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Abstract—To meet the requirements of the wireless communi-
cation industry, digital communication systems require increas-
ingly advanced coding and modulation technologies. Software-
Defined Radio enables these advanced ideas to be easily adopted 
by such systems. The Finite Impulse Response filter is frequently 
used in wireless communication to pre-process detected signals 
to reduce noise by utilizing delay elements, multipliers, and ad-
ders. Traditional multiplier-based finite impulse response fil-
ter designs result in hardware-intensive multipliers that use a 
lot of space and energy and pose poor calculation speeds and 
low performance in throughput and latency. To overcome the 
existing issues, a novel Distributed Arithmetic with a Look Up 
Table-based FIR filter is proposed, which reduces the Bit Error 
Rate and latency and improves throughput by optimizing the 
channel equalizer as a crucial part of Software Defined Radio 
applications. Further, a key feature named the decimation factor 
is incorporated to dynamically alter the filter's output frequency 
response without altering the filter coefficients. Moreover, the 
worst-case critical route latency of partial product accumula-
tion is reduced using a highly adaptable Parallel Prefix Adder. 
Additionally, the finite impulse response filters are integrated 
to decrease the number of Look-Up Tables, thereby saving time 
and memory. It also investigates the filter efficiency using faster 
multipliers and adders and validates it on an Artix-7 FPGA. As 
a result, the proposed model improved the filter’s performance 
over the other existing designs by achieving an operating speed 
of 260 MHz, delay of 190 ps, power dissipation of 1 mW and 
throughput of 938.12 Mbps with the number of Look-Up Tables 
being 16504.

Index Terms—Software-Defined Radio, Noise Removal, Finite 
Impulse Response, Digital Signal Processing, Field-Programma-
ble Gate Array, and Wireless Communication.

DOI: 10.36244/ICJ.2024.4.3

Enhancing Signal Processing Efficiency in 
Software-Defined Radio Using Distributed 

Arithmetic and Look-Up Table-Based FIR Filters 
 

Hari Krishnan S*, Mr. S. Sadiqvali 

Abstract- To meet the requirements of the wireless 
communication industry, digital communication systems 
require increasingly advanced coding and modulation 
technologies. Software-Defined Radio enables these advanced 
ideas to be easily adopted by such systems. The Finite Impulse 
Response filter is frequently used in wireless communication to 
pre-process detected signals to reduce noise by utilizing delay 
elements, multipliers, and adders. Traditional multiplier-based 
finite impulse response filter designs result in hardware-
intensive multipliers that use a lot of space and energy and 
pose poor calculation speeds and low performance in 
throughput and latency. To overcome the existing issues, a 
novel Distributed Arithmetic with a Look Up Table-based FIR 
filter is proposed, which reduces the Bit Error Rate and 
latency and improves throughput by optimizing the channel 
equalizer as a crucial part of Software Defined Radio 
applications. Further, a key feature named the decimation 
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frequency response without altering the filter coefficients. 
Moreover, the worst-case critical route latency of partial 
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filters are integrated to decrease the number of Look-Up 
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I. INTRODUCTION  
Interference with symbols was one of the biggest problems 
with the digital structure. This suggests that in digital 
communication systems such as Software Defined Radio 
(SDR) applications, SDR technology offers the flexibility to 
implement adaptive filtering and real-time signal processing, 
allowing for more effective interference management. This 
capability enhances overall communication reliability, 
making SDR a valuable tool in modern digital systems.  
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However, interference with symbols can lead to distorted 
channels, which may result in errors in data transmission. 
Interference can occur due to various factors such as noise, 
signal degradation, or electromagnetic interference. 
Distorted channels can result in errors in data transmission, 
making it essential to employ techniques to mitigate 
interference and restore the integrity of the transmitted 
symbols [1-3]. As the speed of data transfer systems goes 
up, Digital Signal Processing (DSP) needs high-speed 
communication systems. In DSP computers, the speed 
couldn't go beyond 1 GHz and it plays a crucial role in 
enhancing the quality of communication by processing and 
analyzing signals in real-time. The limitation mentioned(1 
GHz) likely pertains to a specific context or technology, as 
modern DSP systems can operate at much higher 
frequencies, depending on the application [4]. To support 
multiple bit rates in communication systems, it's necessary 
to develop new designs. Different bit rates require different 
modulation schemes, coding techniques, and signal 
processing methods. Adapting to multiple-bit rates allows 
for more flexible and efficient data transmission in modern 
communication systems [5]. Pipelining and parallel 
processing are techniques used to improve the speed and 
efficiency of computers in optical transmission systems. 
Pipelining involves breaking down tasks into stages, 
allowing for parallel execution of different stages 
simultaneously. Parallel processing utilizes multiple 
processing units to perform tasks in parallel, increasing 
overall system throughput. These techniques are essential 
for handling the high data rates in optical communication 
systems [6].  

Equalizers are devices or algorithms used on the 
receiving end of a communication system to reduce 
distortions like Inter-Symbol Interference (ISI). ISI occurs 
when symbols interfere with each other in a digital 
communication signal due to channel characteristics. 
Equalizers help in recovering the original symbols by 
compensating for the distortion caused by ISI, thus 
improving the overall data reception quality [7]. Equalizing 
Decision Feedback (EDF) is a nonlinear equalization 
technique used to mitigate ISI in communication systems. It 
works by making decisions about received symbols and then 
using these decisions to feedback information to the 
equalizer to compensate for post-cursor ISI. By doing so, 
EDF helps in reducing errors caused by ISI and, 
consequently, improves the SNR. This technique is 
particularly effective in scenarios where ISI is a significant 
challenge.  

Maximum Likelihood Sequence Detection (MLSD) is 
another technique used for ISI mitigation [8]. It considers all 
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possible symbol sequences and selects the one with the 
highest likelihood, thereby reducing errors caused by ISI. 
MLSD is especially effective in situations with severe ISI or 
complex modulation schemes. In a digital communication 
signal, post-cursor ISI that is, ISI that appears after the 
primary symbol is eliminated in part by both MLSD and 
EDF. Through their efficient handling of post-cursor ISI, 
these methods help to enhance the quality of signals that are 
received. Combining the various access strategies is 
probably going to produce the greatest results in terms of 
enhancing security, increasing data transfer speed, and 
reducing ISI [9]. These techniques can also address 
problems related to the way noise spreads, especially in the 
presence of spectral nulls. Spectral nulls are frequencies 
where the signal has little or no energy, making them 
susceptible to noise interference. EDF and MLSD can help 
mitigate the impact of noise, including noise related to 
spectral nulls, thus improving overall signal quality [10]. In 
addition to mitigating ISI and improving SNR, Speed-
testing techniques are used. It could refer to the 
computational complexity and processing speed required for 
implementing EDF and MLSD algorithms. These algorithms 
can be computationally intensive, so optimizing their speed 
is crucial for real-time applications [11-12]. The 
improvement of Speed and Design Technology is necessary 
to keep up with the demands of modern high-speed 
communication systems, where fast and efficient 
equalization is crucial for reliable data transmission [13].  

Distributed Arithmetic (DA) architecture is becoming 
more popular in DSP. This architecture is chosen due to its 
simplicity in design and its utilization of Look-Up Tables 
(LUTs) and transfer build blocks for obtaining partial 
products. DA architecture offers advantages in terms of 
efficient hardware implementation, making it a suitable 
choice for various DSP applications [14]. DA architecture 
uses two-way binary code complements or offsets for 
representing the filter coefficients and input values. Binary 
code complements involve representing numbers as positive 
and negative complements, which simplifies arithmetic 
operations. Using offsets can also simplify operations by 
shifting the input values within a certain range. These 
techniques contribute to the efficiency and simplicity of 
DA-based DSP algorithms [15]. To reduce the amount of 
memory required by a DA Finite Impulse Response (FIR) 
filter, various strategies are suggested. Memory Divisions 
refer to dividing the memory resources into smaller blocks 
or segments to reduce the overall memory footprint, which 
can help optimize memory usage while still performing the 
filtering operations efficiently. In addition, Different 
Memory Bank Approaches are utilized with varying access 
speeds or capacities to efficiently store and access data. This 
approach can be particularly useful when dealing with large 
datasets and complex FIR filter structures [16-17]. 

The Look-Up Table (LUT) decomposition scheme is 
used to simplify the LUT structures in FIR filters based on 
the DA architecture. However, it may come at the cost of 
using a few extra filters. The trade-off between complexity 
and resource usage is common in DSP design. Over the past 
few decades, there have been efforts to improve the 
performance and efficiency of filters, including those based 
on DA architecture. Advances in filter design, algorithm 
optimization, and hardware capabilities have led to more 
efficient DSP solutions. These improvements help narrow 
the field of DA architecture as a powerful and viable design 

choice for various filter applications [18-19]. The DA 
architecture is particularly well-suited for FIR filters that are 
based on Decision Feedback Equalizers (DFEs). DFEs are 
used to mitigate ISI (Inter-Symbol Interference) in 
communication systems. The DA architecture can offer an 
efficient and effective way to implement FIR filters within 
DFEs, contributing to the overall performance and reliability 
of communication systems [20]. Hence there is a need to 
design a novel FIR filter for improving the quality of 
wireless communication applications. 

The Major contributions in this paper are given as 
follows: 

 To design an FIR filter based on DA-LUT 
multiplier for quicker multiplier and faster adder to 
improve the speed of filter operation and to create a 
channel equalizer as part of an SDR application 
and apply it to FIR for validation. 

 To use a decimation factor that dynamically 
modifies the output frequency response of the 
filter, a highly adaptive parallel prefix adder (PPA) 
to lower the worst-case critical route latency and 
verify the filter efficiency on Artix-7 FPGA.  

 The content of the paper is organized as section 2 
describes the literature survey, section 3 describes the 
proposed design and its working process, and section 4 
discusses the proposed design simulation, performance, and 
comparative analysis. Finally, section 5 concludes the paper. 

II. LITERATURE SURVEY 
Kumar et al [21] developed a new architecture for a 2-D 
block FIR filter by using the DA algorithm, which was 
renowned for its effective design of the multiply and 
accumulate block. The DA-LUT has a hardware-based 
architecture that enables the 2-D FIR filter's architecture to 
be changed. Additionally, sharing occurs among DA-LUTs 
at different levels as a result of block processing. In order to 
simplify the hardware complexity of DA-LUT, a common 
DA-LUT was created for block inputs. Additionally, the 
systolic architectures in the suggested design were decreased 
over the designs that already exist thanks to memory 
overlapping. By separating the internal block into parallel 
and small blocks for higher-order 2-D FIR filters, the 
complexity of DA-LUT was decreased. However, building 
hardware for DSP applications was more challenging, and it 
requires specialized knowledge and resources.  

Amrita Rai [22] proposed a 4-bit FIR filter used in 
Digital Signal Processing (DSP) employing completely 
adiabatic technology (PAL) to decrease all parametric 
performance and power consumption. The designs of a 
completely adiabatic, low-power, high-speed FIR filter to 
that of CMOS filters were compared. Reversible logic was 
used in the design of the PAL FIR filter, and CADENCE 
digital lab was used to simulate and synthesise it for a 
variety of parameters, including changes in supply voltage, 
load capacitance, and transition frequency. This architecture 
used a logarithmic multiplier to lower the hardware needs 
and adiabatic technology to provide low power dissipation. 
However, achieving low area efficiency was more 
challenging.  

Prashanth et al [23] discussed the design of the DA-
FIR filter system construct, which was built on an 
architecture with tightly coupled co-processor-based data 
processing units. The designed DA-based FIR filter was 
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can be particularly useful when dealing with large datasets 
and complex FIR filter structures [16-17].

The Look-Up Table (LUT) decomposition scheme is used 
to simplify the LUT structures in FIR filters based on the DA 
architecture. However, it may come at the cost of using a few 
extra filters. The trade-off between complexity and resource 
usage is common in DSP design. Over the past few decades, there 
have been efforts to improve the performance and efficiency of 
filters, including those based on DA architecture. Advances in 
filter design, algorithm optimization, and hardware capabilities 
have led to more efficient DSP solutions. These improvements 
help narrow the field of DA architecture as a powerful and 
viable design choice for various filter applications [18-19]. The 
DA architecture is particularly well-suited for FIR filters that are 
based on Decision Feedback Equalizers (DFEs). DFEs are used 
to mitigate ISI (Inter-Symbol Interference) in communication 
systems. The DA architecture can offer an efficient and effective 
way to implement FIR filters within DFEs, contributing to the 
overall performance and reliability of communication systems 
[20]. Hence there is a need to design a novel FIR filter for 
improving the quality of wireless communication applications. 

Kumar et al [21] developed a new architecture for a 2-D block 
FIR filter by using the DA algorithm, which was renowned 
for its effective design of the multiply and accumulate block. 
The DA-LUT has a hardware-based architecture that enables 
the 2-D FIR filter's architecture to be changed. Additionally, 
sharing occurs among DA-LUTs at different levels as a 
result of block processing. In order to simplify the hardware 
complexity of DA-LUT, a common DA-LUT was created for 
block inputs. Additionally, the systolic architectures in the 
suggested design were decreased over the designs that already 
exist thanks to memory overlapping. By separating the internal 
block into parallel and small blocks for higher-order 2-D FIR 
filters, the complexity of DA-LUT was decreased. However, 
building hardware for DSP applications was more challenging, 
and it requires specialized knowledge and resources.
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Amrita Rai [22] proposed a 4-bit FIR filter used in Digital 
Signal Processing (DSP) employing completely adiabatic 
technology (PAL) to decrease all parametric performance and 
power consumption. The designs of a completely adiabatic, 
low-power, high-speed FIR filter to that of CMOS filters were 
compared. Reversible logic was used in the design of the PAL 
FIR filter, and CADENCE digital lab was used to simulate 
and synthesise it for a variety of parameters, including 
changes in supply voltage, load capacitance, and transition 
frequency. This architecture used a logarithmic multiplier 
to lower the hardware needs and adiabatic technology to 
provide low power dissipation. However, achieving low area 
efficiency was more challenging.

