffer. The conventional DA-
based filter occupies 10279 μm², while LUT-Less 2,
Separated LUT-DA, and DA-LUT using buffer require 5854
μm², 4554 μm², and 5356 μm², respectively. In contrast, the
proposed model achieves a compact area of 5500 μm² by

Figure 12 shows the comparison between two proposed
designs for digital adders, one employing a conventional
DA design and the other integrating an adaptive Channel
Equalizer (CE). Interestingly, the latter design, featuring the
DA with an adaptive CE, demonstrates a slight reduction in
the number of adders required compared to the former, with
counts of 1026 and 1027, respectively. This marginal decrease
is attributed to the enhanced efficiency achieved through the
adaptive CE, which dynamically adjusts to channel variations,
optimizing the performance and reducing the demand for
additional adders. Hence, while both designs offer competitive
functionality, the incorporation of adaptive CE showcases a
subtle but notable improvement in resource utilization.

D. Comparison of the proposed methodology

This section highlights the proposed method’s
performance by comparing it to the outcomes of existing
approaches and showing their results based on various
metrics. The performance of the existing approaches such as
conventional DA-based filter, LUT-Less 2, Separated LUT-
DA, and DA-LUT using buffer [34], GBoost Classifier, Light
GBM and Gradient Boosting [33] GFSK, GMSK and BPSK
OFDM [35], are compared to that of the proposed DA-based
LUT-FIR filter.

Figure 13 compares the area efficiency of proposed DA-
LUT-FIR filter model with existing approaches, including the
conventional DA-based filter, LUT-Less 2, Separated LUT-
DA, and DA-LUT using buffer. The conventional DA-based

Figure 14 compares the time delay of the proposed DA-
LUT-FIR filter model with existing techniques, including
the conventional DA-based filter, LUT-Less 2, Separated
LUT-DA, and DA-LUT using buffer. The conventional DA-
based filter experiences a delay of 459 ps, while LUT-Less 2,
Separated LUT-DA, and DA-LUT using buffer have delays
of 920 ps, 254 ps, and 201 ps, respectively. In contrast, the
proposed approach achieves an impressive delay of just 190
ps. By using the DA-LUT architecture, this innovative filter
minimizes the delays typically associated with more resource-
intensive FIR filter implementations, showcasing its potential
for enhancing performance in time-sensitive scenarios.

Figure 15 illustrates the power dissipation of the proposed
DA-LUT-FIR filter, which is particularly lower than that of
traditional FIR filters, making it an appealing option for SDR
applications. Existing approaches, including the conventional
DA-based filter, LUT-Less 2, Separated LUT- DA, and DA-
LUT using buffer, show power dissipation values of 2.14 mW,
7.52 mW, 8.99 mW, and 1.02 mW, respectively. In contrast,
the proposed model achieves a power dissipation of just

Figure 10: Number of LUTs used in the proposed design

The graph in figure 10 illustrates the number of LUTs used
in two different FIR filter designs where the proposed work
using DA design requires 15,914 LUTs, while the proposed
work using DA with an adaptive Channel Equalizer uses
slightly more, totalling 16,504 LUTs. This slight increase in
the number of LUTs is by the additional complexity
introduced by the adaptive Channel Equalizer, which
enhances the system's ability to dynamically adjust to
varying channel conditions. Although there is a small
increase in the number of LUTs, this trade-off results in
improved performance and adaptability, making the design
more robust and efficient in handling diverse signal
environments.

Figure 11: Frequency of the proposed design

The figure 11 compares the operating frequencies
of filters in two different designs. The proposed work using
DA design attains a frequency of 78.617 MHz, while the
proposed work using DA with an adaptive Channel
Equalizer operates at a slightly reduced frequency of 77.825
MHz. This minor decrease in frequency is due to the added
complexity and functionality of the adaptive Channel
Equalizer, which allows the system to better adapt to
varying channel conditions. Despite the small reduction in
frequency, the enhanced adaptability and performance
benefits of the adaptive equalizer outweigh this trade-off,
resulting in a more robust and versatile system.

Figure 12: Number of adders used in the proposed filter design

Figure 12 shows the comparison between two

proposed designs for digital adders, one employing a
conventional DA design and the other integrating an
adaptive Channel Equalizer (CE). Interestingly, the latter
design, featuring the DA with an adaptive CE, demonstrates
a slight reduction in the number of adders required
compared to the former, with counts of 1026 and 1027,
respectively. This marginal decrease is attributed to the
enhanced efficiency achieved through the adaptive CE,
which dynamically adjusts to channel variations, optimizing
the performance and reducing the demand for additional
adders. Hence, while both designs offer competitive
functionality, the incorporation of adaptive CE showcases a
subtle but notable improvement in resource utilization.

D. Comparison of the proposed methodology
This section highlights the proposed method’s

performance by comparing it to the outcomes of existing
approaches and showing their results based on various
metrics. The performance of the existing approaches such as
conventional DA-based filter, LUT-Less 2, Separated LUT-
DA, and DA-LUT using buffer [34], GBoost Classifier,
Light GBM and Gradient Boosting [33] GFSK, GMSK and
BPSK OFDM [35], are compared to that of the proposed
DA-based LUT-FIR filter.

Figure 13: Comparison of area of various filter designs

Figure 13 compares the area efficiency of proposed DA-

LUT-FIR filter model with existing approaches, including
the conventional DA-based filter, LUT-Less 2, Separated
LUT-DA, and DA-LUT using buffer. The conventional DA-
based filter occupies 10279 μm², while LUT-Less 2,
Separated LUT-DA, and DA-LUT using buffer require 5854
μm², 4554 μm², and 5356 μm², respectively. In contrast, the
proposed model achieves a compact area of 5500 μm² by

Figure 12: Number of adders used in the proposed filter design

Figure 13: Comparison of area of various filter designs

Figure 15: Comparison of Power dissipatio

Figure 14: Comparison of Delay

filter occupies 10279 μm2, while LUT-Less 2, Separated LUT-
DA, and DA-LUT using buffer require 5854 μm2, 4554 μm2,
and 5356 μm2, respectively. In contrast, the proposed model
achieves a compact area of 5500 μm2 by optimally combining
precomputed products of filter coefficients with input data,
thereby simplifying complex multiplication operations.
With streamlined footprint, the DA-LUT-FIR filter offers a
significant advancement for efficient signal filtering.

optimally combining precomputed products of filter
coefficients with input data, thereby simplifying complex
multiplication operations. With streamlined footprint, the
DA-LUT-FIR filter offers a significant advancement for
efficient signal filtering.

Figure 14: Comparison of Delay

Figure 14 compares the time delay of the proposed DA-
LUT-FIR filter model with existing techniques, including
the conventional DA-based filter, LUT-Less 2, Separated
LUT-DA, and DA-LUT using buffer. The conventional DA-
based filter experiences a delay of 459 ps, while LUT-Less
2, Separated LUT-DA, and DA-LUT using buffer have
delays of 920 ps, 254 ps, and 201 ps, respectively. In
contrast, the proposed approach achieves an impressive
delay of just 190 ps. By using the DA-LUT architecture, this
innovative filter minimizes the delays typically associated
with more resource-intensive FIR filter implementations,
showcasing its potential for enhancing performance in time-
sensitive scenarios.

Figure 15: Comparison of Power dissipation

Figure 15 illustrates the power dissipation of the proposed
DA-LUT-FIR filter, which is particularly lower than that of
traditional FIR filters, making it an appealing option for
SDR applications. Existing approaches, including the
conventional DA-based filter, LUT-Less 2, Separated LUT-
DA, and DA-LUT using buffer, show power dissipation
values of 2.14 mW, 7.52 mW, 8.99 mW, and 1.02 mW,
respectively. In contrast, the proposed model achieves a
power dissipation of just 1 mW. By integrating DA and
LUT technologie, the proposed filter minimizes power
consumption, making it ideal for power-sensitive
environments in SDR applications.

Figure 16: Comparison of Design Complexity

Figure 16 compares the design complexity of the proposed
DA-LUT-FIR filter model with existing approaches,
including the array multiplier, booth radix-4, and booth
radix-MAC unit, which exhibit design complexities of 327
LE, 285 LE, and 261 LE, respectively. Compare to this, the
proposed model achieves a design complexity of just 250
LE. This reduction demonstrates the innovative nature of the
DA-LUT-FIR filter, significantly decreasing the inherent
complexity typically associated with conventional FIR
filters and highlighting its efficiency in filter design.