Prashanth et al [23] discussed the design of the DA- FIR 
filter system construct, which was built on an architecture 
with tightly coupled co-processor-based data processing 
units. The designed DA-based FIR filter was implemented on 
field programmable gate array (FPGA) using a series of LUT 
accesses to simulate multiply and accumulate processes. 
The proposed filter was implemented using the very high-
speed integrated circuit hardware description language 
(VHDL), and the design is confirmed via simulation. In this 
study, two optimization strategies were discussed, and the 
improvements produced were applied to the LUT layer and 
architecture extractions. The suggested approach provides an 
optimized design in the form of average LUT minimizations, 
populated slice reductions, and gate minimization for 
a discrete impulse response filter. However, combining 
digital and analog components was challenging, since they 
have different design constraints, voltage levels, and noise 
considerations. Hence ensuring seamless integration between 
the two is crucial.

Maamoun et al [24] proposed an effective high-order FIR 
filter structure with simultaneous DSP and LUT decreased 
utilization for FPGA based applications. Also considered was 
the real-time update of the filter coefficients. Both the speed 
and the structure of the FPGA were effectively utilized to 
accomplish these goals. In order to achieve more computation 
sequences, the difference between the needed input sampling 
frequency and the FPGA's permitted maximum frequency 
was handled. Furthermore, the pipelining and selection of 
the input samples make full use of the unique FPGA Look-
up-table Shift-Register (LUT-SR) architecture and internal 
connections. Reconfigurable filter coefficients were handled 
by FPGA Block RAMs (BRAMs), and FPGA DSP slices 
were used to compute the output data of the BRAMs and 
multiplexers. A single unit was employed for simultaneous 
control to synchronize the LUT multiplexer selection with 
the BRAM unit addressing. However, meeting real-time 
processing requirements is more challenging.

Shrivastava et al [25] proposed an efficient architecture 
for the DA algorithm-based two-dimensional (2-D) adaptive 
FIR filter. Practically all DA-based filter topologies demand 
LUT. The structure that creates the LUT value corresponding 
to the input, based on adders and logic gates, replaces the 

RAM- or ROM-based LUT in the proposed filter architecture. 
As a result, in DA-based realization, the MAC unit needs 
fewer logic gates and adders. Additionally, the architecture's 
memory-sharing idea lessens the latency components. 
Furthermore, the parallel division of the internal MAC block 
for the DA decomposition, which provides a greater level of 
flexibility and parallelism in the proposed design, reduces the 
complexity of the LUT hardware of higher-order filters. The 
filter coefficient weights were updated using the 2-D delayed 
Least Mean Square (LMS) algorithm. However, processing 
two- dimensional signals introduces challenges related to 
data handling, such as memory organization and data flow 
management.

Lakshmaiah et al [26] proposed a modified version 
of the delayed μ-law proportionate normalised least mean 
square (DMPNLMS) method. This method is an adapted 
form of the μ-law proportionate normalised least mean square 
(MPNLMS). To minimise the silicon area, the technique was 
implemented through the use of a parallel prefix logarithmic 
adder of the Ladner-Fischer type. VLSI architecture was 
implemented and simulated using MATLAB, the Vivado suite, 
and Cadence RTL and Genus Compiler for complementary 
metal-oxide-semiconductor (CMOS) 90 nm technology 
nodes. The DMPNLMS approach showed increased stability, 
a faster rate of convergence, and a decrease in mean square 
error. However, the proposed LMS algorithm was sensitive to 
input noise and outliers and hence ensuring the filter remains 
robust in noisy environments is more complex.

Khan et al [27] designed an LMS algorithm based on 
the steepest descent technique presented with a potential 
expansion to its power-normalized LMS version and examined 
its convergence features. The design and development of non-
pipelined ADF systems was accomplished by transforming 
the coefficient update equation of the LMS algorithm via TC 
DA and OBC DA. The LUT pre-decomposition approach was 
utilised by the suggested architectures to improve throughput 
performance. It allowed the deconstructed LUTs to be updated 
concurrently using the same mapping approach. Additionally 
included was an effective fixed-point quantization model for 
assessing suggested structures from a practical standpoint. 
However, minimizing power consumption while maximizing 
throughput is a constant challenge.

Murthy et al [28] presented multiple methods for 
designing reconfigurable finite impulse response (RFIR) 
filters. Software-defined radio (SDR) applications were 
appropriate for programmable FIR filter designs based on 
DA. Reusing registers, multipliers, and adders as well as 
optimizing other factors including area, power consumption, 
speed, throughput, latency, and flip-flop and slice hardware 
utilizations were the key contributions of reconfiguration. In 
light of the aforementioned factors, the efficient design of the 
building blocks was optimized for the RFIR filter. However, 
achieving high filter performance, such as sharp roll-off and 
minimal distortion, is challenging, especially when trying to 
optimize for reconfigurability.
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Rammohan et al [29] presented the decimation filter's 
hardware implementation and architecture for use in hearing 
aids. Using Matlab Simulink, the CIC, half band filter, and 
corrector FIR filters were created and tested for real-time 
implementation. When compared to a basic decimation filter, 
the suggested decimation filter architecture uses a compressor 
adder-based DA FIR filter, which reduces the amount of 
hardware needed by 69% and reduces power consumption 
by 83%. FIR filters were used in decimation filters for audio 
applications because they make it simple to establish a linear 
phase. However, in the future, a linear phase across the entire 
band is needed.

Uma et al [30] focused on applying DA based FIR filters 
to remove baseline drift and muscle artifact noise. An area-
efficient modified DA-based FIR filter was used to filter out 
noise and has no LUTs. The modified DA-based FIR filter's 
performance was contrasted with that of the traditional DA 
FIR filter. Baseline Wander noise, Muscle Artefact noises, 
and an arbitrary real-time ECG record are all extracted from 
the MIT-BIH noise stress test database. Signal to Noise Ratio 
(SNR) and Mean Square Error (MSE) output metrics were 
used to assess both filters' performance. The redesigned DA-
based FIR filter yields good output SNR and low MSE for 
baseline wander noise reduction. However, a filter designed 
for a stationary noise model was not as effective in removing 
non-stationary noise components.

Nirmala et al [31] proposed a shared LUT updating system 
for a reconfigurable offset-binary code (OBC) DA-based 
FIR filter. With each additional filter, the LUTs in DA grow 
exponentially larger. A way to lessen this significant memory 
consumption for higher-order filters was a shared LUT-
based DA structure. The shared LUT updating method that 
was being suggested makes use of LUT partitioning, which 
divides coefficients into small length vectors and significantly 
reduces the size of LUTs. CMOS 90 nm technology was 
used to synthesize the suggested DA filter with Synapsis 
ASIC Design Compiler. When compared to prior designs, 
the suggested design delivers high speed at a smaller ADP. 
However, high-speed, low-area OBC-based decimation filters 
were quite complex to design and implement, especially when 
dealing with high-order delta-sigma modulators.

Șorecău et al [32] introduced the SDR measurement 
system for real-time spectrum monitoring. It enabled channel 
power and complementary cumulative distribution function 
measurements. It was validated against a high-performance 
spectrum analyser (SA) in a laboratory setting and successfully 
captured signals from modern communication standards. The 
results demonstrated the SDR system's capability to perform 
real-time measurements and provided valuable insights into 
signal behaviour, highlighting its potential for advanced 
spectrum analysis. However, achieving optimal performance 
across diverse conditions remains a challenge.

Radu et al [33] proposed a system for identifying the 
modulation of complex radio signals using an artificial 
intelligence model integrated with a cloud-based platform. The 

implementation controls a software-defined radio platform to 
generate and receive real modulated signals, demonstrating the 
viability of cloud computing for signal processing tasks. The 
results indicate a high degree of success in identifying certain 
modulation types, allowing users to access the system from 
anywhere with an internet connection. However, a significant 
limitation is the challenge of improving model accuracy under 
varying signal-to-noise ratios.

From the analysis, [21] building hardware for DSP applications 
was more challenging, [22] does not attain low power and 
area efficiency, [23] challenges in combining digital and 
analog components, [24] does not meet real-time processing 
requirements, [25] data handling problem obtained, [26] need 
to ensure the filter in noisy environments, [27] minimizing 
power consumption is a constant challenge, [28] does not 
achieve high filter performance, [29] linear phase over the entire 
band is required, [30] not effective in removing non-stationary 
noise components, and [31] quite complex in high-speed, low-
area OBC-based decimation filters. For [32] it is difficult to 
perform under various circumstances and [33] indicates that 
increasing model accuracy at different signal-to-noise ratios 
is a challenge. Hence, to overcome the aforementioned issues 
and to enhance the performance of DA-FIR filter, a new novel 
approach has to be proposed.

III. FIR FILTERS IN SOFTWARE DEFINED RADIO WIRELESS 
COMMUNICATION SYSTEMS

FIR filters are commonly used in wireless communication 
systems for various purposes, including signal processing 
and noise reduction. These filters are used to shape or modify 
the frequency response of signals to improve communication 
quality. In SDR systems, the Finite Impulse Response filters 
play a crucial role in the channelization process, which 
involves extracting narrowband channels from a wideband 
signal. These FIR filters must be designed to operate at high 
sampling rates and handle large-order filters to meet stringent 
adjacent channel attenuation specifications. The design of 
FIR filters for SDR applications often focuses on achieving 
a balance between reconfigurability, high-speed operation, 
and low power consumption, which are essential for next-
generation wireless communications. Advanced FIR filter 
designs utilize techniques like Distributed Arithmetic and 
Residue Number Systems (RNS) to improve performance. For 
instance, DA-based FIR filters can offer significant area delay 
and energy efficiency improvements, making them suitable for 
high-throughput implementations. Similarly, RNS-based FIR 
channel filters can be reconfigured to adapt to various channel 
filtering specifications, providing speed improvements and 
complexity reduction compared to traditional methods. These 
innovations in FIR filter design contribute to the versatility and 
efficiency of SDR systems, enabling them to support multi-
standard wireless communication protocols.
A. Problem Statement and Motivation for the Research
In a traditional FIR filter design, the filter coefficients are 
multiplied with delayed versions of the input signal, and 



Enhancing Signal Processing Efficiency in  
Software-Defined Radio Using Distributed Arithmetic  
and Look-Up Table-Based FIR Filters

DECEMBER 2024 • VOLUME XVI • NUMBER 422

INFOCOMMUNICATIONS JOURNAL

crucial for SDR systems, along with robust DSP resources 
that efficiently handle complex DA operations without 
relying on traditional multipliers, thus eliminating common 
bottlenecks. Its optimized power efficiency reduces energy 
consumption, making it ideal for energy-sensitive 
applications. Additionally, the Artix-7's high memory 
bandwidth and extensive LUT resources enhance processing 
speed and conserve resources, supporting the filter's high-
performance demands. Notably, the filter's output frequency 
response can be dynamically adjusted through a decimation 
factor, all while keeping the filter coefficients unchanged. A 
highly adaptive parallel prefix adder is used to lower the 
worst-case critical route latency of partial product 
accumulation. FIR filters reduce the amount of LUTs, 
thereby conserving memory and processing time. To boost 
performance while cutting down on processing time, this 
study also suggests limiting the number of coefficients read 
in parallel for FIR filter operations.  

In this proposed design, DA optimizes multiply-
and-accumulate (MAC) operations in the FIR filters where 
instead of directly multiplying filter coefficients with input 
samples, it precomputes partial products and stores them in 
memory (LUTs or RAMs). During filter operation, it 
efficiently combines these precomputed values to compute 
the final output thereby significantly reducing the need for 
multipliers, which are resource-intensive in FPGA 
implementations. Traditional FIR filters rely on multipliers 
and adders to compute the convolution of input samples 
with filter coefficients but the LUT-based FIR filters used in 
this proposed approach replace multipliers with 
precomputed LUT entries, which store the results of 
coefficient multiplication thereby avoiding expensive 
multiplication operations and achieving area and power 
savings. The decimation factor used in this design 
dynamically adjusts the output frequency response of the 
filter and hence, if the original filter operates at a higher 
sample rate, decimation reduces it to match the desired 
output rate. The parallel prefix adder efficiently computes 
the sum of partial products and limits the number of 
coefficients read in parallel during filter operations. By 
distributing the addition process across multiple stages, this 
PPA carefully manages the parallelism and reduces critical 
path delays thereby striking a balance between throughput 
and resource utilization and improving performance. 

The combination of these technical innovations, 
including the use of Distributed Arithmetic, dynamic 
decimation factor, parallel prefix adder, reduced LUT 
utilization, and coefficient parallelization optimization, 
collectively improve the efficiency and performance of FIR 
filters in the proposed DA-LUT-FIR approach. These 
enhancements enable more efficient and high-performance 
FIR filtering solutions, particularly for applications where 
resource constraints and real-time processing requirements 
are critical, such as in SDR systems. 

a. Block Level Diagram of the proposed FIR Filter 
Figure 1 depicts the overall block-level diagram for the 
proposed approach. The architecture of a proposed DA-
LUT-based FIR filter typically involves several key 
components and stages. The filter receives input data, which 
is the signal to be filtered and it is typically in the form of 
discrete samples. 

 
Figure 1: Proposed Block Level Diagram 

 
The FIR filter uses a set of filter coefficients (taps) that 

determine the filter's behavior. These coefficients are 
usually constants and define the filter's impulse response. 
The core of the DA-LUT-based FIR architecture is the use 
of Look-Up Tables (LUTs), which store precomputed values 
i.e., the result of multiplying each possible input value by 
each filter coefficient. The number of LUTs is typically 
minimized for efficiency. A multiplexer is used to select the 
appropriate LUT entry based on the current input data value 
and it effectively "looks up" the precomputed result for the 
current data value and coefficient. Instead of using 
traditional multipliers, the DA-LUT-based FIR filter uses 
multiplier-less multiplication.  

The selected LUT entry is treated as a partial product 
and then the accumulator sums up the partial products 
obtained from the multiplier less multiplication. This 
accumulation process continues for multiple data samples, 
producing the filtered output. The final output of the filter is 
the result of the accumulation process and it represents the 
filtered version of the input signal. Depending on the 
proposed design and application, a decimation stage is 
added to reduce the output data rate, and is often used in 
cases where the filter output does not need to retain all the 
input data points. To enhance performance and throughput, 
the architecture incorporates parallel processing, which 
involves the processing of multiple data points and 
coefficients simultaneously, further improving filter speed. 
The architecture is highly customizable, allowing for 
adjustments such as filter length, word length, and the 
number of LUT entries to be tailored to specific application 
requirements. The number of LUTs required for a DA-LUT-
FIR filter scales with the filter length, particularly if all 
coefficient multiplications are independently handled. 
Overall, the DA-LUT-based FIR architecture is designed to 
efficiently perform filtering operations by utilizing 
precomputed values stored in LUTs and minimizing the 
need for traditional multiplication hardware. This results in 
an efficient and hardware-friendly FIR filter suitable for 
SDR applications. 