Figure 17: Comparison of processing speed

Figure 17 compares speed of the proposed DA-LUT-FIR
filter model with existing models, including the array
multiplier, booth radix-4, and booth radix-MAC unit, which
achieve speeds of 129.57 MHz, 244.02 MHz, and 255.43
MHz, respectively. The proposed model reaches a speed of
260 MHz. By integrating DA with the LUT approach, it
accelerates multiplication operations through precomputed
values stored in its LUT, eliminating the need for resource-
intensive multipliers.

Figure 18: Comparison of latency

Enhancing Signal Processing Efficiency in
Software-Defined Radio Using Distributed Arithmetic

and Look-Up Table-Based FIR Filters

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2024 • VOLUME XVI • NUMBER 4 29

Figure 18 provides a comparative analysis of latency in
nanoseconds across different FIR filter designs. The
baseline latency for 'Existing work' is approximately 448 ns.
In contrast, the 'Proposed work using DA with Channel
Equalizer by adaptive filter design (SDR)' achieves a
remarkable reduction in latency to around 86.126 ns. The
'Proposed work using DA design' shows a slight increase in
latency, yet it remains significantly lower than the existing
work, with a latency of approximately 101 ns. The proposed
designs have significantly reduced latency, making them
crucial for applications requiring quick response times.

TABLE I
 OVERALL TABLE FOR PERFORMANCE ANALYSIS AND COMPARISON

Figure 19: Comparison of Throughput

Figure 19 presents a comparative analysis of

throughput performance across three different designs. The
Existing work demonstrates modest throughput,
significantly below 142.4 Mbps. The 'Proposed work using
DA design' shows a substantial improvement, achieving a
throughput of 633.062 Mbps. Furthermore, the 'Proposed
work using DA with Channel Equalizer by adaptive filter
design (SDR)' showcases an impressive throughput close to
938.12 Mbps. The proposed designs significantly improve

throughput by integrating an adaptive filter and channel
equalization in software-defined radio, doubling the
previous models' throughput.

Figure 20: Comparison of Accuracy

Figure 20 compares the accuracy of the proposed

DA-LUT-FIR filter model with existing models, including
GBoost Classifier, Light GBM and Gradient Boosting,
which exhibit accuracy rates of 75%, 85%, and 95%,
respectively. The proposed model achieves a significantly
higher accuracy of 98%. This improvement underscores the
innovative design of the DA-LUT-FIR filter, which not only
enhances performance but also minimizes the errors
typically associated with traditional filtering methods,
highlighting its effectiveness in digital signal processing
applications.

Figure 21: Comparison of Overhead

Figure 21 compares the design complexity of the

proposed DA-LUT-FIR filter model with existing models,
including GFSK, GMSK and BPSK OFDM, which exhibit
design complexities of 98%, 77% and 82% respectively. In
contrast, the proposed model achieves a significantly lower
overhead of 74%. This reduction demonstrates the
innovative nature of the Enhanced Intellectual PMU
Controller, significantly decreasing the overhead typically
associated with traditional methods and highlighting its
efficiency in electric drive applications.

Figure 22: Comparison of accuracy using different FPGA

Models

Parameter
Existing

work

Proposed work
using DA design

Proposed work using
DA with Channel

Equalizer by adaptive
filter design (SDR)

Block Size 8 8 8
Filter

Length 64 64 64

FF 1656 752 952
Delay 56 ns 21.41 ns 9.627 ns
Area

(Slices) 839936 6503 8421

Power
(Vdd =
1.8V)

251.2 mW 95 mW 95mW

Slice
Registers 6144 2062 1182

No of LUT 16,129 15,914 16504
AND/OR

gates 190464 14568 9715

Throughpu
t 142.4 Mbps 633.062 Mbps 938.12 Mbps

Frequency 65.7 MHz 78.617 MHz 77.825 MHz

Latency 56ns*8=448
ns

Product of delay and
size of data=

12.637ns*8=101.096
ns

Product of delay and size
of

data=08.527ns*8=86.126
ns

No of
adders
used

2077 1027 1026

Area-delay
product

839936*56ns
=

47036416 ns

4145*21.42 ns=
88785.9 ns

8421*9.627 ns =
81068.967 ns

Power-
delay

product

251.20 mW
*56 ns=
14067.2
mW/ns

0.095*21.42 mW =
2.0349 W/ns

0.095*9.627 ns=
0.914565 ns

optimally combining precomputed products of filter
coefficients with input data, thereby simplifying complex
multiplication operations. With streamlined footprint, the
DA-LUT-FIR filter offers a significant advancement for
efficient signal filtering.

Figure 14: Comparison of Delay

Figure 14 compares the time delay of the proposed DA-
LUT-FIR filter model with existing techniques, including
the conventional DA-based filter, LUT-Less 2, Separated
LUT-DA, and DA-LUT using buffer. The conventional DA-
based filter experiences a delay of 459 ps, while LUT-Less
2, Separated LUT-DA, and DA-LUT using buffer have
delays of 920 ps, 254 ps, and 201 ps, respectively. In
contrast, the proposed approach achieves an impressive
delay of just 190 ps. By using the DA-LUT architecture, this
innovative filter minimizes the delays typically associated
with more resource-intensive FIR filter implementations,
showcasing its potential for enhancing performance in time-
sensitive scenarios.

Figure 15: Comparison of Power dissipation

Figure 15 illustrates the power dissipation of the proposed
DA-LUT-FIR filter, which is particularly lower than that of
traditional FIR filters, making it an appealing option for
SDR applications. Existing approaches, including the
conventional DA-based filter, LUT-Less 2, Separated LUT-
DA, and DA-LUT using buffer, show power dissipation
values of 2.14 mW, 7.52 mW, 8.99 mW, and 1.02 mW,
respectively. In contrast, the proposed model achieves a
power dissipation of just 1 mW. By integrating DA and
LUT technologie, the proposed filter minimizes power
consumption, making it ideal for power-sensitive
environments in SDR applications.

Figure 16: Comparison of Design Complexity

Figure 16 compares the design complexity of the proposed
DA-LUT-FIR filter model with existing approaches,
including the array multiplier, booth radix-4, and booth
radix-MAC unit, which exhibit design complexities of 327
LE, 285 LE, and 261 LE, respectively. Compare to this, the
proposed model achieves a design complexity of just 250
LE. This reduction demonstrates the innovative nature of the
DA-LUT-FIR filter, significantly decreasing the inherent
complexity typically associated with conventional FIR
filters and highlighting its efficiency in filter design.

Figure 17: Comparison of processing speed

Figure 17 compares speed of the proposed DA-LUT-FIR
filter model with existing models, including the array
multiplier, booth radix-4, and booth radix-MAC unit, which
achieve speeds of 129.57 MHz, 244.02 MHz, and 255.43
MHz, respectively. The proposed model reaches a speed of
260 MHz. By integrating DA with the LUT approach, it
accelerates multiplication operations through precomputed
values stored in its LUT, eliminating the need for resource-
intensive multipliers.

Figure 18: Comparison of latency

optimally combining precomputed products of filter
coefficients with input data, thereby simplifying complex
multiplication operations. With streamlined footprint, the
DA-LUT-FIR filter offers a significant advancement for
efficient signal filtering.

Figure 14: Comparison of Delay

Figure 14 compares the time delay of the proposed DA-
LUT-FIR filter model with existing techniques, including
the conventional DA-based filter, LUT-Less 2, Separated
LUT-DA, and DA-LUT using buffer. The conventional DA-
based filter experiences a delay of 459 ps, while LUT-Less
2, Separated LUT-DA, and DA-LUT using buffer have
delays of 920 ps, 254 ps, and 201 ps, respectively. In
contrast, the proposed approach achieves an impressive
delay of just 190 ps. By using the DA-LUT architecture, this
innovative filter minimizes the delays typically associated
with more resource-intensive FIR filter implementations,
showcasing its potential for enhancing performance in time-
sensitive scenarios.

Figure 15: Comparison of Power dissipation

Figure 15 illustrates the power dissipation of the proposed
DA-LUT-FIR filter, which is particularly lower than that of
traditional FIR filters, making it an appealing option for
SDR applications. Existing approaches, including the
conventional DA-based filter, LUT-Less 2, Separated LUT-
DA, and DA-LUT using buffer, show power dissipation
values of 2.14 mW, 7.52 mW, 8.99 mW, and 1.02 mW,
respectively. In contrast, the proposed model achieves a
power dissipation of just 1 mW. By integrating DA and
LUT technologie, the proposed filter minimizes power
consumption, making it ideal for power-sensitive
environments in SDR applications.