C. DA-LUT-FIR filter Formulation 
Typically, DA is a well-known FIR filter method, 

which focuses especially on the computation of the sum of 
products, often known as the vector dot product that 
includes several crucial DSP filtering and frequency-shifting 
operations prompted by the possibilities of the Artix-7 
FPGA look-up table architecture. To determine the total 
number of products needed for FIR filters, DA effectively 
uses LUTs, shifters, and adders. The DA-LUT-FIR filter 
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To address the limitations of traditional multiplier-based 
FIR filters, a new innovative approach called Distributed 
Arithmetic (DA) with Look Up Table-based FIR filter  
(DA-LUT-FIR) is proposed, in which enhanced efficiency 
of FIR filters is typically achieved by optimizing the 
computational components of the filter, such as the multipliers 
and adders thereby significantly speeding up the filter's 
operation. This study utilizes an Artix-7 FPGA to implement 
and test an optimized FIR filter design. The Artix-7 FPGA 
provides high throughput and low latency, crucial for SDR 
systems, along with robust DSP resources that efficiently 
handle complex DA operations without relying on traditional 
multipliers, thus eliminating common bottlenecks. Its 
optimized power efficiency reduces energy consumption, 
making it ideal for energy-sensitive applications. Additionally, 
the Artix-7's high memory bandwidth and extensive LUT 
resources enhance processing speed and conserve resources, 
supporting the filter's high- performance demands. Notably, 
the filter's output frequency response can be dynamically 
adjusted through a decimation factor, all while keeping the 
filter coefficients unchanged. A highly adaptive parallel prefix 
adder is used to lower the worst-case critical route latency of 
partial product accumulation. FIR filters reduce the amount of 
LUTs, thereby conserving memory and processing time. To 
boost performance while cutting down on processing time, 
this study also suggests limiting the number of coefficients 
read in parallel for FIR filter operations.

In this proposed design, DA optimizes multiply-and-
accumulate (MAC) operations in the FIR filters where instead 
of directly multiplying filter coefficients with input samples, 
it precomputes partial products and stores them in memory 
(LUTs or RAMs). During filter operation, it efficiently 
combines these precomputed values to compute the final output 
thereby significantly reducing the need for multipliers, which 
are resource-intensive in FPGA implementations. Traditional 
FIR filters rely on multipliers and adders to compute the 
convolution of input samples with filter coefficients but 
the LUT-based FIR filters used in this proposed approach 

replace multipliers with precomputed LUT entries, which 
store the results of coefficient multiplication thereby avoiding 
expensive multiplication operations and achieving area and 
power savings. The decimation factor used in this design 
dynamically adjusts the output frequency response of the filter 
and hence, if the original filter operates at a higher sample 
rate, decimation reduces it to match the desired output rate. 
The parallel prefix adder efficiently computes the sum of 
partial products and limits the number of coefficients read in 
parallel during filter operations. By distributing the addition 
process across multiple stages, this PPA carefully manages the 
parallelism and reduces critical path delays thereby striking 
a balance between throughput and resource utilization and 
improving performance.

The combination of these technical innovations, including 
the use of Distributed Arithmetic, dynamic decimation factor, 
parallel prefix adder, reduced LUT utilization, and coefficient 
parallelization optimization, collectively improve the efficien-
cy and performance of FIR filters in the proposed DA-LUT-
FIR approach. These enhancements enable more efficient and 
high-performance FIR filtering solutions, particularly for ap-
plications where resource constraints and real-time processing 
requirements are critical, such as in SDR systems.
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the results are summed to produce the filtered output. This 
operation requires multipliers, delay elements, and adders. 
Multiplier-based FIR filters typically require dedicated 
hardware multipliers, which is expensive in terms of 
both space and energy consumption. This is a significant 
drawback, particularly in applications where hardware 
resources are constrained. The use of dedicated multipliers 
leads to slower calculation speeds, especially for high-
speed signal processing. Multipliers tend to be relatively 
slow compared to other operations, which limits the 
filter's performance in applications that require real-time 
processing. Due to their hardware-intensive nature and slow 
speed potential, traditional multiplier-based FIR filters suffer 
from low throughput and high latency. This is problematic in 
applications where the timely processing of signals is crucial. 
Hence, a novel FIR filter design that mitigates these issues is 
imperative for enhancing the efficiency and responsiveness 
of SDR systems.

B. Proposed Design of Novel FIR Filter for an Effective SDR 
System
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Formulation for analysis is discussed in further sections 
below. 

a. Distributed Arithmetic (DA) Computation 
When the coefficients of the FIR filter are known, 

the DA resolves the computation of the internal product, and 
the output of an FIR filter is given by the convolution sum 
in equation (1):   

𝑌𝑌[𝑛𝑛] = ∑ ℎ[𝑘𝑘]𝑥𝑥[𝑛𝑛 − 𝑘𝑘]               (1)
𝐾𝐾−1

𝑘𝑘=0
 

                                            
Where, 

 Y[n] is the output signal at time n 
 h[k] are the filter coefficients 
 x[n−k] is the input signal at time n−k 
 K is the number of filter coefficients 

(filter length) 
DA shifts the computation from the traditional 

method of directly calculating the product of the input signal 
and filter coefficients to a method that relies on bit-level 
manipulations. This is especially efficient in FPGAs where 
LUTs can store precomputed values. The step-by-step DA 
process is given in the following equations. 

Decompose the input data x[n−k] into its binary 
representation. For simplicity, each input sample is 
represented by B bits as given in equation (2): 

𝑥𝑥[𝑛𝑛 − 𝑘𝑘] = ∑𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]                    (2)
𝐵𝐵−1

𝑏𝑏=0
 

Here, xb[n−k] represents the bth bit of the 
input sample x[n−k]. 

Then precompute all possible values of the partial 
products ℎ[𝑘𝑘] ⋅ 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] for each bit position and store 
them in LUTs. This reduces the real-time computation to 
simple LUT lookups and bit-shifting operations. The 
precomputed partial products for each bit position are 
accumulated across all filter taps which is given in equation 
(3): 

𝑌𝑌 = ∑∑ℎ[𝑘𝑘]. 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]
𝐵𝐵−1

𝑏𝑏=0
. 2𝑏𝑏       (3)

𝐾𝐾−1

𝑘𝑘=0

 

This step involves shifting the precomputed values 
according to their bit positions and summing them up using 
adders. Finally, the DA-based FIR filter output is 
represented by equation (4) as given below: 

𝑌𝑌 = ∑ℎ[𝑘𝑘]. 𝑥𝑥′[𝑘𝑘]              (4)
𝐾𝐾−1

𝑘𝑘=0
 

Here, x′[k] is a function of the bit-level decomposition of 
the input data x[n−k]. 
 Moreover, in the context of FIR filters, particularly 
with the proposed DA-LUT-FIR approach, representing 
input data using a two's complement B-bit binary format is 
crucial. This representation accommodates both positive and 
negative values and provides a precision level determined 

by the number of bits B. The formulation of this 
representation is provided in the below section. 

b. Distributed Arithmetic (DA) for FIR Filters with Two's 
Complement Representation 

In the proposed DA-LUT-FIR filter, the input data x[k] 
is represented using a two's complement BBB-bit binary 
representation, allowing for an accurate representation of 
both positive and negative values. The two's complement 
representation of x[k] is crucial for handling negative 
numbers in FIR filter calculations which is given in equation 
(5); 

𝑥𝑥′[𝑘𝑘] = −2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏                    (5)
𝐵𝐵−1

𝑏𝑏=0
 

                         
Where, 𝑥𝑥𝑏𝑏[𝑘𝑘] is 𝑏𝑏𝑡𝑡ℎ bit of 𝑥𝑥[𝑘𝑘], 𝑋𝑋𝐵𝐵[𝑘𝑘] ∈ {0,1}. 

Substituting equation (5) in equation (4), 

𝑌𝑌 = ∑ ℎ[𝑘𝑘] (−2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑ 𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏𝐵𝐵−1
𝑏𝑏=0 )

𝐾𝐾−1

𝑘𝑘=0
                                     

      = −2𝐵𝐵∑ ℎ[𝑘𝑘]𝑋𝑋𝐵𝐵[𝑘𝑘] +∑ 2𝑏𝑏 ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]𝐾𝐾−1
𝑘𝑘=0

𝐵𝐵−1
𝑏𝑏=0

𝐾𝐾−1

𝑘𝑘=0
                                   

     Y = −2𝐵𝐵𝑓𝑓(ℎ[𝑘𝑘]. 𝑋𝑋𝐵𝐵[𝑘𝑘]) + ∑ 2𝑏𝑏𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘])𝐵𝐵−1
𝑏𝑏=0                                 (6)

 

The final output of the FIR filter with two’s complement 
representation is given in equation (6); Thus, from equation 
(6), the simplified input data of B-Bit binary data is given 
below in equation (7): 

𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]) = ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]            (7)
𝐾𝐾−1

𝑘𝑘=0
 

Therefore, the filter coefficient is further stored at LUT 
and it is addressed by 𝑋𝑋𝑏𝑏[𝑘𝑘]. This reduces entry and 
summation with LUT of the MAC blocks of FIR filters. The 
digital filters are made with the use of registers, memory 
resources, and a scale accumulator to perform this 
arithmetic. One of the key features of the proposed 
implementation is the use of a small number of LUTs which 
is discussed in the following section. 

c. Minimizing the LUT size 
This proposed approach suggests that the design 

optimizes the LUTs' usage, potentially by reusing or sharing 
LUT resources for multiple coefficients to minimize the 
LUT size while maintaining accuracy. Reducing the number 
of LUTs leads to savings of hardware resources and power 
consumption. To execute FIR filter operations efficiently, 
the proposed approach allows parallel access to multiple 
coefficients in LUTs. This means that multiple coefficients 
are accessed simultaneously to perform filter calculations. 
Parallelism in coefficient access leads to a significant 
reduction in the processing delay and also enhances the 
filter's throughput, making it suitable for real-time 
applications. By minimizing the number of LUTs and 
enabling parallel access to coefficients, the filter processes 
the data with lower latency, which is essential for real-time 
processing.  

d. Decimation and Parallel Prefix Adder 
Additionally, the frequency response of the filter output 

is dynamically altered using the decimation factor. 
Decimation is a process in DSP where the sampling rate of a 
signal is reduced. By changing the decimation factor, the 
effective bandwidth and characteristics of the filter output 
are adjusted without modifying the filter coefficients. It's 

crucial for SDR systems, along with robust DSP resources 
that efficiently handle complex DA operations without 
relying on traditional multipliers, thus eliminating common 
bottlenecks. Its optimized power efficiency reduces energy 
consumption, making it ideal for energy-sensitive 
applications. Additionally, the Artix-7's high memory 
bandwidth and extensive LUT resources enhance processing 
speed and conserve resources, supporting the filter's high-
performance demands. Notably, the filter's output frequency 
response can be dynamically adjusted through a decimation 
factor, all while keeping the filter coefficients unchanged. A 
highly adaptive parallel prefix adder is used to lower the 
worst-case critical route latency of partial product 
accumulation. FIR filters reduce the amount of LUTs, 
thereby conserving memory and processing time. To boost 
performance while cutting down on processing time, this 
study also suggests limiting the number of coefficients read 
in parallel for FIR filter operations.  

In this proposed design, DA optimizes multiply-
and-accumulate (MAC) operations in the FIR filters where 
instead of directly multiplying filter coefficients with input 
samples, it precomputes partial products and stores them in 
memory (LUTs or RAMs). During filter operation, it 
efficiently combines these precomputed values to compute 
the final output thereby significantly reducing the need for 
multipliers, which are resource-intensive in FPGA 
implementations. Traditional FIR filters rely on multipliers 
and adders to compute the convolution of input samples 
with filter coefficients but the LUT-based FIR filters used in 
this proposed approach replace multipliers with 
precomputed LUT entries, which store the results of 
coefficient multiplication thereby avoiding expensive 
multiplication operations and achieving area and power 
savings. The decimation factor used in this design 
dynamically adjusts the output frequency response of the 
filter and hence, if the original filter operates at a higher 
sample rate, decimation reduces it to match the desired 
output rate. The parallel prefix adder efficiently computes 
the sum of partial products and limits the number of 
coefficients read in parallel during filter operations. By 
distributing the addition process across multiple stages, this 
PPA carefully manages the parallelism and reduces critical 
path delays thereby striking a balance between throughput 
and resource utilization and improving performance. 

The combination of these technical innovations, 
including the use of Distributed Arithmetic, dynamic 
decimation factor, parallel prefix adder, reduced LUT 
utilization, and coefficient parallelization optimization, 
collectively improve the efficiency and performance of FIR 
filters in the proposed DA-LUT-FIR approach. These 
enhancements enable more efficient and high-performance 
FIR filtering solutions, particularly for applications where 
resource constraints and real-time processing requirements 
are critical, such as in SDR systems. 

a. Block Level Diagram of the proposed FIR Filter 
Figure 1 depicts the overall block-level diagram for the 
proposed approach. The architecture of a proposed DA-
LUT-based FIR filter typically involves several key 
components and stages. The filter receives input data, which 
is the signal to be filtered and it is typically in the form of 
discrete samples. 

 
Figure 1: Proposed Block Level Diagram 

 
The FIR filter uses a set of filter coefficients (taps) that 

determine the filter's behavior. These coefficients are 
usually constants and define the filter's impulse response. 
The core of the DA-LUT-based FIR architecture is the use 
of Look-Up Tables (LUTs), which store precomputed values 
i.e., the result of multiplying each possible input value by 
each filter coefficient. The number of LUTs is typically 
minimized for efficiency. A multiplexer is used to select the 
appropriate LUT entry based on the current input data value 
and it effectively "looks up" the precomputed result for the 
current data value and coefficient. Instead of using 
traditional multipliers, the DA-LUT-based FIR filter uses 
multiplier-less multiplication.  