Figure 16: Comparison of Design Complexity

Figure 16 compares the design complexity of the proposed
DA-LUT-FIR filter model with existing approaches,
including the array multiplier, booth radix-4, and booth
radix-MAC unit, which exhibit design complexities of 327
LE, 285 LE, and 261 LE, respectively. Compare to this, the
proposed model achieves a design complexity of just 250
LE. This reduction demonstrates the innovative nature of the
DA-LUT-FIR filter, significantly decreasing the inherent
complexity typically associated with conventional FIR
filters and highlighting its efficiency in filter design.

Figure 17: Comparison of processing speed

Figure 17 compares speed of the proposed DA-LUT-FIR
filter model with existing models, including the array
multiplier, booth radix-4, and booth radix-MAC unit, which
achieve speeds of 129.57 MHz, 244.02 MHz, and 255.43
MHz, respectively. The proposed model reaches a speed of
260 MHz. By integrating DA with the LUT approach, it
accelerates multiplication operations through precomputed
values stored in its LUT, eliminating the need for resource-
intensive multipliers.

Figure 18: Comparison of latency

Figure 16 compares the design complexity of the proposed
DA-LUT-FIR filter model with existing approaches, including
the array multiplier, booth radix-4, and booth radix-MAC unit,
which exhibit design complexities of 327 LE, 285 LE, and
261 LE, respectively. Compare to this, the proposed model
achieves a design complexity of just 250 LE. This reduction
demonstrates the innovative nature of the DA-LUT-FIR filter,
significantly decreasing the inherent complexity typically
associated with conventional FIR filters and highlighting its
efficiency in filter design.

Figure 18 provides a comparative analysis of latency in
nanoseconds across different FIR filter designs. The baseline
latency for 'Existing work' is approximately 448 ns. In contrast,
the 'Proposed work using DA with Channel Equalizer by
adaptive filter design (SDR)' achieves a remarkable reduction
in latency to around 86.126 ns. The 'Proposed work using
DA design' shows a slight increase in latency, yet it remains
significantly lower than the existing work, with a latency of
approximately 101 ns. The proposed designs have significantly
reduced latency, making them crucial for applications requiring
quick response times.

Figure 17 compares speed of the proposed DA-LUT-
FIR filter model with existing models, including the array
multiplier, booth radix-4, and booth radix-MAC unit, which
achieve speeds of 129.57 MHz, 244.02 MHz, and 255.43
MHz, respectively. The proposed model reaches a speed
of 260 MHz. By integrating DA with the LUT approach, it
accelerates multiplication operations through precomputed
values stored in its LUT, eliminating the need for resource-
intensive multipliers.

Figure 16: Comparison of Design Complexity

Figure 18: Comparison of latency

Figure 17: Comparison of processing speed

1 mW. By integrating DA and LUT technologie, the proposed
filter minimizes power consumption, making it ideal for
power-sensitive environments in SDR applications.

optimally combining precomputed products of filter
coefficients with input data, thereby simplifying complex
multiplication operations. With streamlined footprint, the
DA-LUT-FIR filter offers a significant advancement for
efficient signal filtering.

Figure 14: Comparison of Delay

Figure 14 compares the time delay of the proposed DA-
LUT-FIR filter model with existing techniques, including
the conventional DA-based filter, LUT-Less 2, Separated
LUT-DA, and DA-LUT using buffer. The conventional DA-
based filter experiences a delay of 459 ps, while LUT-Less
2, Separated LUT-DA, and DA-LUT using buffer have
delays of 920 ps, 254 ps, and 201 ps, respectively. In
contrast, the proposed approach achieves an impressive
delay of just 190 ps. By using the DA-LUT architecture, this
innovative filter minimizes the delays typically associated
with more resource-intensive FIR filter implementations,
showcasing its potential for enhancing performance in time-
sensitive scenarios.

Figure 15: Comparison of Power dissipation

Figure 15 illustrates the power dissipation of the proposed
DA-LUT-FIR filter, which is particularly lower than that of
traditional FIR filters, making it an appealing option for
SDR applications. Existing approaches, including the
conventional DA-based filter, LUT-Less 2, Separated LUT-
DA, and DA-LUT using buffer, show power dissipation
values of 2.14 mW, 7.52 mW, 8.99 mW, and 1.02 mW,
respectively. In contrast, the proposed model achieves a
power dissipation of just 1 mW. By integrating DA and
LUT technologie, the proposed filter minimizes power
consumption, making it ideal for power-sensitive
environments in SDR applications.

Figure 16: Comparison of Design Complexity

Figure 16 compares the design complexity of the proposed
DA-LUT-FIR filter model with existing approaches,
including the array multiplier, booth radix-4, and booth
radix-MAC unit, which exhibit design complexities of 327
LE, 285 LE, and 261 LE, respectively. Compare to this, the
proposed model achieves a design complexity of just 250
LE. This reduction demonstrates the innovative nature of the
DA-LUT-FIR filter, significantly decreasing the inherent
complexity typically associated with conventional FIR
filters and highlighting its efficiency in filter design.

Figure 17: Comparison of processing speed

Figure 17 compares speed of the proposed DA-LUT-FIR
filter model with existing models, including the array
multiplier, booth radix-4, and booth radix-MAC unit, which
achieve speeds of 129.57 MHz, 244.02 MHz, and 255.43
MHz, respectively. The proposed model reaches a speed of
260 MHz. By integrating DA with the LUT approach, it
accelerates multiplication operations through precomputed
values stored in its LUT, eliminating the need for resource-
intensive multipliers.

Figure 18: Comparison of latency

TABLE I
Overall table for Performance Analysis and Comparison

Enhancing Signal Processing Efficiency in
Software-Defined Radio Using Distributed Arithmetic
and Look-Up Table-Based FIR Filters

DECEMBER 2024 • VOLUME XVI • NUMBER 430

INFOCOMMUNICATIONS JOURNAL

Figure 18 provides a comparative analysis of latency in
nanoseconds across different FIR filter designs. The
baseline latency for 'Existing work' is approximately 448 ns.
In contrast, the 'Proposed work using DA with Channel
Equalizer by adaptive filter design (SDR)' achieves a
remarkable reduction in latency to around 86.126 ns. The
'Proposed work using DA design' shows a slight increase in
latency, yet it remains significantly lower than the existing
work, with a latency of approximately 101 ns. The proposed
designs have significantly reduced latency, making them
crucial for applications requiring quick response times.

TABLE I
 OVERALL TABLE FOR PERFORMANCE ANALYSIS AND COMPARISON

Figure 19: Comparison of Throughput

Figure 19 presents a comparative analysis of

throughput performance across three different designs. The
Existing work demonstrates modest throughput,
significantly below 142.4 Mbps. The 'Proposed work using
DA design' shows a substantial improvement, achieving a
throughput of 633.062 Mbps. Furthermore, the 'Proposed
work using DA with Channel Equalizer by adaptive filter
design (SDR)' showcases an impressive throughput close to
938.12 Mbps. The proposed designs significantly improve

throughput by integrating an adaptive filter and channel
equalization in software-defined radio, doubling the
previous models' throughput.

Figure 20: Comparison of Accuracy

Figure 20 compares the accuracy of the proposed

DA-LUT-FIR filter model with existing models, including
GBoost Classifier, Light GBM and Gradient Boosting,
which exhibit accuracy rates of 75%, 85%, and 95%,
respectively. The proposed model achieves a significantly
higher accuracy of 98%. This improvement underscores the
innovative design of the DA-LUT-FIR filter, which not only
enhances performance but also minimizes the errors
typically associated with traditional filtering methods,
highlighting its effectiveness in digital signal processing
applications.

Figure 21: Comparison of Overhead

Figure 21 compares the design complexity of the

proposed DA-LUT-FIR filter model with existing models,
including GFSK, GMSK and BPSK OFDM, which exhibit
design complexities of 98%, 77% and 82% respectively. In
contrast, the proposed model achieves a significantly lower
overhead of 74%. This reduction demonstrates the
innovative nature of the Enhanced Intellectual PMU
Controller, significantly decreasing the overhead typically
associated with traditional methods and highlighting its
efficiency in electric drive applications.