The selected LUT entry is treated as a partial product 
and then the accumulator sums up the partial products 
obtained from the multiplier less multiplication. This 
accumulation process continues for multiple data samples, 
producing the filtered output. The final output of the filter is 
the result of the accumulation process and it represents the 
filtered version of the input signal. Depending on the 
proposed design and application, a decimation stage is 
added to reduce the output data rate, and is often used in 
cases where the filter output does not need to retain all the 
input data points. To enhance performance and throughput, 
the architecture incorporates parallel processing, which 
involves the processing of multiple data points and 
coefficients simultaneously, further improving filter speed. 
The architecture is highly customizable, allowing for 
adjustments such as filter length, word length, and the 
number of LUT entries to be tailored to specific application 
requirements. The number of LUTs required for a DA-LUT-
FIR filter scales with the filter length, particularly if all 
coefficient multiplications are independently handled. 
Overall, the DA-LUT-based FIR architecture is designed to 
efficiently perform filtering operations by utilizing 
precomputed values stored in LUTs and minimizing the 
need for traditional multiplication hardware. This results in 
an efficient and hardware-friendly FIR filter suitable for 
SDR applications. 

C. DA-LUT-FIR filter Formulation 
Typically, DA is a well-known FIR filter method, 

which focuses especially on the computation of the sum of 
products, often known as the vector dot product that 
includes several crucial DSP filtering and frequency-shifting 
operations prompted by the possibilities of the Artix-7 
FPGA look-up table architecture. To determine the total 
number of products needed for FIR filters, DA effectively 
uses LUTs, shifters, and adders. The DA-LUT-FIR filter 

 

The architecture is highly customizable, allowing for 
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The number of LUTs required for a DA-LUT- FIR filter 
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C. DA-LUT-FIR filter Formulation

Typically, DA is a well-known FIR filter method, which 
focuses especially on the computation of the sum of products, 
often known as the vector dot product that includes several 
crucial DSP filtering and frequency-shifting operations 
prompted by the possibilities of the Artix-7 FPGA look-up 
table architecture. To determine the total number of products 
needed for FIR filters, DA effectively uses LUTs, shifters, and 
adders. The DA-LUT-FIR filter Formulation for analysis is 
discussed in further sections below.

a. Distributed Arithmetic (DA) Computation
When the coefficients of the FIR filter are known, the 

DA resolves the computation of the internal product, and the 
output of an FIR filter is given by the convolution sum in 
equation (1):

Formulation for analysis is discussed in further sections 
below. 

a. Distributed Arithmetic (DA) Computation 
When the coefficients of the FIR filter are known, 

the DA resolves the computation of the internal product, and 
the output of an FIR filter is given by the convolution sum 
in equation (1):   

𝑌𝑌[𝑛𝑛] = ∑ ℎ[𝑘𝑘]𝑥𝑥[𝑛𝑛 − 𝑘𝑘]               (1)
𝐾𝐾−1

𝑘𝑘=0
 

                                            
Where, 

 Y[n] is the output signal at time n 
 h[k] are the filter coefficients 
 x[n−k] is the input signal at time n−k 
 K is the number of filter coefficients 

(filter length) 
DA shifts the computation from the traditional 

method of directly calculating the product of the input signal 
and filter coefficients to a method that relies on bit-level 
manipulations. This is especially efficient in FPGAs where 
LUTs can store precomputed values. The step-by-step DA 
process is given in the following equations. 

Decompose the input data x[n−k] into its binary 
representation. For simplicity, each input sample is 
represented by B bits as given in equation (2): 

𝑥𝑥[𝑛𝑛 − 𝑘𝑘] = ∑𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]                    (2)
𝐵𝐵−1

𝑏𝑏=0
 

Here, xb[n−k] represents the bth bit of the 
input sample x[n−k]. 

Then precompute all possible values of the partial 
products ℎ[𝑘𝑘] ⋅ 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] for each bit position and store 
them in LUTs. This reduces the real-time computation to 
simple LUT lookups and bit-shifting operations. The 
precomputed partial products for each bit position are 
accumulated across all filter taps which is given in equation 
(3): 

𝑌𝑌 = ∑∑ℎ[𝑘𝑘]. 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]
𝐵𝐵−1

𝑏𝑏=0
. 2𝑏𝑏       (3)

𝐾𝐾−1

𝑘𝑘=0

 

This step involves shifting the precomputed values 
according to their bit positions and summing them up using 
adders. Finally, the DA-based FIR filter output is 
represented by equation (4) as given below: 

𝑌𝑌 = ∑ℎ[𝑘𝑘]. 𝑥𝑥′[𝑘𝑘]              (4)
𝐾𝐾−1

𝑘𝑘=0
 

Here, x′[k] is a function of the bit-level decomposition of 
the input data x[n−k]. 
 Moreover, in the context of FIR filters, particularly 
with the proposed DA-LUT-FIR approach, representing 
input data using a two's complement B-bit binary format is 
crucial. This representation accommodates both positive and 
negative values and provides a precision level determined 

by the number of bits B. The formulation of this 
representation is provided in the below section. 

b. Distributed Arithmetic (DA) for FIR Filters with Two's 
Complement Representation 

In the proposed DA-LUT-FIR filter, the input data x[k] 
is represented using a two's complement BBB-bit binary 
representation, allowing for an accurate representation of 
both positive and negative values. The two's complement 
representation of x[k] is crucial for handling negative 
numbers in FIR filter calculations which is given in equation 
(5); 

𝑥𝑥′[𝑘𝑘] = −2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏                    (5)
𝐵𝐵−1

𝑏𝑏=0
 

                         
Where, 𝑥𝑥𝑏𝑏[𝑘𝑘] is 𝑏𝑏𝑡𝑡ℎ bit of 𝑥𝑥[𝑘𝑘], 𝑋𝑋𝐵𝐵[𝑘𝑘] ∈ {0,1}. 

Substituting equation (5) in equation (4), 

𝑌𝑌 = ∑ ℎ[𝑘𝑘] (−2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑ 𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏𝐵𝐵−1
𝑏𝑏=0 )

𝐾𝐾−1

𝑘𝑘=0
                                     

      = −2𝐵𝐵∑ ℎ[𝑘𝑘]𝑋𝑋𝐵𝐵[𝑘𝑘] +∑ 2𝑏𝑏 ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]𝐾𝐾−1
𝑘𝑘=0

𝐵𝐵−1
𝑏𝑏=0

𝐾𝐾−1

𝑘𝑘=0
                                   

     Y = −2𝐵𝐵𝑓𝑓(ℎ[𝑘𝑘]. 𝑋𝑋𝐵𝐵[𝑘𝑘]) + ∑ 2𝑏𝑏𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘])𝐵𝐵−1
𝑏𝑏=0                                 (6)

 

The final output of the FIR filter with two’s complement 
representation is given in equation (6); Thus, from equation 
(6), the simplified input data of B-Bit binary data is given 
below in equation (7): 

𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]) = ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]            (7)
𝐾𝐾−1

𝑘𝑘=0
 

Therefore, the filter coefficient is further stored at LUT 
and it is addressed by 𝑋𝑋𝑏𝑏[𝑘𝑘]. This reduces entry and 
summation with LUT of the MAC blocks of FIR filters. The 
digital filters are made with the use of registers, memory 
resources, and a scale accumulator to perform this 
arithmetic. One of the key features of the proposed 
implementation is the use of a small number of LUTs which 
is discussed in the following section. 

c. Minimizing the LUT size 
This proposed approach suggests that the design 

optimizes the LUTs' usage, potentially by reusing or sharing 
LUT resources for multiple coefficients to minimize the 
LUT size while maintaining accuracy. Reducing the number 
of LUTs leads to savings of hardware resources and power 
consumption. To execute FIR filter operations efficiently, 
the proposed approach allows parallel access to multiple 
coefficients in LUTs. This means that multiple coefficients 
are accessed simultaneously to perform filter calculations. 
Parallelism in coefficient access leads to a significant 
reduction in the processing delay and also enhances the 
filter's throughput, making it suitable for real-time 
applications. By minimizing the number of LUTs and 
enabling parallel access to coefficients, the filter processes 
the data with lower latency, which is essential for real-time 
processing.  

d. Decimation and Parallel Prefix Adder 
Additionally, the frequency response of the filter output 

is dynamically altered using the decimation factor. 
Decimation is a process in DSP where the sampling rate of a 
signal is reduced. By changing the decimation factor, the 
effective bandwidth and characteristics of the filter output 
are adjusted without modifying the filter coefficients. It's 

Formulation for analysis is discussed in further sections 
below. 

a. Distributed Arithmetic (DA) Computation 
When the coefficients of the FIR filter are known, 

the DA resolves the computation of the internal product, and 
the output of an FIR filter is given by the convolution sum 
in equation (1):   

𝑌𝑌[𝑛𝑛] = ∑ ℎ[𝑘𝑘]𝑥𝑥[𝑛𝑛 − 𝑘𝑘]               (1)
𝐾𝐾−1

𝑘𝑘=0
 

                                            
Where, 

 Y[n] is the output signal at time n 
 h[k] are the filter coefficients 
 x[n−k] is the input signal at time n−k 
 K is the number of filter coefficients 

(filter length) 
DA shifts the computation from the traditional 

method of directly calculating the product of the input signal 
and filter coefficients to a method that relies on bit-level 
manipulations. This is especially efficient in FPGAs where 
LUTs can store precomputed values. The step-by-step DA 
process is given in the following equations. 

Decompose the input data x[n−k] into its binary 
representation. For simplicity, each input sample is 
represented by B bits as given in equation (2): 

𝑥𝑥[𝑛𝑛 − 𝑘𝑘] = ∑𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]                    (2)
𝐵𝐵−1

𝑏𝑏=0
 

Here, xb[n−k] represents the bth bit of the 
input sample x[n−k]. 

Then precompute all possible values of the partial 
products ℎ[𝑘𝑘] ⋅ 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] for each bit position and store 
them in LUTs. This reduces the real-time computation to 
simple LUT lookups and bit-shifting operations. The 
precomputed partial products for each bit position are 
accumulated across all filter taps which is given in equation 
(3): 

𝑌𝑌 = ∑∑ℎ[𝑘𝑘]. 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]
𝐵𝐵−1

𝑏𝑏=0
. 2𝑏𝑏       (3)

𝐾𝐾−1

𝑘𝑘=0

 

This step involves shifting the precomputed values 
according to their bit positions and summing them up using 
adders. Finally, the DA-based FIR filter output is 
represented by equation (4) as given below: 

𝑌𝑌 = ∑ℎ[𝑘𝑘]. 𝑥𝑥′[𝑘𝑘]              (4)
𝐾𝐾−1

𝑘𝑘=0
 

Here, x′[k] is a function of the bit-level decomposition of 
the input data x[n−k]. 
 Moreover, in the context of FIR filters, particularly 
with the proposed DA-LUT-FIR approach, representing 
input data using a two's complement B-bit binary format is 
crucial. This representation accommodates both positive and 
negative values and provides a precision level determined 

by the number of bits B. The formulation of this 
representation is provided in the below section. 

b. Distributed Arithmetic (DA) for FIR Filters with Two's 
Complement Representation 

In the proposed DA-LUT-FIR filter, the input data x[k] 
is represented using a two's complement BBB-bit binary 
representation, allowing for an accurate representation of 
both positive and negative values. The two's complement 
representation of x[k] is crucial for handling negative 
numbers in FIR filter calculations which is given in equation 
(5); 

𝑥𝑥′[𝑘𝑘] = −2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏                    (5)
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Where, 𝑥𝑥𝑏𝑏[𝑘𝑘] is 𝑏𝑏𝑡𝑡ℎ bit of 𝑥𝑥[𝑘𝑘], 𝑋𝑋𝐵𝐵[𝑘𝑘] ∈ {0,1}. 

Substituting equation (5) in equation (4), 
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The final output of the FIR filter with two’s complement 
representation is given in equation (6); Thus, from equation 
(6), the simplified input data of B-Bit binary data is given 
below in equation (7): 

𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]) = ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]            (7)
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Therefore, the filter coefficient is further stored at LUT 
and it is addressed by 𝑋𝑋𝑏𝑏[𝑘𝑘]. This reduces entry and 
summation with LUT of the MAC blocks of FIR filters. The 
digital filters are made with the use of registers, memory 
resources, and a scale accumulator to perform this 
arithmetic. One of the key features of the proposed 
implementation is the use of a small number of LUTs which 
is discussed in the following section. 

c. Minimizing the LUT size 
This proposed approach suggests that the design 

optimizes the LUTs' usage, potentially by reusing or sharing 
LUT resources for multiple coefficients to minimize the 
LUT size while maintaining accuracy. Reducing the number 
of LUTs leads to savings of hardware resources and power 
consumption. To execute FIR filter operations efficiently, 
the proposed approach allows parallel access to multiple 
coefficients in LUTs. This means that multiple coefficients 
are accessed simultaneously to perform filter calculations. 
Parallelism in coefficient access leads to a significant 
reduction in the processing delay and also enhances the 
filter's throughput, making it suitable for real-time 
applications. By minimizing the number of LUTs and 
enabling parallel access to coefficients, the filter processes 
the data with lower latency, which is essential for real-time 
processing.  

d. Decimation and Parallel Prefix Adder 
Additionally, the frequency response of the filter output 

is dynamically altered using the decimation factor. 
Decimation is a process in DSP where the sampling rate of a 
signal is reduced. By changing the decimation factor, the 
effective bandwidth and characteristics of the filter output 
are adjusted without modifying the filter coefficients. It's 

Formulation for analysis is discussed in further sections 
below. 

a. Distributed Arithmetic (DA) Computation 
When the coefficients of the FIR filter are known, 

the DA resolves the computation of the internal product, and 
the output of an FIR filter is given by the convolution sum 
in equation (1):   

𝑌𝑌[𝑛𝑛] = ∑ ℎ[𝑘𝑘]𝑥𝑥[𝑛𝑛 − 𝑘𝑘]               (1)
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Where, 

 Y[n] is the output signal at time n 
 h[k] are the filter coefficients 
 x[n−k] is the input signal at time n−k 
 K is the number of filter coefficients 

(filter length) 
DA shifts the computation from the traditional 

method of directly calculating the product of the input signal 
and filter coefficients to a method that relies on bit-level 
manipulations. This is especially efficient in FPGAs where 
LUTs can store precomputed values. The step-by-step DA 
process is given in the following equations. 

Decompose the input data x[n−k] into its binary 
representation. For simplicity, each input sample is 
represented by B bits as given in equation (2): 

𝑥𝑥[𝑛𝑛 − 𝑘𝑘] = ∑𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]                    (2)
𝐵𝐵−1

𝑏𝑏=0
 

Here, xb[n−k] represents the bth bit of the 
input sample x[n−k]. 