Figure 22: Comparison of accuracy using different FPGA

Models

Parameter
Existing

work

Proposed work
using DA design

Proposed work using
DA with Channel

Equalizer by adaptive
filter design (SDR)

Block Size 8 8 8
Filter

Length 64 64 64

FF 1656 752 952
Delay 56 ns 21.41 ns 9.627 ns
Area

(Slices) 839936 6503 8421

Power
(Vdd =
1.8V)

251.2 mW 95 mW 95mW

Slice
Registers 6144 2062 1182

No of LUT 16,129 15,914 16504
AND/OR

gates 190464 14568 9715

Throughpu
t 142.4 Mbps 633.062 Mbps 938.12 Mbps

Frequency 65.7 MHz 78.617 MHz 77.825 MHz

Latency 56ns*8=448
ns

Product of delay and
size of data=

12.637ns*8=101.096
ns

Product of delay and size
of

data=08.527ns*8=86.126
ns

No of
adders
used

2077 1027 1026

Area-delay
product

839936*56ns
=

47036416 ns

4145*21.42 ns=
88785.9 ns

8421*9.627 ns =
81068.967 ns

Power-
delay

product

251.20 mW
*56 ns=
14067.2
mW/ns

0.095*21.42 mW =
2.0349 W/ns

0.095*9.627 ns=
0.914565 ns

Figure 19 presents a comparative analysis of throughput
performance across three different designs. The Existing
work demonstrates modest throughput, significantly below
142.4 Mbps. The 'Proposed work using DA design' shows a
substantial improvement, achieving a throughput of 633.062
Mbps. Furthermore, the 'Proposed work using DA with
Channel Equalizer by adaptive filter design (SDR)' showcases
an impressive throughput close to 938.12 Mbps. The proposed
designs significantly improve throughput by integrating an
adaptive filter and channel equalization in software-defined
radio, doubling the previous models' throughput.

Figure 21 compares the design complexity of the proposed
DA-LUT-FIR filter model with existing models, including
GFSK, GMSK and BPSK OFDM, which exhibit design
complexities of 98%, 77% and 82% respectively. In contrast,
the proposed model achieves a significantly lower overhead
of 74%. This reduction demonstrates the innovative nature
of the Enhanced Intellectual PMU Controller, significantly
decreasing the overhead typically associated with traditional
methods and highlighting its efficiency in electric drive
applications.

Figure 22 presents an accuracy comparison of various SDR
platforms utilizing different FPGA models, including USRP
[36], Adalm Pluto [37], and BladeRF [38], which achieve
accuracy rates of 99.6%, 98.2%, and 99.5%, respectively.
In contrast, the proposed model using the Artix-7 FPGA
demonstrates a significantly higher accuracy of 99.8%. This
substantial improvement highlights the advanced capabilities
of the Artix-7 FPGA in enhancing the performance of SDR
applications, effectively minimizing errors associated with
traditional models and showcasing its potential in delivering
superior digital communication outcomes.

Overall, the proposed models' performance is analyzed
and compared with the existing approaches such as
conventional DA-based filter, LUT-Less 2, Separated LUT-
DA, DA-LUT using buffer array multiplier, boothradix-4, and
boothradix-MAC, GBoost Classifier, Light GBM, Gradient
Boosting, GFSK, GMSK and BPSK OFD. While comparing
the proposed approach with existing models, the proposed
approach achieves the best result of delay 190ps, the power
dissipation of 1mW, the design complexity attains the value
of 250 LE, the processing speed of 260MHz, reduced latency

Figure 20 compares the accuracy of the proposed DA-
LUT-FIR filter model with existing models, including GBoost
Classifier, Light GBM and Gradient Boosting, which exhibit
accuracy rates of 75%, 85%, and 95%, respectively. The
proposed model achieves a significantly higher accuracy of
98%. This improvement underscores the innovative design of
the DA-LUT-FIR filter, which not only enhances performance
but also minimizes the errors typically associated with
traditional filtering methods, highlighting its effectiveness in
digital signal processing applications.

Figure 19: Comparison of Throughput
Figure 21: Comparison of Overhead

Figure 22: Comparison of accuracy using different FPGA Models

Figure 20: Comparison of Accuracy

Figure 18 provides a comparative analysis of latency in
nanoseconds across different FIR filter designs. The
baseline latency for 'Existing work' is approximately 448 ns.
In contrast, the 'Proposed work using DA with Channel
Equalizer by adaptive filter design (SDR)' achieves a
remarkable reduction in latency to around 86.126 ns. The
'Proposed work using DA design' shows a slight increase in
latency, yet it remains significantly lower than the existing
work, with a latency of approximately 101 ns. The proposed
designs have significantly reduced latency, making them
crucial for applications requiring quick response times.

TABLE I
 OVERALL TABLE FOR PERFORMANCE ANALYSIS AND COMPARISON

Figure 19: Comparison of Throughput

Figure 19 presents a comparative analysis of

throughput performance across three different designs. The
Existing work demonstrates modest throughput,
significantly below 142.4 Mbps. The 'Proposed work using
DA design' shows a substantial improvement, achieving a
throughput of 633.062 Mbps. Furthermore, the 'Proposed
work using DA with Channel Equalizer by adaptive filter
design (SDR)' showcases an impressive throughput close to
938.12 Mbps. The proposed designs significantly improve

throughput by integrating an adaptive filter and channel
equalization in software-defined radio, doubling the
previous models' throughput.

Figure 20: Comparison of Accuracy

Figure 20 compares the accuracy of the proposed

DA-LUT-FIR filter model with existing models, including
GBoost Classifier, Light GBM and Gradient Boosting,
which exhibit accuracy rates of 75%, 85%, and 95%,
respectively. The proposed model achieves a significantly
higher accuracy of 98%. This improvement underscores the
innovative design of the DA-LUT-FIR filter, which not only
enhances performance but also minimizes the errors
typically associated with traditional filtering methods,
highlighting its effectiveness in digital signal processing
applications.

Figure 21: Comparison of Overhead

Figure 21 compares the design complexity of the

proposed DA-LUT-FIR filter model with existing models,
including GFSK, GMSK and BPSK OFDM, which exhibit
design complexities of 98%, 77% and 82% respectively. In
contrast, the proposed model achieves a significantly lower
overhead of 74%. This reduction demonstrates the
innovative nature of the Enhanced Intellectual PMU
Controller, significantly decreasing the overhead typically
associated with traditional methods and highlighting its
efficiency in electric drive applications.

Figure 22: Comparison of accuracy using different FPGA

Models

Parameter
Existing

work

Proposed work
using DA design

Proposed work using
DA with Channel

Equalizer by adaptive
filter design (SDR)

Block Size 8 8 8
Filter

Length 64 64 64

FF 1656 752 952
Delay 56 ns 21.41 ns 9.627 ns
Area

(Slices) 839936 6503 8421

Power
(Vdd =
1.8V)

251.2 mW 95 mW 95mW

Slice
Registers 6144 2062 1182

No of LUT 16,129 15,914 16504
AND/OR

gates 190464 14568 9715

Throughpu
t 142.4 Mbps 633.062 Mbps 938.12 Mbps

Frequency 65.7 MHz 78.617 MHz 77.825 MHz

Latency 56ns*8=448
ns

Product of delay and
size of data=

12.637ns*8=101.096
ns

Product of delay and size
of

data=08.527ns*8=86.126
ns

No of
adders
used

2077 1027 1026

Area-delay
product

839936*56ns
=

47036416 ns

4145*21.42 ns=
88785.9 ns

8421*9.627 ns =
81068.967 ns

Power-
delay

product

251.20 mW
*56 ns=
14067.2
mW/ns

0.095*21.42 mW =
2.0349 W/ns

0.095*9.627 ns=
0.914565 ns

Figure 18 provides a comparative analysis of latency in
nanoseconds across different FIR filter designs. The
baseline latency for 'Existing work' is approximately 448 ns.
In contrast, the 'Proposed work using DA with Channel
Equalizer by adaptive filter design (SDR)' achieves a
remarkable reduction in latency to around 86.126 ns. The
'Proposed work using DA design' shows a slight increase in
latency, yet it remains significantly lower than the existing
work, with a latency of approximately 101 ns. The proposed
designs have significantly reduced latency, making them
crucial for applications requiring quick response times.

TABLE I
 OVERALL TABLE FOR PERFORMANCE ANALYSIS AND COMPARISON

Figure 19: Comparison of Throughput

Figure 19 presents a comparative analysis of

throughput performance across three different designs. The
Existing work demonstrates modest throughput,
significantly below 142.4 Mbps. The 'Proposed work using
DA design' shows a substantial improvement, achieving a
throughput of 633.062 Mbps. Furthermore, the 'Proposed
work using DA with Channel Equalizer by adaptive filter
design (SDR)' showcases an impressive throughput close to
938.12 Mbps. The proposed designs significantly improve

throughput by integrating an adaptive filter and channel
equalization in software-defined radio, doubling the
previous models' throughput.

Figure 20: Comparison of Accuracy

Figure 20 compares the accuracy of the proposed

DA-LUT-FIR filter model with existing models, including
GBoost Classifier, Light GBM and Gradient Boosting,
which exhibit accuracy rates of 75%, 85%, and 95%,
respectively. The proposed model achieves a significantly
higher accuracy of 98%. This improvement underscores the
innovative design of the DA-LUT-FIR filter, which not only
enhances performance but also minimizes the errors
typically associated with traditional filtering methods,
highlighting its effectiveness in digital signal processing
applications.

Figure 21: Comparison of Overhead

Figure 21 compares the design complexity of the

proposed DA-LUT-FIR filter model with existing models,
including GFSK, GMSK and BPSK OFDM, which exhibit
design complexities of 98%, 77% and 82% respectively. In
contrast, the proposed model achieves a significantly lower
overhead of 74%. This reduction demonstrates the
innovative nature of the Enhanced Intellectual PMU
Controller, significantly decreasing the overhead typically
associated with traditional methods and highlighting its
efficiency in electric drive applications.

Figure 22: Comparison of accuracy using different FPGA

Models

Parameter
Existing

work

Proposed work
using DA design

Proposed work using
DA with Channel

Equalizer by adaptive
filter design (SDR)

Block Size 8 8 8
Filter

Length 64 64 64

FF 1656 752 952
Delay 56 ns 21.41 ns 9.627 ns
Area

(Slices) 839936 6503 8421

Power
(Vdd =
1.8V)

251.2 mW 95 mW 95mW

Slice
Registers 6144 2062 1182

No of LUT 16,129 15,914 16504
AND/OR

gates 190464 14568 9715

Throughpu
t 142.4 Mbps 633.062 Mbps 938.12 Mbps

Frequency 65.7 MHz 78.617 MHz 77.825 MHz

Latency 56ns*8=448
ns

Product of delay and
size of data=

12.637ns*8=101.096
ns

Product of delay and size
of

data=08.527ns*8=86.126
ns

No of
adders
used

2077 1027 1026

Area-delay
product

839936*56ns
=

47036416 ns

4145*21.42 ns=
88785.9 ns

8421*9.627 ns =
81068.967 ns

Power-
delay

product

251.20 mW
*56 ns=
14067.2
mW/ns

0.095*21.42 mW =
2.0349 W/ns

0.095*9.627 ns=
0.914565 ns

Figure 18 provides a comparative analysis of latency in
nanoseconds across different FIR filter designs. The
baseline latency for 'Existing work' is approximately 448 ns.
In contrast, the 'Proposed work using DA with Channel
Equalizer by adaptive filter design (SDR)' achieves a
remarkable reduction in latency to around 86.126 ns. The
'Proposed work using DA design' shows a slight increase in
latency, yet it remains significantly lower than the existing
work, with a latency of approximately 101 ns. The proposed
designs have significantly reduced latency, making them
crucial for applications requiring quick response times.

TABLE I
 OVERALL TABLE FOR PERFORMANCE ANALYSIS AND COMPARISON

Figure 19: Comparison of Throughput

Figure 19 presents a comparative analysis of

throughput performance across three different designs. The
Existing work demonstrates modest throughput,
significantly below 142.4 Mbps. The 'Proposed work using
DA design' shows a substantial improvement, achieving a
throughput of 633.062 Mbps. Furthermore, the 'Proposed
work using DA with Channel Equalizer by adaptive filter
design (SDR)' showcases an impressive throughput close to
938.12 Mbps. The proposed designs significantly improve

throughput by integrating an adaptive filter and channel
equalization in software-defined radio, doubling the
previous models' throughput.

Figure 20: Comparison of Accuracy

Figure 20 compares the accuracy of the proposed

DA-LUT-FIR filter model with existing models, including
GBoost Classifier, Light GBM and Gradient Boosting,
which exhibit accuracy rates of 75%, 85%, and 95%,
respectively. The proposed model achieves a significantly
higher accuracy of 98%. This improvement underscores the
innovative design of the DA-LUT-FIR filter, which not only
enhances performance but also minimizes the errors
typically associated with traditional filtering methods,
highlighting its effectiveness in digital signal processing
applications.

Figure 21: Comparison of Overhead

Figure 21 compares the design complexity of the

proposed DA-LUT-FIR filter model with existing models,
including GFSK, GMSK and BPSK OFDM, which exhibit
design complexities of 98%, 77% and 82% respectively. In
contrast, the proposed model achieves a significantly lower
overhead of 74%. This reduction demonstrates the
innovative nature of the Enhanced Intellectual PMU
Controller, significantly decreasing the overhead typically
associated with traditional methods and highlighting its
efficiency in electric drive applications.

Figure 22: Comparison of accuracy using different FPGA

Models

Parameter
Existing

work

Proposed work
using DA design

Proposed work using
DA with Channel

Equalizer by adaptive
filter design (SDR)

Block Size 8 8 8
Filter

Length 64 64 64

FF 1656 752 952
Delay 56 ns 21.41 ns 9.627 ns
Area

(Slices) 839936 6503 8421

Power
(Vdd =
1.8V)

251.2 mW 95 mW 95mW

Slice
Registers 6144 2062 1182

No of LUT 16,129 15,914 16504
AND/OR

gates 190464 14568 9715

Throughpu
t 142.4 Mbps 633.062 Mbps 938.12 Mbps

Frequency 65.7 MHz 78.617 MHz 77.825 MHz

Latency 56ns*8=448
ns

Product of delay and
size of data=

12.637ns*8=101.096
ns

Product of delay and size
of

data=08.527ns*8=86.126
ns

No of
adders
used

2077 1027 1026

Area-delay
product

839936*56ns
=

47036416 ns

4145*21.42 ns=
88785.9 ns

8421*9.627 ns =
81068.967 ns

Power-
delay

product

251.20 mW
*56 ns=
14067.2
mW/ns

0.095*21.42 mW =
2.0349 W/ns

0.095*9.627 ns=
0.914565 ns

Figure 18 provides a comparative analysis of latency in
nanoseconds across different FIR filter designs. The
baseline latency for 'Existing work' is approximately 448 ns.
In contrast, the 'Proposed work using DA with Channel
Equalizer by adaptive filter design (SDR)' achieves a
remarkable reduction in latency to around 86.126 ns. The
'Proposed work using DA design' shows a slight increase in
latency, yet it remains significantly lower than the existing
work, with a latency of approximately 101 ns. The proposed
designs have significantly reduced latency, making them
crucial for applications requiring quick response times.

TABLE I
 OVERALL TABLE FOR PERFORMANCE ANALYSIS AND COMPARISON

Figure 19: Comparison of Throughput

Figure 19 presents a comparative analysis of

throughput performance across three different designs. The
Existing work demonstrates modest throughput,
significantly below 142.4 Mbps. The 'Proposed work using
DA design' shows a substantial improvement, achieving a
throughput of 633.062 Mbps. Furthermore, the 'Proposed
work using DA with Channel Equalizer by adaptive filter
design (SDR)' showcases an impressive throughput close to
938.12 Mbps. The proposed designs significantly improve

throughput by integrating an adaptive filter and channel
equalization in software-defined radio, doubling the
previous models' throughput.

Figure 20: Comparison of Accuracy

Figure 20 compares the accuracy of the proposed

DA-LUT-FIR filter model with existing models, including
GBoost Classifier, Light GBM and Gradient Boosting,
which exhibit accuracy rates of 75%, 85%, and 95%,
respectively. The proposed model achieves a significantly
higher accuracy of 98%. This improvement underscores the
innovative design of the DA-LUT-FIR filter, which not only
enhances performance but also minimizes the errors
typically associated with traditional filtering methods,
highlighting its effectiveness in digital signal processing
applications.

Figure 21: Comparison of Overhead

Figure 21 compares the design complexity of the

proposed DA-LUT-FIR filter model with existing models,
including GFSK, GMSK and BPSK OFDM, which exhibit
design complexities of 98%, 77% and 82% respectively. In
contrast, the proposed model achieves a significantly lower
overhead of 74%. This reduction demonstrates the
innovative nature of the Enhanced Intellectual PMU
Controller, significantly decreasing the overhead typically
associated with traditional methods and highlighting its
efficiency in electric drive applications.