Then precompute all possible values of the partial 
products ℎ[𝑘𝑘] ⋅ 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] for each bit position and store 
them in LUTs. This reduces the real-time computation to 
simple LUT lookups and bit-shifting operations. The 
precomputed partial products for each bit position are 
accumulated across all filter taps which is given in equation 
(3): 

𝑌𝑌 = ∑∑ℎ[𝑘𝑘]. 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]
𝐵𝐵−1

𝑏𝑏=0
. 2𝑏𝑏       (3)
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𝑘𝑘=0

 

This step involves shifting the precomputed values 
according to their bit positions and summing them up using 
adders. Finally, the DA-based FIR filter output is 
represented by equation (4) as given below: 

𝑌𝑌 = ∑ℎ[𝑘𝑘]. 𝑥𝑥′[𝑘𝑘]              (4)
𝐾𝐾−1

𝑘𝑘=0
 

Here, x′[k] is a function of the bit-level decomposition of 
the input data x[n−k]. 
 Moreover, in the context of FIR filters, particularly 
with the proposed DA-LUT-FIR approach, representing 
input data using a two's complement B-bit binary format is 
crucial. This representation accommodates both positive and 
negative values and provides a precision level determined 

by the number of bits B. The formulation of this 
representation is provided in the below section. 

b. Distributed Arithmetic (DA) for FIR Filters with Two's 
Complement Representation 

In the proposed DA-LUT-FIR filter, the input data x[k] 
is represented using a two's complement BBB-bit binary 
representation, allowing for an accurate representation of 
both positive and negative values. The two's complement 
representation of x[k] is crucial for handling negative 
numbers in FIR filter calculations which is given in equation 
(5); 

𝑥𝑥′[𝑘𝑘] = −2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏                    (5)
𝐵𝐵−1

𝑏𝑏=0
 

                         
Where, 𝑥𝑥𝑏𝑏[𝑘𝑘] is 𝑏𝑏𝑡𝑡ℎ bit of 𝑥𝑥[𝑘𝑘], 𝑋𝑋𝐵𝐵[𝑘𝑘] ∈ {0,1}. 

Substituting equation (5) in equation (4), 

𝑌𝑌 = ∑ ℎ[𝑘𝑘] (−2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑ 𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏𝐵𝐵−1
𝑏𝑏=0 )

𝐾𝐾−1

𝑘𝑘=0
                                     

      = −2𝐵𝐵∑ ℎ[𝑘𝑘]𝑋𝑋𝐵𝐵[𝑘𝑘] +∑ 2𝑏𝑏 ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]𝐾𝐾−1
𝑘𝑘=0

𝐵𝐵−1
𝑏𝑏=0

𝐾𝐾−1

𝑘𝑘=0
                                   

     Y = −2𝐵𝐵𝑓𝑓(ℎ[𝑘𝑘]. 𝑋𝑋𝐵𝐵[𝑘𝑘]) + ∑ 2𝑏𝑏𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘])𝐵𝐵−1
𝑏𝑏=0                                 (6)

 

The final output of the FIR filter with two’s complement 
representation is given in equation (6); Thus, from equation 
(6), the simplified input data of B-Bit binary data is given 
below in equation (7): 

𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]) = ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]            (7)
𝐾𝐾−1

𝑘𝑘=0
 

Therefore, the filter coefficient is further stored at LUT 
and it is addressed by 𝑋𝑋𝑏𝑏[𝑘𝑘]. This reduces entry and 
summation with LUT of the MAC blocks of FIR filters. The 
digital filters are made with the use of registers, memory 
resources, and a scale accumulator to perform this 
arithmetic. One of the key features of the proposed 
implementation is the use of a small number of LUTs which 
is discussed in the following section. 

c. Minimizing the LUT size 
This proposed approach suggests that the design 

optimizes the LUTs' usage, potentially by reusing or sharing 
LUT resources for multiple coefficients to minimize the 
LUT size while maintaining accuracy. Reducing the number 
of LUTs leads to savings of hardware resources and power 
consumption. To execute FIR filter operations efficiently, 
the proposed approach allows parallel access to multiple 
coefficients in LUTs. This means that multiple coefficients 
are accessed simultaneously to perform filter calculations. 
Parallelism in coefficient access leads to a significant 
reduction in the processing delay and also enhances the 
filter's throughput, making it suitable for real-time 
applications. By minimizing the number of LUTs and 
enabling parallel access to coefficients, the filter processes 
the data with lower latency, which is essential for real-time 
processing.  

d. Decimation and Parallel Prefix Adder 
Additionally, the frequency response of the filter output 

is dynamically altered using the decimation factor. 
Decimation is a process in DSP where the sampling rate of a 
signal is reduced. By changing the decimation factor, the 
effective bandwidth and characteristics of the filter output 
are adjusted without modifying the filter coefficients. It's 

DA shifts the computation from the traditional method of 
directly calculating the product of the input signal and filter 
coefficients to a method that relies on bit-level manipulations. 
This is especially efficient in FPGAs where LUTs can store 
precomputed values. The step-by-step DA process is given in 
the following equations.

Decompose the input data x[n−k] into its binary repre-
sentation. For simplicity, each input sample is represented 
by B bits as given in equation (2):

Then precompute all possible values of the partial products 
h[k] · xb [n − k] for each bit position and store them in LUTs. 
This reduces the real-time computation to simple LUT lookups 
and bit-shifting operations. The precomputed partial products 
for each bit position are accumulated across all filter taps 
which is given in equation (3):

This step involves shifting the precomputed values 
according to their bit positions and summing them up using 
adders. Finally, the DA-based FIR filter output is represented 
by equation (4) as given below:

Here, x'[k] is a function of the bit-level decomposition of 
the input data x[n−k].

Moreover, in the context of FIR filters, particularly with 
the proposed DA-LUT-FIR approach, representing input data 
using a two's complement B-bit binary format is crucial. This 
representation accommodates both positive and negative 
values and provides a precision level determined by the 
number of bits B. The formulation of this representation is 
provided in the below section.

b. Distributed Arithmetic (DA) for FIR Filters with Two's 
Complement Representation

In the proposed DA-LUT-FIR filter, the input data x[k] 
is represented using a two's complement BBB-bit binary 
representation, allowing for an accurate representation of 
both positive and negative values. The two's complement 
representation of x[k] is crucial for handling negative numbers 
in FIR filter calculations which is given in equation (5);

Formulation for analysis is discussed in further sections 
below. 

a. Distributed Arithmetic (DA) Computation 
When the coefficients of the FIR filter are known, 

the DA resolves the computation of the internal product, and 
the output of an FIR filter is given by the convolution sum 
in equation (1):   

𝑌𝑌[𝑛𝑛] = ∑ ℎ[𝑘𝑘]𝑥𝑥[𝑛𝑛 − 𝑘𝑘]               (1)
𝐾𝐾−1

𝑘𝑘=0
 

                                            
Where, 

 Y[n] is the output signal at time n 
 h[k] are the filter coefficients 
 x[n−k] is the input signal at time n−k 
 K is the number of filter coefficients 

(filter length) 
DA shifts the computation from the traditional 

method of directly calculating the product of the input signal 
and filter coefficients to a method that relies on bit-level 
manipulations. This is especially efficient in FPGAs where 
LUTs can store precomputed values. The step-by-step DA 
process is given in the following equations. 

Decompose the input data x[n−k] into its binary 
representation. For simplicity, each input sample is 
represented by B bits as given in equation (2): 

𝑥𝑥[𝑛𝑛 − 𝑘𝑘] = ∑𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]                    (2)
𝐵𝐵−1

𝑏𝑏=0
 

Here, xb[n−k] represents the bth bit of the 
input sample x[n−k]. 

Then precompute all possible values of the partial 
products ℎ[𝑘𝑘] ⋅ 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] for each bit position and store 
them in LUTs. This reduces the real-time computation to 
simple LUT lookups and bit-shifting operations. The 
precomputed partial products for each bit position are 
accumulated across all filter taps which is given in equation 
(3): 

𝑌𝑌 = ∑∑ℎ[𝑘𝑘]. 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]
𝐵𝐵−1

𝑏𝑏=0
. 2𝑏𝑏       (3)

𝐾𝐾−1

𝑘𝑘=0

 

This step involves shifting the precomputed values 
according to their bit positions and summing them up using 
adders. Finally, the DA-based FIR filter output is 
represented by equation (4) as given below: 

𝑌𝑌 = ∑ℎ[𝑘𝑘]. 𝑥𝑥′[𝑘𝑘]              (4)
𝐾𝐾−1

𝑘𝑘=0
 

Here, x′[k] is a function of the bit-level decomposition of 
the input data x[n−k]. 
 Moreover, in the context of FIR filters, particularly 
with the proposed DA-LUT-FIR approach, representing 
input data using a two's complement B-bit binary format is 
crucial. This representation accommodates both positive and 
negative values and provides a precision level determined 

by the number of bits B. The formulation of this 
representation is provided in the below section. 

b. Distributed Arithmetic (DA) for FIR Filters with Two's 
Complement Representation 

In the proposed DA-LUT-FIR filter, the input data x[k] 
is represented using a two's complement BBB-bit binary 
representation, allowing for an accurate representation of 
both positive and negative values. The two's complement 
representation of x[k] is crucial for handling negative 
numbers in FIR filter calculations which is given in equation 
(5); 

𝑥𝑥′[𝑘𝑘] = −2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏                    (5)
𝐵𝐵−1

𝑏𝑏=0
 

                         
Where, 𝑥𝑥𝑏𝑏[𝑘𝑘] is 𝑏𝑏𝑡𝑡ℎ bit of 𝑥𝑥[𝑘𝑘], 𝑋𝑋𝐵𝐵[𝑘𝑘] ∈ {0,1}. 

Substituting equation (5) in equation (4), 

𝑌𝑌 = ∑ ℎ[𝑘𝑘] (−2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑ 𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏𝐵𝐵−1
𝑏𝑏=0 )

𝐾𝐾−1

𝑘𝑘=0
                                     

      = −2𝐵𝐵∑ ℎ[𝑘𝑘]𝑋𝑋𝐵𝐵[𝑘𝑘] +∑ 2𝑏𝑏 ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]𝐾𝐾−1
𝑘𝑘=0

𝐵𝐵−1
𝑏𝑏=0

𝐾𝐾−1

𝑘𝑘=0
                                   

     Y = −2𝐵𝐵𝑓𝑓(ℎ[𝑘𝑘]. 𝑋𝑋𝐵𝐵[𝑘𝑘]) + ∑ 2𝑏𝑏𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘])𝐵𝐵−1
𝑏𝑏=0                                 (6)

 

The final output of the FIR filter with two’s complement 
representation is given in equation (6); Thus, from equation 
(6), the simplified input data of B-Bit binary data is given 
below in equation (7): 

𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]) = ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]            (7)
𝐾𝐾−1

𝑘𝑘=0
 

Therefore, the filter coefficient is further stored at LUT 
and it is addressed by 𝑋𝑋𝑏𝑏[𝑘𝑘]. This reduces entry and 
summation with LUT of the MAC blocks of FIR filters. The 
digital filters are made with the use of registers, memory 
resources, and a scale accumulator to perform this 
arithmetic. One of the key features of the proposed 
implementation is the use of a small number of LUTs which 
is discussed in the following section. 

c. Minimizing the LUT size 
This proposed approach suggests that the design 

optimizes the LUTs' usage, potentially by reusing or sharing 
LUT resources for multiple coefficients to minimize the 
LUT size while maintaining accuracy. Reducing the number 
of LUTs leads to savings of hardware resources and power 
consumption. To execute FIR filter operations efficiently, 
the proposed approach allows parallel access to multiple 
coefficients in LUTs. This means that multiple coefficients 
are accessed simultaneously to perform filter calculations. 
Parallelism in coefficient access leads to a significant 
reduction in the processing delay and also enhances the 
filter's throughput, making it suitable for real-time 
applications. By minimizing the number of LUTs and 
enabling parallel access to coefficients, the filter processes 
the data with lower latency, which is essential for real-time 
processing.  

d. Decimation and Parallel Prefix Adder 
Additionally, the frequency response of the filter output 

is dynamically altered using the decimation factor. 
Decimation is a process in DSP where the sampling rate of a 
signal is reduced. By changing the decimation factor, the 
effective bandwidth and characteristics of the filter output 
are adjusted without modifying the filter coefficients. It's Formulation for analysis is discussed in further sections 

below. 

a. Distributed Arithmetic (DA) Computation 
When the coefficients of the FIR filter are known, 

the DA resolves the computation of the internal product, and 
the output of an FIR filter is given by the convolution sum 
in equation (1):   

𝑌𝑌[𝑛𝑛] = ∑ ℎ[𝑘𝑘]𝑥𝑥[𝑛𝑛 − 𝑘𝑘]               (1)
𝐾𝐾−1

𝑘𝑘=0
 

                                            
Where, 

 Y[n] is the output signal at time n 
 h[k] are the filter coefficients 
 x[n−k] is the input signal at time n−k 
 K is the number of filter coefficients 

(filter length) 
DA shifts the computation from the traditional 

method of directly calculating the product of the input signal 
and filter coefficients to a method that relies on bit-level 
manipulations. This is especially efficient in FPGAs where 
LUTs can store precomputed values. The step-by-step DA 
process is given in the following equations. 

Decompose the input data x[n−k] into its binary 
representation. For simplicity, each input sample is 
represented by B bits as given in equation (2): 

𝑥𝑥[𝑛𝑛 − 𝑘𝑘] = ∑𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]                    (2)
𝐵𝐵−1

𝑏𝑏=0
 

Here, xb[n−k] represents the bth bit of the 
input sample x[n−k]. 