Figure 22: Comparison of accuracy using different FPGA

Models

Parameter
Existing

work

Proposed work
using DA design

Proposed work using
DA with Channel

Equalizer by adaptive
filter design (SDR)

Block Size 8 8 8
Filter

Length 64 64 64

FF 1656 752 952
Delay 56 ns 21.41 ns 9.627 ns
Area

(Slices) 839936 6503 8421

Power
(Vdd =
1.8V)

251.2 mW 95 mW 95mW

Slice
Registers 6144 2062 1182

No of LUT 16,129 15,914 16504
AND/OR

gates 190464 14568 9715

Throughpu
t 142.4 Mbps 633.062 Mbps 938.12 Mbps

Frequency 65.7 MHz 78.617 MHz 77.825 MHz

Latency 56ns*8=448
ns

Product of delay and
size of data=

12.637ns*8=101.096
ns

Product of delay and size
of

data=08.527ns*8=86.126
ns

No of
adders
used

2077 1027 1026

Area-delay
product

839936*56ns
=

47036416 ns

4145*21.42 ns=
88785.9 ns

8421*9.627 ns =
81068.967 ns

Power-
delay

product

251.20 mW
*56 ns=
14067.2
mW/ns

0.095*21.42 mW =
2.0349 W/ns

0.095*9.627 ns=
0.914565 ns

Enhancing Signal Processing Efficiency in
Software-Defined Radio Using Distributed Arithmetic

and Look-Up Table-Based FIR Filters

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2024 • VOLUME XVI • NUMBER 4 31

and overhead of 86 ns and 74%, increased throughput and
accuracy of 938.12 Mbps and 99%. Hence the proposed
method effectively reduces the noise from SDR applications
and enhances the performance of throughput and latency in
DA-LUT-based FIR filters.

E. Overall Performance Analysis

The overall performance analysis of the proposed work
and its comparison with other existing works is summarized
in table 1.

Figure 22 presents an accuracy comparison of various SDR
platforms utilizing different FPGA models, including USRP
[36], Adalm Pluto [37], and BladeRF [38], which achieve
accuracy rates of 99.6%, 98.2%, and 99.5%, respectively. In
contrast, the proposed model using the Artix-7 FPGA
demonstrates a significantly higher accuracy of 99.8%. This
substantial improvement highlights the advanced
capabilities of the Artix-7 FPGA in enhancing the
performance of SDR applications, effectively minimizing
errors associated with traditional models and showcasing its
potential in delivering superior digital communication
outcomes.

Overall, the proposed models' performance is
analyzed and compared with the existing approaches such as
conventional DA-based filter, LUT-Less 2, Separated LUT-
DA, DA-LUT using buffer array multiplier, boothradix-4,
and boothradix-MAC, GBoost Classifier, Light GBM,
Gradient Boosting, GFSK, GMSK and BPSK OFD. While
comparing the proposed approach with existing models, the
proposed approach achieves the best result of delay 190ps,
the power dissipation of 1mW, the design complexity attains
the value of 250 LE, the processing speed of 260MHz,
reduced latency and overhead of 86 ns and 74%, increased
throughput and accuracy of 938.12 Mbps and 99%. Hence
the proposed method effectively reduces the noise from
SDR applications and enhances the performance of
throughput and latency in DA-LUT-based FIR filters.

E. Overall Performance Analysis
 The overall performance analysis of the proposed
work and its comparison with other existing works is
summarized in table 1.

V. CONCLUSION
This study presents a comprehensive evaluation of

a novel FIR filter architecture based on Distributed
Arithmetic and Look-Up Tables, implemented on an Artix-7
FPGA. This DA-LUT-FIR filter design addresses several
key limitations of traditional multiplier-based FIR filters,
which often suffer from high hardware complexity,
significant power consumption, and slower processing
speeds. This proposed filter was implemented with quicker
multipliers and adders thereby decreasing bit error rate and
latency which in turn helps to boost the throughput of data
given in bits. Additionally, the decimation factor frequently
changes the FIR filter coefficients, allowing filters to vary
their frequency response. According to the experimental
findings, fewer LUT for FIR filter coefficients result in less
memory usage and latency. The employment of a highly
adaptable parallel prefix adder during partial product
accumulation was another factor that contributed to the
decreased latency. The use of DA and LUTs in the
architecture proves to be a powerful combination, delivering
remarkable performance improvements and making the
filter highly suitable for real-time digital signal processing
tasks. The numerical findings from this study—such as the
operating speed of 260 MHz, power dissipation of 1 mW,
delay of 190 ps, and throughput of 938.12 Mbps—
demonstrate substantial improvements over existing
methods. These results make the DA-LUT-FIR filter a
highly suitable choice for real-time digital signal processing
tasks, contributing significantly to the advancement of FIR
filter design for future SDR systems.

REFERENCES
[1] Abraham, J., Venusamy, K., Judice, A., Shaik, H. and Suriyan, K.,

Research, challenges and opportunities in software define radio
technologies. Int J Reconfigurable & Embedded Syst
ISSN, 2089(4864), p.4864.

[2] Mori, S., Mizutani, K. and Harada, H., 2023. Software-defined radio-
based 5G physical layer experimental platform for highly mobile
environments. IEEE Open Journal of Vehicular Technology, 4,
pp.230-240.

[3] P. P. Sundar, D. Ranjith, T. Karthikeyan, V. V. Kumar, & B.
Jeyakumar, “Low power area efficient adaptive FIR filter for hearing
aids using distributed arithmetic architecture,” International Journal
of Speech Technology, vol. 23 no. 2, pp. 287-296, 2020.

[4] N. J. Grande, & S. Sridevi, “ASIC implementation of shared LUT-
based distributed arithmetic in FIR Filter,” In 2017 International
Conference on microelectronic devices, Circuits and Systems
(ICMDCS). IEEE, pp. 1-4, 2017, August.

[5] G. N. Jyothi, K. Sanapala, & A. Vijayalakshmi, “ASIC
implementation of distributed arithmetic-based FIR filter using RNS
for high-speed DSP systems,” International Journal of Speech
Technology, pp. 1-6, 2020.

[6] K. Vijetha, & B. R. Naik, “High-performance area-efficient DA-based
FIR filter for concurrent decision feedback equalizer,” International
Journal of Speech Technology, vol. 23, no. 2, pp. 297-303, 2020.

[7] P. Kumar, P. C. Shrivastava, M. Tiwari, & G. R. Mishra, “High-
throughput, the area-efficient architecture of 2-D block FIR filter
using the distributed arithmetic algorithm,” Circuits, systems, and
signal processing, vol. 38, no. 3, pp. 1099-1113, 2019.

[8] M. Sumalatha, P. V. Naganjaneyulu, & K. S. Prasad, “Low power and
low area VLSI implementation of Vedic design FIR filter for ECG
signal de-noising,” Microprocessors and Microsystems, vol. 71, pp.
102883, 2019.

[9] K. Bagadi, C.V. Ravikumar, K. Sathish, M. Alibakhshikenari, B.S.
Virdee, L. Kouhalvandi, K.N. Olan-Nuñez, G. Pau, C.H. See, I.
Dayoub, and P. Livreri, “Detection of signals in MC–CDMA using a
novel iterative block decision feedback equalizer,” IEEE Access, vol.
10, pp. 105674-105684, 2022.

[10] S. R. Rammohan, N. Jayashri, M. A. Bivi, C. K. Nayak, & V. R.
Niveditha, “High-performance hardware design of compressor adder
in DA-based FIR filters for hearing aids,” International Journal of
Speech Technology, vol. 23, no. 4, pp. 807-814, 2020.

[11] S. F. Ghamkhari, & M. B. Ghaznavi-Ghoushchi, “A New Low Power
Schema for Stream Processors Front-End with Power-Aware DA-
Based FIR Filters by Investigation of Image Transitions
Sparsity,” Circuits, Systems, and Signal Processing, pp. 1-23, 2021.

[12] M.E. Meybodi, H. Gomez, Y.C. Lu, H. Shakiba, and A.
Sheikholeslami, “Design and implementation of an on-demand
maximum-likelihood sequence estimation (MLSE),” IEEE Open
Journal of Circuits and Systems, vol. 3, pp. 97-108, 2022.

[13] T. V. Padmavathy, S. Saravanan, & M. N. Vimalkumar, “Partial
product addition in Vedic design-ripple carry adder design for filter
architecture for electrocardiogram (ECG) signal de-noising
application,” Microprocessors and Microsystems, vol. 76, pp. 103113,
2020.

[14] B. Pandey, N. Pandey, A. Kaur, D. A. Hussain, B. Das, & G. S.
Tomar, “Scaling of output load in energy efficient FIR filter for green
communication on ultra-scale FPGA,” Wireless Personal
Communications, vol. 106, no. 4, pp. 1813-1826, 2019.

[15] S. Yergaliyev, and M.T. Akhtar, “A Systematic Review on
Distributed Arithmetic-Based Hardware Implementation of Adaptive
Digital Filters,” IEEE Access, 2023.

[16] W.M. Salama, M.H. Aly, and E.S. Amer, “Underwater optical
wireless communication system: Deep learning cnn with noma-based
performance analysis,” Optical and Quantum Electronics, vol. 55, no.
5, pp. 436, 2023.