Then precompute all possible values of the partial 
products ℎ[𝑘𝑘] ⋅ 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] for each bit position and store 
them in LUTs. This reduces the real-time computation to 
simple LUT lookups and bit-shifting operations. The 
precomputed partial products for each bit position are 
accumulated across all filter taps which is given in equation 
(3): 

𝑌𝑌 = ∑∑ℎ[𝑘𝑘]. 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]
𝐵𝐵−1

𝑏𝑏=0
. 2𝑏𝑏       (3)

𝐾𝐾−1

𝑘𝑘=0

 

This step involves shifting the precomputed values 
according to their bit positions and summing them up using 
adders. Finally, the DA-based FIR filter output is 
represented by equation (4) as given below: 

𝑌𝑌 = ∑ℎ[𝑘𝑘]. 𝑥𝑥′[𝑘𝑘]              (4)
𝐾𝐾−1

𝑘𝑘=0
 

Here, x′[k] is a function of the bit-level decomposition of 
the input data x[n−k]. 
 Moreover, in the context of FIR filters, particularly 
with the proposed DA-LUT-FIR approach, representing 
input data using a two's complement B-bit binary format is 
crucial. This representation accommodates both positive and 
negative values and provides a precision level determined 

by the number of bits B. The formulation of this 
representation is provided in the below section. 

b. Distributed Arithmetic (DA) for FIR Filters with Two's 
Complement Representation 

In the proposed DA-LUT-FIR filter, the input data x[k] 
is represented using a two's complement BBB-bit binary 
representation, allowing for an accurate representation of 
both positive and negative values. The two's complement 
representation of x[k] is crucial for handling negative 
numbers in FIR filter calculations which is given in equation 
(5); 

𝑥𝑥′[𝑘𝑘] = −2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏                    (5)
𝐵𝐵−1

𝑏𝑏=0
 

                         
Where, 𝑥𝑥𝑏𝑏[𝑘𝑘] is 𝑏𝑏𝑡𝑡ℎ bit of 𝑥𝑥[𝑘𝑘], 𝑋𝑋𝐵𝐵[𝑘𝑘] ∈ {0,1}. 

Substituting equation (5) in equation (4), 

𝑌𝑌 = ∑ ℎ[𝑘𝑘] (−2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑ 𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏𝐵𝐵−1
𝑏𝑏=0 )

𝐾𝐾−1

𝑘𝑘=0
                                     

      = −2𝐵𝐵∑ ℎ[𝑘𝑘]𝑋𝑋𝐵𝐵[𝑘𝑘] +∑ 2𝑏𝑏 ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]𝐾𝐾−1
𝑘𝑘=0

𝐵𝐵−1
𝑏𝑏=0

𝐾𝐾−1

𝑘𝑘=0
                                   

     Y = −2𝐵𝐵𝑓𝑓(ℎ[𝑘𝑘]. 𝑋𝑋𝐵𝐵[𝑘𝑘]) + ∑ 2𝑏𝑏𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘])𝐵𝐵−1
𝑏𝑏=0                                 (6)

 

The final output of the FIR filter with two’s complement 
representation is given in equation (6); Thus, from equation 
(6), the simplified input data of B-Bit binary data is given 
below in equation (7): 

𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]) = ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]            (7)
𝐾𝐾−1

𝑘𝑘=0
 

Therefore, the filter coefficient is further stored at LUT 
and it is addressed by 𝑋𝑋𝑏𝑏[𝑘𝑘]. This reduces entry and 
summation with LUT of the MAC blocks of FIR filters. The 
digital filters are made with the use of registers, memory 
resources, and a scale accumulator to perform this 
arithmetic. One of the key features of the proposed 
implementation is the use of a small number of LUTs which 
is discussed in the following section. 

c. Minimizing the LUT size 
This proposed approach suggests that the design 

optimizes the LUTs' usage, potentially by reusing or sharing 
LUT resources for multiple coefficients to minimize the 
LUT size while maintaining accuracy. Reducing the number 
of LUTs leads to savings of hardware resources and power 
consumption. To execute FIR filter operations efficiently, 
the proposed approach allows parallel access to multiple 
coefficients in LUTs. This means that multiple coefficients 
are accessed simultaneously to perform filter calculations. 
Parallelism in coefficient access leads to a significant 
reduction in the processing delay and also enhances the 
filter's throughput, making it suitable for real-time 
applications. By minimizing the number of LUTs and 
enabling parallel access to coefficients, the filter processes 
the data with lower latency, which is essential for real-time 
processing.  

d. Decimation and Parallel Prefix Adder 
Additionally, the frequency response of the filter output 

is dynamically altered using the decimation factor. 
Decimation is a process in DSP where the sampling rate of a 
signal is reduced. By changing the decimation factor, the 
effective bandwidth and characteristics of the filter output 
are adjusted without modifying the filter coefficients. It's 

Formulation for analysis is discussed in further sections 
below. 

a. Distributed Arithmetic (DA) Computation 
When the coefficients of the FIR filter are known, 

the DA resolves the computation of the internal product, and 
the output of an FIR filter is given by the convolution sum 
in equation (1):   

𝑌𝑌[𝑛𝑛] = ∑ ℎ[𝑘𝑘]𝑥𝑥[𝑛𝑛 − 𝑘𝑘]               (1)
𝐾𝐾−1

𝑘𝑘=0
 

                                            
Where, 

 Y[n] is the output signal at time n 
 h[k] are the filter coefficients 
 x[n−k] is the input signal at time n−k 
 K is the number of filter coefficients 

(filter length) 
DA shifts the computation from the traditional 

method of directly calculating the product of the input signal 
and filter coefficients to a method that relies on bit-level 
manipulations. This is especially efficient in FPGAs where 
LUTs can store precomputed values. The step-by-step DA 
process is given in the following equations. 

Decompose the input data x[n−k] into its binary 
representation. For simplicity, each input sample is 
represented by B bits as given in equation (2): 

𝑥𝑥[𝑛𝑛 − 𝑘𝑘] = ∑𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]                    (2)
𝐵𝐵−1

𝑏𝑏=0
 

Here, xb[n−k] represents the bth bit of the 
input sample x[n−k]. 

Then precompute all possible values of the partial 
products ℎ[𝑘𝑘] ⋅ 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] for each bit position and store 
them in LUTs. This reduces the real-time computation to 
simple LUT lookups and bit-shifting operations. The 
precomputed partial products for each bit position are 
accumulated across all filter taps which is given in equation 
(3): 

𝑌𝑌 = ∑∑ℎ[𝑘𝑘]. 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]
𝐵𝐵−1

𝑏𝑏=0
. 2𝑏𝑏       (3)

𝐾𝐾−1

𝑘𝑘=0

 

This step involves shifting the precomputed values 
according to their bit positions and summing them up using 
adders. Finally, the DA-based FIR filter output is 
represented by equation (4) as given below: 

𝑌𝑌 = ∑ℎ[𝑘𝑘]. 𝑥𝑥′[𝑘𝑘]              (4)
𝐾𝐾−1

𝑘𝑘=0
 

Here, x′[k] is a function of the bit-level decomposition of 
the input data x[n−k]. 
 Moreover, in the context of FIR filters, particularly 
with the proposed DA-LUT-FIR approach, representing 
input data using a two's complement B-bit binary format is 
crucial. This representation accommodates both positive and 
negative values and provides a precision level determined 

by the number of bits B. The formulation of this 
representation is provided in the below section. 

b. Distributed Arithmetic (DA) for FIR Filters with Two's 
Complement Representation 

In the proposed DA-LUT-FIR filter, the input data x[k] 
is represented using a two's complement BBB-bit binary 
representation, allowing for an accurate representation of 
both positive and negative values. The two's complement 
representation of x[k] is crucial for handling negative 
numbers in FIR filter calculations which is given in equation 
(5); 

𝑥𝑥′[𝑘𝑘] = −2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏                    (5)
𝐵𝐵−1

𝑏𝑏=0
 

                         
Where, 𝑥𝑥𝑏𝑏[𝑘𝑘] is 𝑏𝑏𝑡𝑡ℎ bit of 𝑥𝑥[𝑘𝑘], 𝑋𝑋𝐵𝐵[𝑘𝑘] ∈ {0,1}. 

Substituting equation (5) in equation (4), 

𝑌𝑌 = ∑ ℎ[𝑘𝑘] (−2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑ 𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏𝐵𝐵−1
𝑏𝑏=0 )

𝐾𝐾−1

𝑘𝑘=0
                                     

      = −2𝐵𝐵∑ ℎ[𝑘𝑘]𝑋𝑋𝐵𝐵[𝑘𝑘] +∑ 2𝑏𝑏 ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]𝐾𝐾−1
𝑘𝑘=0

𝐵𝐵−1
𝑏𝑏=0

𝐾𝐾−1

𝑘𝑘=0
                                   

     Y = −2𝐵𝐵𝑓𝑓(ℎ[𝑘𝑘]. 𝑋𝑋𝐵𝐵[𝑘𝑘]) + ∑ 2𝑏𝑏𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘])𝐵𝐵−1
𝑏𝑏=0                                 (6)

 

The final output of the FIR filter with two’s complement 
representation is given in equation (6); Thus, from equation 
(6), the simplified input data of B-Bit binary data is given 
below in equation (7): 

𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]) = ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]            (7)
𝐾𝐾−1

𝑘𝑘=0
 

Therefore, the filter coefficient is further stored at LUT 
and it is addressed by 𝑋𝑋𝑏𝑏[𝑘𝑘]. This reduces entry and 
summation with LUT of the MAC blocks of FIR filters. The 
digital filters are made with the use of registers, memory 
resources, and a scale accumulator to perform this 
arithmetic. One of the key features of the proposed 
implementation is the use of a small number of LUTs which 
is discussed in the following section. 

c. Minimizing the LUT size 
This proposed approach suggests that the design 

optimizes the LUTs' usage, potentially by reusing or sharing 
LUT resources for multiple coefficients to minimize the 
LUT size while maintaining accuracy. Reducing the number 
of LUTs leads to savings of hardware resources and power 
consumption. To execute FIR filter operations efficiently, 
the proposed approach allows parallel access to multiple 
coefficients in LUTs. This means that multiple coefficients 
are accessed simultaneously to perform filter calculations. 
Parallelism in coefficient access leads to a significant 
reduction in the processing delay and also enhances the 
filter's throughput, making it suitable for real-time 
applications. By minimizing the number of LUTs and 
enabling parallel access to coefficients, the filter processes 
the data with lower latency, which is essential for real-time 
processing.  

d. Decimation and Parallel Prefix Adder 
Additionally, the frequency response of the filter output 

is dynamically altered using the decimation factor. 
Decimation is a process in DSP where the sampling rate of a 
signal is reduced. By changing the decimation factor, the 
effective bandwidth and characteristics of the filter output 
are adjusted without modifying the filter coefficients. It's 



Enhancing Signal Processing Efficiency in  
Software-Defined Radio Using Distributed Arithmetic  
and Look-Up Table-Based FIR Filters

DECEMBER 2024 • VOLUME XVI • NUMBER 424

INFOCOMMUNICATIONS JOURNAL

emphasized that the filter coefficients remain unchanged 
while altering the frequency response through decimation. 
This suggests that the filter is designed to be flexible in its 
application, allowing for real-time adjustments without the 
need for recalculating or modifying the filter coefficients. 
To reduce the worst-case critical path time during partial 
product accumulation, a highly customizable parallel prefix 
adder is implemented. It is a type of digital adder that 
efficiently adds multiple numbers of LUT in parallel. By 
customizing this adder, the design optimizes its performance 
for the specific requirements of the FIR filter design.  

 
 

Figure 2: DA-LUT-based RFIR filter with PPA 
 
Figure 2 shows the DA-LUT-based Reconfigurable 

Finite Impulse Response (RFIR) filter with PPA. The DA 
with LUT-based RFIR filter, when combined with Power, 
Performance, and Area (PPA) considerations, offers a 
versatile and efficient approach to DSP. In order to achieve 
optimal power efficiency, high performance and minimal 
hardware footprint, the DA-LUT-based RFIR filter is 
provided, in which the RFIR filter is a powerful tool for 
processing digital signals. It allows for adaptability, making 
it ideal for a wide range of applications in wireless 
communication systems. This not only reduces power 
consumption but also accelerates the processing speed of the 
DA-RFIR filter. The LUT stores precomputed products of 
filter coefficients and input data, thereby effectively 
transforming more multipliers into simple LUT. The 
optimization problem formulation for channel equalizer in 
terms of the objective function and system constraints is 
discussed below. 

e. Optimization Problem Formulation 
The primary objective of this research is to 

minimize the Bit Error Rate (BER) and latency while 
maximizing the throughput of the FIR filter system, which is 
integral to the performance of SDR applications. This 
section clearly outlines the optimization objectives and 
constraints associated with the channel equalizer in SDR 
applications. 
      Objective Function: 

The goal is to minimize latency and BER 
while maximizing throughput. This can be 
mathematically represented as: 
Objective: min BER (H, X, C), min 
Latency (H, X, C), and max Throughput 
(H, X, C) 

Where,  
 H represents the filter 

coefficients. 

 X denotes the input data. 
 C symbolizes the system 

configurations, including the 
decimation factor and hardware 
resources. 

 
Constraints: 

Hardware Resource Constraint: The total 
number of Look-Up Tables (LUTs) and slices used 
should not exceed the available resources on the 
Artix-7 FPGA. 

LUTs(H) ≤ 17,000 
Slices(H) ≤ 10,000 

Power Consumption Constraint: The power 
dissipation should be within acceptable limits for 
SDR applications. 

Power (H, X, C) ≤ 100 mW 
Latency Constraint: The latency must be 
minimized while ensuring it supports real-time data 
processing. 

Latency (H, X, C) ≤ 20 ns 
Throughput Constraint: The filter must maintain 
a high throughput to handle real-time data 
processing. 

Throughput (H, X, C) ≥ 900 Mbps 
Optimization Approach: 

Filter Coefficient Optimization: Use DA to 
precompute possible outcomes for each filter 
coefficient, reducing the need for real-time 
multipliers and thus decreasing latency and power 
consumption. 
Parallel Processing: Implement parallel prefix 
adders to handle partial product accumulations 
efficiently, enhancing throughput. 
Dynamic Decimation: Adjust the decimation factor 
dynamically to balance the trade-off between 
processing speed and frequency response. 
Adaptive Channel Equalization: Optimize the 
channel equalizer settings to minimize BER by 
dynamically adjusting the filter coefficients in 
response to changing channel conditions. 

This approach is not only space-efficient but also 
reduces the need for resource-intensive multiplication 
hardware. By carefully analyzing and optimizing the DA-
RFIR filter's architecture, the best trade-offs between power 
efficiency, high performance, and a minimal hardware 
footprint are achieved. The DA-LUT-based RFIR filter is 
fine-tuned with PPA, this ensures that signal processing 
applications operate at peak efficiency, and deliver results 
that meet the most demanding requirements. With the DA-
LUT-based RFIR filter, the power of PPA is unlocked, 
thereby making it possible to process digital signals with 
unparalleled efficiency. To perform a performance analysis 
and optimization of a LUT layer, the proposed model 
follows a systematic process involving the LUT, identifying 
bottlenecks, and implementing optimizations. Thereby, the 
existing technique's drawbacks are overcome by this 
proposed method. In the next section, the performance and 
comparison of the proposed method are discussed. 

IV. RESULT AND DISCUSSION 
In this section, the results for the proposed DA-LUT-FIR 
filter are presented and engaged in a thorough discussion on 

  

 

 

Formulation for analysis is discussed in further sections 
below. 

a. Distributed Arithmetic (DA) Computation 
When the coefficients of the FIR filter are known, 

the DA resolves the computation of the internal product, and 
the output of an FIR filter is given by the convolution sum 
in equation (1):   

𝑌𝑌[𝑛𝑛] = ∑ ℎ[𝑘𝑘]𝑥𝑥[𝑛𝑛 − 𝑘𝑘]               (1)
𝐾𝐾−1

𝑘𝑘=0
 

                                            
Where, 

 Y[n] is the output signal at time n 
 h[k] are the filter coefficients 
 x[n−k] is the input signal at time n−k 
 K is the number of filter coefficients 

(filter length) 
DA shifts the computation from the traditional 

method of directly calculating the product of the input signal 
and filter coefficients to a method that relies on bit-level 
manipulations. This is especially efficient in FPGAs where 
LUTs can store precomputed values. The step-by-step DA 
process is given in the following equations. 

Decompose the input data x[n−k] into its binary 
representation. For simplicity, each input sample is 
represented by B bits as given in equation (2): 

𝑥𝑥[𝑛𝑛 − 𝑘𝑘] = ∑𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]                    (2)
𝐵𝐵−1

𝑏𝑏=0
 

Here, xb[n−k] represents the bth bit of the 
input sample x[n−k]. 

Then precompute all possible values of the partial 
products ℎ[𝑘𝑘] ⋅ 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] for each bit position and store 
them in LUTs. This reduces the real-time computation to 
simple LUT lookups and bit-shifting operations. The 
precomputed partial products for each bit position are 
accumulated across all filter taps which is given in equation 
(3): 

𝑌𝑌 = ∑∑ℎ[𝑘𝑘]. 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]
𝐵𝐵−1

𝑏𝑏=0
. 2𝑏𝑏       (3)

𝐾𝐾−1

𝑘𝑘=0

 

This step involves shifting the precomputed values 
according to their bit positions and summing them up using 
adders. Finally, the DA-based FIR filter output is 
represented by equation (4) as given below: 

𝑌𝑌 = ∑ℎ[𝑘𝑘]. 𝑥𝑥′[𝑘𝑘]              (4)
𝐾𝐾−1

𝑘𝑘=0
 

Here, x′[k] is a function of the bit-level decomposition of 
the input data x[n−k]. 
 Moreover, in the context of FIR filters, particularly 
with the proposed DA-LUT-FIR approach, representing 
input data using a two's complement B-bit binary format is 
crucial. This representation accommodates both positive and 
negative values and provides a precision level determined 

by the number of bits B. The formulation of this 
representation is provided in the below section. 

b. Distributed Arithmetic (DA) for FIR Filters with Two's 
Complement Representation 

In the proposed DA-LUT-FIR filter, the input data x[k] 
is represented using a two's complement BBB-bit binary 
representation, allowing for an accurate representation of 
both positive and negative values. The two's complement 
representation of x[k] is crucial for handling negative 
numbers in FIR filter calculations which is given in equation 
(5); 

𝑥𝑥′[𝑘𝑘] = −2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏                    (5)
𝐵𝐵−1

𝑏𝑏=0
 

                         
Where, 𝑥𝑥𝑏𝑏[𝑘𝑘] is 𝑏𝑏𝑡𝑡ℎ bit of 𝑥𝑥[𝑘𝑘], 𝑋𝑋𝐵𝐵[𝑘𝑘] ∈ {0,1}. 

Substituting equation (5) in equation (4), 

𝑌𝑌 = ∑ ℎ[𝑘𝑘] (−2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑ 𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏𝐵𝐵−1
𝑏𝑏=0 )

𝐾𝐾−1

𝑘𝑘=0
                                     

      = −2𝐵𝐵∑ ℎ[𝑘𝑘]𝑋𝑋𝐵𝐵[𝑘𝑘] +∑ 2𝑏𝑏 ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]𝐾𝐾−1
𝑘𝑘=0

𝐵𝐵−1
𝑏𝑏=0

𝐾𝐾−1

𝑘𝑘=0
                                   

     Y = −2𝐵𝐵𝑓𝑓(ℎ[𝑘𝑘]. 𝑋𝑋𝐵𝐵[𝑘𝑘]) + ∑ 2𝑏𝑏𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘])𝐵𝐵−1
𝑏𝑏=0                                 (6)

 

The final output of the FIR filter with two’s complement 
representation is given in equation (6); Thus, from equation 
(6), the simplified input data of B-Bit binary data is given 
below in equation (7): 

𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]) = ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]            (7)
𝐾𝐾−1

𝑘𝑘=0
 

Therefore, the filter coefficient is further stored at LUT 
and it is addressed by 𝑋𝑋𝑏𝑏[𝑘𝑘]. This reduces entry and 
summation with LUT of the MAC blocks of FIR filters. The 
digital filters are made with the use of registers, memory 
resources, and a scale accumulator to perform this 
arithmetic. One of the key features of the proposed 
implementation is the use of a small number of LUTs which 
is discussed in the following section. 

c. Minimizing the LUT size 
This proposed approach suggests that the design 

optimizes the LUTs' usage, potentially by reusing or sharing 
LUT resources for multiple coefficients to minimize the 
LUT size while maintaining accuracy. Reducing the number 
of LUTs leads to savings of hardware resources and power 
consumption. To execute FIR filter operations efficiently, 
the proposed approach allows parallel access to multiple 
coefficients in LUTs. This means that multiple coefficients 
are accessed simultaneously to perform filter calculations. 
Parallelism in coefficient access leads to a significant 
reduction in the processing delay and also enhances the 
filter's throughput, making it suitable for real-time 
applications. By minimizing the number of LUTs and 
enabling parallel access to coefficients, the filter processes 
the data with lower latency, which is essential for real-time 
processing.  

d. Decimation and Parallel Prefix Adder 
Additionally, the frequency response of the filter output 

is dynamically altered using the decimation factor. 
Decimation is a process in DSP where the sampling rate of a 
signal is reduced. By changing the decimation factor, the 
effective bandwidth and characteristics of the filter output 
are adjusted without modifying the filter coefficients. It's 
emphasized that the filter coefficients remain unchanged 
while altering the frequency response through decimation. 
This suggests that the filter is designed to be flexible in its 
application, allowing for real-time adjustments without the 
need for recalculating or modifying the filter coefficients. 
To reduce the worst-case critical path time during partial 
product accumulation, a highly customizable parallel prefix 
adder is implemented. It is a type of digital adder that 
efficiently adds multiple numbers of LUT in parallel. By 
customizing this adder, the design optimizes its performance 
for the specific requirements of the FIR filter design.  

 
 

Figure 2: DA-LUT-based RFIR filter with PPA 
 
Figure 2 shows the DA-LUT-based Reconfigurable 

Finite Impulse Response (RFIR) filter with PPA. The DA 
with LUT-based RFIR filter, when combined with Power, 
Performance, and Area (PPA) considerations, offers a 
versatile and efficient approach to DSP. In order to achieve 
optimal power efficiency, high performance and minimal 
hardware footprint, the DA-LUT-based RFIR filter is 
provided, in which the RFIR filter is a powerful tool for 
processing digital signals. It allows for adaptability, making 
it ideal for a wide range of applications in wireless 
communication systems. This not only reduces power 
consumption but also accelerates the processing speed of the 
DA-RFIR filter. The LUT stores precomputed products of 
filter coefficients and input data, thereby effectively 
transforming more multipliers into simple LUT. The 
optimization problem formulation for channel equalizer in 
terms of the objective function and system constraints is 
discussed below. 

e. Optimization Problem Formulation 
The primary objective of this research is to 

minimize the Bit Error Rate (BER) and latency while 
maximizing the throughput of the FIR filter system, which is 
integral to the performance of SDR applications. This 
section clearly outlines the optimization objectives and 
constraints associated with the channel equalizer in SDR 
applications. 
      Objective Function: 

The goal is to minimize latency and BER 
while maximizing throughput. This can be 
mathematically represented as: 
Objective: min BER (H, X, C), min 
Latency (H, X, C), and max Throughput 
(H, X, C) 

Where,  
 H represents the filter 

coefficients. 

 X denotes the input data. 
 C symbolizes the system 

configurations, including the 
decimation factor and hardware 
resources. 

 
Constraints: 

Hardware Resource Constraint: The total 
number of Look-Up Tables (LUTs) and slices used 
should not exceed the available resources on the 
Artix-7 FPGA. 

LUTs(H) ≤ 17,000 
Slices(H) ≤ 10,000 

Power Consumption Constraint: The power 
dissipation should be within acceptable limits for 
SDR applications. 

Power (H, X, C) ≤ 100 mW 
Latency Constraint: The latency must be 
minimized while ensuring it supports real-time data 
processing. 

Latency (H, X, C) ≤ 20 ns 
Throughput Constraint: The filter must maintain 
a high throughput to handle real-time data 
processing. 

Throughput (H, X, C) ≥ 900 Mbps 
Optimization Approach: 

Filter Coefficient Optimization: Use DA to 
precompute possible outcomes for each filter 
coefficient, reducing the need for real-time 
multipliers and thus decreasing latency and power 
consumption. 
Parallel Processing: Implement parallel prefix 
adders to handle partial product accumulations 
efficiently, enhancing throughput. 
Dynamic Decimation: Adjust the decimation factor 
dynamically to balance the trade-off between 
processing speed and frequency response. 
Adaptive Channel Equalization: Optimize the 
channel equalizer settings to minimize BER by 
dynamically adjusting the filter coefficients in 
response to changing channel conditions. 

This approach is not only space-efficient but also 
reduces the need for resource-intensive multiplication 
hardware. By carefully analyzing and optimizing the DA-
RFIR filter's architecture, the best trade-offs between power 
efficiency, high performance, and a minimal hardware 
footprint are achieved. The DA-LUT-based RFIR filter is 
fine-tuned with PPA, this ensures that signal processing 
applications operate at peak efficiency, and deliver results 
that meet the most demanding requirements. With the DA-
LUT-based RFIR filter, the power of PPA is unlocked, 
thereby making it possible to process digital signals with 
unparalleled efficiency. To perform a performance analysis 
and optimization of a LUT layer, the proposed model 
follows a systematic process involving the LUT, identifying 
bottlenecks, and implementing optimizations. Thereby, the 
existing technique's drawbacks are overcome by this 
proposed method. In the next section, the performance and 
comparison of the proposed method are discussed. 

IV. RESULT AND DISCUSSION 
In this section, the results for the proposed DA-LUT-FIR 
filter are presented and engaged in a thorough discussion on 

  

 

 

emphasized that the filter coefficients remain unchanged 
while altering the frequency response through decimation. 
This suggests that the filter is designed to be flexible in its 
application, allowing for real-time adjustments without the 
need for recalculating or modifying the filter coefficients. 
To reduce the worst-case critical path time during partial 
product accumulation, a highly customizable parallel prefix 
adder is implemented. It is a type of digital adder that 
efficiently adds multiple numbers of LUT in parallel. By 
customizing this adder, the design optimizes its performance 
for the specific requirements of the FIR filter design.  
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it ideal for a wide range of applications in wireless 
communication systems. This not only reduces power 
consumption but also accelerates the processing speed of the 
DA-RFIR filter. The LUT stores precomputed products of 
filter coefficients and input data, thereby effectively 
transforming more multipliers into simple LUT. The 
optimization problem formulation for channel equalizer in 
terms of the objective function and system constraints is 
discussed below. 

e. Optimization Problem Formulation 
The primary objective of this research is to 

minimize the Bit Error Rate (BER) and latency while 
maximizing the throughput of the FIR filter system, which is 
integral to the performance of SDR applications. This 
section clearly outlines the optimization objectives and 
constraints associated with the channel equalizer in SDR 
applications. 
      Objective Function: 

The goal is to minimize latency and BER 
while maximizing throughput. This can be 
mathematically represented as: 
Objective: min BER (H, X, C), min 
Latency (H, X, C), and max Throughput 
(H, X, C) 

Where,  
 H represents the filter 

coefficients. 

 X denotes the input data. 
 C symbolizes the system 

configurations, including the 
decimation factor and hardware 
resources. 

 
Constraints: 

Hardware Resource Constraint: The total 
number of Look-Up Tables (LUTs) and slices used 
should not exceed the available resources on the 
Artix-7 FPGA. 

LUTs(H) ≤ 17,000 
Slices(H) ≤ 10,000 

Power Consumption Constraint: The power 
dissipation should be within acceptable limits for 
SDR applications. 

Power (H, X, C) ≤ 100 mW 
Latency Constraint: The latency must be 
minimized while ensuring it supports real-time data 
processing. 

Latency (H, X, C) ≤ 20 ns 
Throughput Constraint: The filter must maintain 
a high throughput to handle real-time data 
processing. 

Throughput (H, X, C) ≥ 900 Mbps 
Optimization Approach: 

Filter Coefficient Optimization: Use DA to 
precompute possible outcomes for each filter 
coefficient, reducing the need for real-time 
multipliers and thus decreasing latency and power 
consumption. 
Parallel Processing: Implement parallel prefix 
adders to handle partial product accumulations 
efficiently, enhancing throughput. 
Dynamic Decimation: Adjust the decimation factor 
dynamically to balance the trade-off between 
processing speed and frequency response. 
Adaptive Channel Equalization: Optimize the 
channel equalizer settings to minimize BER by 
dynamically adjusting the filter coefficients in 
response to changing channel conditions. 