[17] P. Chowdari Ch, and J.B. Seventline, “Implementation of distributed
arithmetic-based symmetrical 2-D block finite impulse response filter
architectures,” F1000Research, vol. 12, pp. 1182, 2023.

[18] B. U. V. Prashanth, M. R. Ahmed, & M. R. Kounte, “Design and
implementation of DA FIR filter for bio-inspired computing
architecture,” International Journal of Electrical and Computer
Engineering, vol. 11, no. 2, pp. 1709, 2021.

[19] S. Sridevi, & R. Dhuli, “ASIC Implementation of Linear Periodically
Time Varying Filter by Thread Decomposition,” In International
Conference on Advances in Electrical and Computer Technologies.
Singapore: Springer Nature Singapore, pp. 775-788, 2020, October.

[20] A. Gorantla, & T. Kudithi, “ASIC Implementation of Linear
Equalizer Using Adaptive FIR Filter,” International Journal of e-
Collaboration, vol. 16, no. 4, 2020.

	 [1]	 Abraham, J., Venusamy, K., Judice, A., Shaik, H. and Suriyan, K.,
Research, challenges and opportunities in software define radio
technologies. Int J Reconfigurable & Embedded Syst ISSN,
2089(4864), p. 4864. doi: 10.11591/ijres.v12.i2.pp260-268

	 [2]	 Mori, S., Mizutani, K. and Harada, H., 2023. Software-defined radio-
based 5G physical layer experimental platform for highly mobile
environments. IEEE Open Journal of Vehicular Technology, 4, pp.
230–240. doi: 10.1109/OJVT.2023.3237390

	 [3]	 P. P. Sundar, D. Ranjith, T. Karthikeyan, V. V. Kumar, & B. Jeyakumar,
“Low power area efficient adaptive FIR filter for hearing aids using
distributed arithmetic architecture,” International Journal of Speech
Technology, vol. 23 no. 2, pp. 287–296, 2020.

		 doi: 10.1007/s10772-020-09686-y
	 [4]	 N. J. Grande, & S. Sridevi, “ASIC implementation of shared LUT-

based distributed arithmetic in FIR Filter,” In 2017 International
Conference on microelectronic devices, Circuits and Systems
(ICMDCS). IEEE, pp. 1–4, 2017, August.

		 doi: 10.1109/ICMDCS.2017.8211705

References

	 [5]	 G. N. Jyothi, K. Sanapala, & A. Vijayalakshmi, “ASIC implementation
of distributed arithmetic-based FIR filter using RNS for high-speed
DSP systems,” International Journal of Speech Technology, pp. 1–6,
2020. doi: 10.1007/s10772-020-09683-1

	 [6]	 K. Vijetha, & B. R. Naik, “High-performance area-efficient DA-based
FIR filter for concurrent decision feedback equalizer,” International
Journal of Speech Technology, vol. 23, no. 2, pp. 297–303, 2020.
doi: 10.1016/j.eswa.2024.123488

	 [7]	 P. Kumar, P. C. Shrivastava, M. Tiwari, & G. R. Mishra, “High-
throughput, the area-efficient architecture of 2-D block FIR filter
using the distributed arithmetic algorithm,” Circuits, systems, and
signal processing, vol. 38, no. 3, pp. 1099–1113, 2019.

		 doi: 10.1007/s00034-018-0897-2
	 [8]	 M. Sumalatha, P. V. Naganjaneyulu, & K. S. Prasad, “Low power and

low area VLSI implementation of Vedic design FIR filter for ECG
signal de-noising,” Microprocessors and Microsystems, vol. 71, p.
102 883, 2019. doi: 10.1016/j.micpro.2019.102883

	 [9]	 K. Bagadi, C. V. Ravikumar, K. Sathish, M. Alibakhshikenari,
B. S. Virdee, L. Kouhalvandi, K. N. Olan-Nuñez, G. Pau, C. H. See,
I. Dayoub, and P. Livreri, “Detection of signals in MC–CDMA using a
novel iterative block decision feedback equalizer,” IEEE Access, vol.
10, pp. 105 674–105 684, 2022. doi: 10.1109/ACCESS.2022.3211392

	[10]	 S. R. Rammohan, N. Jayashri, M. A. Bivi, C. K. Nayak, & V. R.
Niveditha, “High-performance hardware design of compressor adder
in DA-based FIR filters for hearing aids,” International Journal of
Speech Technology, vol. 23, no. 4, pp. 807–814, 2020.

		 doi: 10.1007/s10772-020-09759-y
	[11]	 S. F. Ghamkhari, & M. B. Ghaznavi-Ghoushchi, “A New Low Power

Schema for Stream Processors Front-End with Power-Aware DA-
Based FIR Filters by Investigation of Image Transitions Sparsity,”
Circuits, Systems, and Signal Processing, pp. 1–23, 2021.

		 doi: 10.1007/s00034-020-01632-2
	[12]	 M. E. Meybodi, H. Gomez, Y. C. Lu, H. Shakiba, and

A. Sheikholeslami, “Design and implementation of an on-demand
maximum-likelihood sequence estimation (MLSE),” IEEE Open
Journal of Circuits and Systems, vol. 3, pp. 97–108, 2022.

		 doi: 10.1109/OJCAS.2022.3173686
	[13]	 T. V. Padmavathy, S. Saravanan, & M. N. Vimalkumar, “Partial

product addition in Vedic design-ripple carry adder design for filter
architecture for electrocardiogram (ECG) signal de-noising applica-
tion,” Microprocessors and Microsystems, vol. 76, p. 103 113, 2020.
doi: 10.1016/j.micpro.2020.103113

	[14]	 B. Pandey, N. Pandey, A. Kaur, D. A. Hussain, B. Das, & G. S. Tomar,
“Scaling of output load in energy efficient FIR filter for green communi-
cation on ultra-scale FPGA,” Wireless Personal Communications, vol.
106, no. 4, pp. 1813–1826, 2019. doi: 10.1007/s11277-018-5717-2

	[15]	 S. Yergaliyev, and M.T. Akhtar, “A Systematic Review on Distributed
Arithmetic-Based Hardware Implementation of Adaptive Digital
Filters,” IEEE Access, 2023. doi: 10.1109/ACCESS.2023.3304234

	[16]	 W. M. Salama, M. H. Aly, and E.S. Amer, “Underwater optical
wireless communication system: Deep learning cnn with noma-based
performance analysis,” Optical and Quantum Electronics, vol. 55, no.
5, p. 436, 2023. doi: 10.1007/s11082-023-04638-7

[17]	 P. Chowdari Ch, and J. B. Seventline, “Implementation of distributed
arithmetic-based symmetrical 2-D block finite impulse response filter
architectures,” F1000Research, vol. 12, p. 1182, 2023.

		 doi: 10.12688/f1000research.126067.1
[18] B. U. V. Prashanth, M. R. Ahmed, & M. R. Kounte, “Design and

implementation of DA FIR filter for bio-inspired computing
architecture,” International Journal of Electrical and Computer
Engineering, vol. 11, no. 2, p. 1709, 2021.

		 doi: 10.11591/ijece.v11i2.pp1709-1718
[19]	 S. Sridevi, & R. Dhuli, “ASIC Implementation of Linear Periodically

Time Varying Filter by Thread Decomposition,” In International
Conference on Advances in Electrical and Computer Technologies.
Singapore: Springer Nature Singapore, pp. 775–788, 2020, October.
doi: 10.1007/978-981-15-9019-1_67

[20]	 A. Gorantla, & T. Kudithi, “ASIC Implementation of Linear Equalizer
Using Adaptive FIR Filter,” International Journal of e-Collaboration,
vol. 16, no. 4, 2020. doi: 10.1007/978-981-15-9019-1_67

https://doi.org/10.11591/ijres.v12.i2.pp260-268
https://doi.org/10.1109/OJVT.2023.3237390
https://doi.org/10.1007/s10772-020-09686-y
https://doi.org/10.1109/ICMDCS.2017.8211705
https://doi.org/10.1007/s10772-020-09683-1
https://doi.org/10.1016/j.eswa.2024.123488
https://doi.org/10.1007/s00034-018-0897-2
https://doi.org/10.1016/j.micpro.2019.102883
https://doi.org/10.1109/ACCESS.2022.3211392
https://doi.org/10.1007/s10772-020-09759-y
https://doi.org/10.1007/s00034-020-01632-2
https://doi.org/10.1109/OJCAS.2022.3173686
https://doi.org/10.1016/j.micpro.2020.103113
https://doi.org/10.1007/s11277-018-5717-2
https://doi.org/10.1109/ACCESS.2023.3304234
https://doi.org/10.1007/s11082-023-04638-7
https://doi.org/10.12688/f1000research.126067.1
https://doi.org/10.11591/ijece.v11i2.pp1709-1718
https://doi.org/10.1007/978-981-15-9019-1_67
https://doi.org/10.1007/978-981-15-9019-1_67

Enhancing Signal Processing Efficiency in
Software-Defined Radio Using Distributed Arithmetic
and Look-Up Table-Based FIR Filters

DECEMBER 2024 • VOLUME XVI • NUMBER 432

INFOCOMMUNICATIONS JOURNAL

[21]	 P. Kumar, P. C. Shrivastava, M. Tiwari, & G. R. Mishra, “High-
throughput, the area-efficient architecture of 2-D block FIR filter
using the distributed arithmetic algorithm,” Circuits, systems, and
signal processing, vol. 38, no. 3, pp. 1099–1113, 2019.

		 doi: 10.1007/s00034-018-0897-2
[22]	 A. Rai, “An optimization of low power 4-bit PAL FIR filter using

adiabatic techniques,” Sādhanā, vol. 48, no. 2, p. 84, 2023.
		 doi: 10.1007/s12046-023-02132-0S
[23] B. U. V. Prashanth, M. R. Ahmed, & M. R. Kounte, “Design and

implementation of DA FIR filter for bio-inspired computing
architecture,” International Journal of Electrical and Computer
Engineering, vol. 11, no. 2, p. 1709, 2021.

		 doi: 10.11591/ijece.v11i2.pp1709-1718
[24]	 M. Maamoun, A. Hassani, S. Dahmani, H. Ait Saadi, G. Zerari, N.

Chabini, & R. Beguenane, “Efficient FPGA-based architecture for
high-order FIR filtering using simultaneous DSP and LUT reduced
utilization,” IET Circuits, Devices & Systems, 2021.

		 doi: 10.1049/cds2.12043
[25]	 P. C. Shrivastava, P. Kumar, M. Tiwari, & A. Dhawan, “Efficient

Architecture for the Realization of 2-D Adaptive FIR Filter Using
Distributed Arithmetic,” Circuits, Systems, and Signal Processing, vol.
40, no. 3, pp. 1458–1478, 2021. doi: 10.1007/s00034-020-01539-y

[26]	 G. S. Lakshmaiah, C. K. Narayanappa, L. Shrinivasan, and D. M.
Narasimhaiah, “Efficient very large-scale integration architecture
design of proportionate-type least mean square adaptive filters,” Int
J Reconfigurable & Embedded Syst, vol. 13, no. 1, pp. 69–75, 2024.
doi: 10.11591/ijres.v13.i1.pp69-75

[27]	 M. T. Khan, M. A. Alhartomi, S. Alzahrani, R. A. Shaik, and
R. Alsulami, “Two distributed arithmetic based high throughput
architectures of non-pipelined LMS adaptive filters,” IEEE Access, vol.
10, pp. 76 693–76 706, 2022. doi: 10.1109/ACCESS.2022.3192619

[28]	 C. S. Murthy, & K. Sridevi, “Optimized DA-reconfigurable FIR filters
for software defined radio channelizer applications,” Circuit World, vol.
47, no. 3, pp. 252–261, 2021. doi: 10.1108/CW-11-2020-0332

[29]	 S. R. Rammohan, N. Jayashri, M. A. Bivi, C. K. Nayak, & V. R.
Niveditha, “High performance hardware design of compressor adder
in DA based FIR filters for hearing aids,” International Journal of
Speech Technology, vol. 23, pp. 807–814, 2020.

		 doi: 10.1007/s10772-020-09759-y
[30]	 A. Uma, & P. Kalpana, “ECG Noise Removal Using Modified

Distributed Arithmetic Based Finite Impulse Response Filter,”
Journal of Medical Imaging and Health Informatics, vol. 11, no. 5,
pp. 1444–1452, 2021. doi: 10.1166/jmihi.2021.3770

[31]	 Y. Nirmala, B. Bhaygya, & B. Saimani, “High speed low area OBC
DA based decimation filter for hearing aids application”.

		 doi: 10.1007/s10772-019-09660-3
[32]	 Șorecău, M., Șorecău, E., Sarbu, A. and Bechet, P., 2023. Real-

time statistical measurement of wideband signals based on software
defined radio technology. Electronics, 12(13), p. 2920.

		 doi: 10.3390/electronics12132920

S. Hari Krishnan obtained his B.E Degree in Elec-
tronics & Communication Engineering from Mepco
Schlenk Engineering College, Sivakasi, Tamilnadu and
M.E Degree in VLSI DESIGN from Karpagam Uni-
versity, Coimbatore, Tamilnadu. His Field of interest
includes Digital Signal Processing and VLSI Design.
He has organized and attended more number of Con-
ferences, seminars, Workshops, Symposiums, Faculty
development programmes, Project expos.. He has pub-
lished several articles in international and national con-

ferences and also he guided various UG projects. Currently, he is an Associate
Professor in the Department of ECE at Sanskrithi School Of Engineering, Put-
taparthi, Andra Pradesh, India.

Syed Sadiq Vali has received Bachelor of technology
degree (B.Tech) in Electronics and Communication
Engineering(ECE) from Sri Krishna Devaraya Univer-
sity, Aanantapur, Andhra Pradesh, in 2017, M.Tech in
VLSI system design from JNTU Anantapur in 2021 and
pursuing Ph.D degree from mohan Babu University,
Tirupati. Currently, he is an Assistant Professor in the
department of Electronics and Communication Engi-
neering at Sanskrithi School of Engineering, Puttapar-
thy, Andra Pradesh, India. Research Interests includes:

System-on-Chip Architecture design and Low-Power VLSI systems.

[33]	 Radu, F., Cotfas, P. A., Alexandru, M., Bălan, T. C., Popescu,
V. and Cotfas, D. T., 2023. Signals Intelligence System with Software-
Defined Radio. Applied Sciences, 13(8), p. 5199.

		 doi: 10.3390/app13085199
[34]	 E. Chitra, & T. Vigneswaran, “An efficient low power and high speed

distributed arithmetic design for FIR filter,” Indian Journal of Science
and Technology, vol. 9, no. 4, pp. 1–5, 2016.

		 doi: 10.17485/ijst/2016/v9i4/79055
[35]	 Molla, D. M., Badis, H., George, L. and Berbineau, M., 2022. Software

defined radio platforms for wireless technologies. IEEE Access, 10, pp.
26 203–26 229. doi: 10.1109/ACCESS.2022.3154364

[36]	 Alashqar, A., Mesleh, R. and Alshawaqfeh, M., 2023, June. Digital
Communication Software-Defined Radio-Transceiver Implemen-
tation Using MATLAB and USRP. In 2023 International Wireless
Communications and Mobile Computing (IWCMC) (pp. 929–934).
IEEE. doi: 10.1109/IWCMC58020.2023.10182939

[37]	 Üngüder, Ö. Ö., 2023. Real-Time Chat Application with ADALM-
PLUTO Software Defined Radio (Doctoral dissertation, Hochschule
Rhein-Waal). https://opus4.kobv.de/opus4-rhein-waal/frontdoor/in-
dex/index/docId/1852

[38]	 Terris-Gallego, R., Fernandez-Hernandez, I., López-Salcedo, J. A. and
Seco-Granados, G., 2023. E1-E6 SDR Platform Based on BladeRF for
Testing Galileo-Assisted Commercial Authentication Service. Engi-
neering Proceedings, 54(1), p. 29. doi: 10.3390/ENC2023-15428

https://doi.org/10.1007/s00034-018-0897-2
https://doi.org/10.1007/s12046-023-02132-0S
https://doi.org/10.11591/ijece.v11i2.pp1709-1718
https://doi.org/10.1049/cds2.12043
https://doi.org/10.1007/s00034-020-01539-y
https://doi.org/10.11591/ijres.v13.i1.pp69-75
https://doi.org/10.1109/ACCESS.2022.3192619
https://doi.org/10.1108/CW-11-2020-0332
https://doi.org/10.1007/s10772-020-09759-y
https://doi.org/10.1166/jmihi.2021.3770
https://doi.org/10.1007/s10772-019-09660-3
https://doi.org/10.3390/electronics12132920
https://doi.org/10.3390/app13085199
https://doi.org/10.17485/ijst/2016/v9i4/79055
https://doi.org/10.1109/ACCESS.2022.3154364
https://doi.org/10.1109/IWCMC58020.2023.10182939
https://opus4.kobv.de/opus4-rhein-waal/frontdoor/index/index/docId/1852
https://opus4.kobv.de/opus4-rhein-waal/frontdoor/index/index/docId/1852
https://doi.org/10.3390/ENC2023-15428