This approach is not only space-efficient but also 
reduces the need for resource-intensive multiplication 
hardware. By carefully analyzing and optimizing the DA-
RFIR filter's architecture, the best trade-offs between power 
efficiency, high performance, and a minimal hardware 
footprint are achieved. The DA-LUT-based RFIR filter is 
fine-tuned with PPA, this ensures that signal processing 
applications operate at peak efficiency, and deliver results 
that meet the most demanding requirements. With the DA-
LUT-based RFIR filter, the power of PPA is unlocked, 
thereby making it possible to process digital signals with 
unparalleled efficiency. To perform a performance analysis 
and optimization of a LUT layer, the proposed model 
follows a systematic process involving the LUT, identifying 
bottlenecks, and implementing optimizations. Thereby, the 
existing technique's drawbacks are overcome by this 
proposed method. In the next section, the performance and 
comparison of the proposed method are discussed. 

IV. RESULT AND DISCUSSION 
In this section, the results for the proposed DA-LUT-FIR 
filter are presented and engaged in a thorough discussion on 

  

 

 

Formulation for analysis is discussed in further sections 
below. 

a. Distributed Arithmetic (DA) Computation 
When the coefficients of the FIR filter are known, 

the DA resolves the computation of the internal product, and 
the output of an FIR filter is given by the convolution sum 
in equation (1):   

𝑌𝑌[𝑛𝑛] = ∑ ℎ[𝑘𝑘]𝑥𝑥[𝑛𝑛 − 𝑘𝑘]               (1)
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Where, 

 Y[n] is the output signal at time n 
 h[k] are the filter coefficients 
 x[n−k] is the input signal at time n−k 
 K is the number of filter coefficients 

(filter length) 
DA shifts the computation from the traditional 

method of directly calculating the product of the input signal 
and filter coefficients to a method that relies on bit-level 
manipulations. This is especially efficient in FPGAs where 
LUTs can store precomputed values. The step-by-step DA 
process is given in the following equations. 

Decompose the input data x[n−k] into its binary 
representation. For simplicity, each input sample is 
represented by B bits as given in equation (2): 

𝑥𝑥[𝑛𝑛 − 𝑘𝑘] = ∑𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]                    (2)
𝐵𝐵−1

𝑏𝑏=0
 

Here, xb[n−k] represents the bth bit of the 
input sample x[n−k]. 

Then precompute all possible values of the partial 
products ℎ[𝑘𝑘] ⋅ 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘] for each bit position and store 
them in LUTs. This reduces the real-time computation to 
simple LUT lookups and bit-shifting operations. The 
precomputed partial products for each bit position are 
accumulated across all filter taps which is given in equation 
(3): 

𝑌𝑌 = ∑∑ℎ[𝑘𝑘]. 𝑥𝑥𝑏𝑏[𝑛𝑛 − 𝑘𝑘]
𝐵𝐵−1

𝑏𝑏=0
. 2𝑏𝑏       (3)

𝐾𝐾−1

𝑘𝑘=0

 

This step involves shifting the precomputed values 
according to their bit positions and summing them up using 
adders. Finally, the DA-based FIR filter output is 
represented by equation (4) as given below: 

𝑌𝑌 = ∑ℎ[𝑘𝑘]. 𝑥𝑥′[𝑘𝑘]              (4)
𝐾𝐾−1

𝑘𝑘=0
 

Here, x′[k] is a function of the bit-level decomposition of 
the input data x[n−k]. 
 Moreover, in the context of FIR filters, particularly 
with the proposed DA-LUT-FIR approach, representing 
input data using a two's complement B-bit binary format is 
crucial. This representation accommodates both positive and 
negative values and provides a precision level determined 

by the number of bits B. The formulation of this 
representation is provided in the below section. 

b. Distributed Arithmetic (DA) for FIR Filters with Two's 
Complement Representation 

In the proposed DA-LUT-FIR filter, the input data x[k] 
is represented using a two's complement BBB-bit binary 
representation, allowing for an accurate representation of 
both positive and negative values. The two's complement 
representation of x[k] is crucial for handling negative 
numbers in FIR filter calculations which is given in equation 
(5); 

𝑥𝑥′[𝑘𝑘] = −2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏                    (5)
𝐵𝐵−1

𝑏𝑏=0
 

                         
Where, 𝑥𝑥𝑏𝑏[𝑘𝑘] is 𝑏𝑏𝑡𝑡ℎ bit of 𝑥𝑥[𝑘𝑘], 𝑋𝑋𝐵𝐵[𝑘𝑘] ∈ {0,1}. 

Substituting equation (5) in equation (4), 

𝑌𝑌 = ∑ ℎ[𝑘𝑘] (−2𝐵𝐵𝑋𝑋𝐵𝐵[𝑘𝑘] + ∑ 𝑥𝑥𝑏𝑏[𝑘𝑘] ⋅ 2𝑏𝑏𝐵𝐵−1
𝑏𝑏=0 )

𝐾𝐾−1

𝑘𝑘=0
                                     

      = −2𝐵𝐵∑ ℎ[𝑘𝑘]𝑋𝑋𝐵𝐵[𝑘𝑘] +∑ 2𝑏𝑏 ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]𝐾𝐾−1
𝑘𝑘=0

𝐵𝐵−1
𝑏𝑏=0

𝐾𝐾−1

𝑘𝑘=0
                                   

     Y = −2𝐵𝐵𝑓𝑓(ℎ[𝑘𝑘]. 𝑋𝑋𝐵𝐵[𝑘𝑘]) + ∑ 2𝑏𝑏𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘])𝐵𝐵−1
𝑏𝑏=0                                 (6)

 

The final output of the FIR filter with two’s complement 
representation is given in equation (6); Thus, from equation 
(6), the simplified input data of B-Bit binary data is given 
below in equation (7): 

𝑓𝑓(ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]) = ∑ ℎ[𝑘𝑘]𝑥𝑥𝑏𝑏[𝑘𝑘]            (7)
𝐾𝐾−1

𝑘𝑘=0
 

Therefore, the filter coefficient is further stored at LUT 
and it is addressed by 𝑋𝑋𝑏𝑏[𝑘𝑘]. This reduces entry and 
summation with LUT of the MAC blocks of FIR filters. The 
digital filters are made with the use of registers, memory 
resources, and a scale accumulator to perform this 
arithmetic. One of the key features of the proposed 
implementation is the use of a small number of LUTs which 
is discussed in the following section. 

c. Minimizing the LUT size 
This proposed approach suggests that the design 

optimizes the LUTs' usage, potentially by reusing or sharing 
LUT resources for multiple coefficients to minimize the 
LUT size while maintaining accuracy. Reducing the number 
of LUTs leads to savings of hardware resources and power 
consumption. To execute FIR filter operations efficiently, 
the proposed approach allows parallel access to multiple 
coefficients in LUTs. This means that multiple coefficients 
are accessed simultaneously to perform filter calculations. 
Parallelism in coefficient access leads to a significant 
reduction in the processing delay and also enhances the 
filter's throughput, making it suitable for real-time 
applications. By minimizing the number of LUTs and 
enabling parallel access to coefficients, the filter processes 
the data with lower latency, which is essential for real-time 
processing.  

d. Decimation and Parallel Prefix Adder 
Additionally, the frequency response of the filter output 

is dynamically altered using the decimation factor. 
Decimation is a process in DSP where the sampling rate of a 
signal is reduced. By changing the decimation factor, the 
effective bandwidth and characteristics of the filter output 
are adjusted without modifying the filter coefficients. It's 



Enhancing Signal Processing Efficiency in  
Software-Defined Radio Using Distributed Arithmetic  

and Look-Up Table-Based FIR Filters

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2024 • VOLUME XVI • NUMBER 4 25

emphasized that the filter coefficients remain unchanged 
while altering the frequency response through decimation. 
This suggests that the filter is designed to be flexible in its 
application, allowing for real-time adjustments without the 
need for recalculating or modifying the filter coefficients. 
To reduce the worst-case critical path time during partial 
product accumulation, a highly customizable parallel prefix 
adder is implemented. It is a type of digital adder that 
efficiently adds multiple numbers of LUT in parallel. By 
customizing this adder, the design optimizes its performance 
for the specific requirements of the FIR filter design.  

 
 

Figure 2: DA-LUT-based RFIR filter with PPA 
 
Figure 2 shows the DA-LUT-based Reconfigurable 

Finite Impulse Response (RFIR) filter with PPA. The DA 
with LUT-based RFIR filter, when combined with Power, 
Performance, and Area (PPA) considerations, offers a 
versatile and efficient approach to DSP. In order to achieve 
optimal power efficiency, high performance and minimal 
hardware footprint, the DA-LUT-based RFIR filter is 
provided, in which the RFIR filter is a powerful tool for 
processing digital signals. It allows for adaptability, making 
it ideal for a wide range of applications in wireless 
communication systems. This not only reduces power 
consumption but also accelerates the processing speed of the 
DA-RFIR filter. The LUT stores precomputed products of 
filter coefficients and input data, thereby effectively 
transforming more multipliers into simple LUT. The 
optimization problem formulation for channel equalizer in 
terms of the objective function and system constraints is 
discussed below. 

e. Optimization Problem Formulation 
The primary objective of this research is to 

minimize the Bit Error Rate (BER) and latency while 
maximizing the throughput of the FIR filter system, which is 
integral to the performance of SDR applications. This 
section clearly outlines the optimization objectives and 
constraints associated with the channel equalizer in SDR 
applications. 
      Objective Function: 

The goal is to minimize latency and BER 
while maximizing throughput. This can be 
mathematically represented as: 
Objective: min BER (H, X, C), min 
Latency (H, X, C), and max Throughput 
(H, X, C) 

Where,  
 H represents the filter 

coefficients. 

 X denotes the input data. 
 C symbolizes the system 

configurations, including the 
decimation factor and hardware 
resources. 

 
Constraints: 

Hardware Resource Constraint: The total 
number of Look-Up Tables (LUTs) and slices used 
should not exceed the available resources on the 
Artix-7 FPGA. 

LUTs(H) ≤ 17,000 
Slices(H) ≤ 10,000 

Power Consumption Constraint: The power 
dissipation should be within acceptable limits for 
SDR applications. 

Power (H, X, C) ≤ 100 mW 
Latency Constraint: The latency must be 
minimized while ensuring it supports real-time data 
processing. 

Latency (H, X, C) ≤ 20 ns 
Throughput Constraint: The filter must maintain 
a high throughput to handle real-time data 
processing. 

Throughput (H, X, C) ≥ 900 Mbps 
Optimization Approach: 

Filter Coefficient Optimization: Use DA to 
precompute possible outcomes for each filter 
coefficient, reducing the need for real-time 
multipliers and thus decreasing latency and power 
consumption. 
Parallel Processing: Implement parallel prefix 
adders to handle partial product accumulations 
efficiently, enhancing throughput. 
Dynamic Decimation: Adjust the decimation factor 
dynamically to balance the trade-off between 
processing speed and frequency response. 
Adaptive Channel Equalization: Optimize the 
channel equalizer settings to minimize BER by 
dynamically adjusting the filter coefficients in 
response to changing channel conditions. 

This approach is not only space-efficient but also 
reduces the need for resource-intensive multiplication 
hardware. By carefully analyzing and optimizing the DA-
RFIR filter's architecture, the best trade-offs between power 
efficiency, high performance, and a minimal hardware 
footprint are achieved. The DA-LUT-based RFIR filter is 
fine-tuned with PPA, this ensures that signal processing 
applications operate at peak efficiency, and deliver results 
that meet the most demanding requirements. With the DA-
LUT-based RFIR filter, the power of PPA is unlocked, 
thereby making it possible to process digital signals with 
unparalleled efficiency. To perform a performance analysis 
and optimization of a LUT layer, the proposed model 
follows a systematic process involving the LUT, identifying 
bottlenecks, and implementing optimizations. Thereby, the 
existing technique's drawbacks are overcome by this 
proposed method. In the next section, the performance and 
comparison of the proposed method are discussed. 

IV. RESULT AND DISCUSSION 
In this section, the results for the proposed DA-LUT-FIR 
filter are presented and engaged in a thorough discussion on 

  

 

 

its performance and efficiency. The filter was designed and 
implemented to address the challenges associated with finite 
impulse response filtering while harnessing the power of 
distributed arithmetic and lookup tables for optimized 
multiplication. 

A. Experimental Setup 
The simulation results are discussed below. This work has 
been implemented in the MATLAB working platform using 
the following system specifications. 

Software : MATLAB 
OS : Windows 10 (64-bit) 
Processor : Intel i5 
RAM : 8GB RAM 

B. Simulated output of the proposed method  
The proposed structure has been added to Xilinx System 
Generator and Matlab Simulink. For the execution of the 
proposed design, a string of channel impulses that have been 
BPSK message modulated for implementation is considered. 
The signal was transmitted to adaptive DFE for ISI error 
correction and noise removal. The algorithm is programmed 
directly into the FPGA integrated within the SDR. This 
allows for efficient processing and real-time performance, 
utilizing the FPGA's parallel processing capabilities while 
minimizing latency and maximizing throughput. 

 
Figure 3: Verilog output of FIR 

 
Figure 3 depicts the Verilog output of the FIR filter. This 

FIR input module is responsible for receiving the incoming 
digital data stream and buffering it for processing. It feeds 
the data into the filter's main processing engine. Multiplier 
and Accumulator components perform the core filtering 
operation. The multiplier module multiplies each data 
sample by the corresponding coefficient, and the 
accumulator sums up these products to produce the filter's 
output. The coefficients used by the filter are stored in a 
memory module. This memory is accessed based on the 
current position of the sliding window. To slide the window 
over the input data, there is a control module that manages 
the window's position and ensures the correct samples are 
selected for multiplication. Finally, the filtered output data is 
sent to the output module, which makes it available for 
further processing. 

 
Figure 4: FIR Output Response 

 
Figure 4 depicts the output response for the FIR filter 

which is characterized by its ability to effectively filter and 
modify the input signals in a precise and controlled manner. 
As the input signal progresses through the filter, it 
encounters each tap and undergoes a series of multipliers 
and adders. At each tap, the input is multiplied by the 
corresponding coefficient, and the results are summed 
together. It represents the frequency response of two 
bandpass filters where the blue trace (M=1) illustrates a 
filter that allows a lower range of frequencies to pass 
through, effectively filtering out frequencies outside this 
range. Conversely, the orange trace (M=2) demonstrates a 
filter with a passband at higher frequencies. The graph 
clearly outlines the effective frequency ranges for each 
filter, with the passbands being the regions where the 
magnitude does not exhibit significant attenuation. 

 
Figure 5: LMS filter output 

 
Figure 5 shows the Least Mean Square (LMS) filter 

output for the proposed approach.  In this figure, the top 
waveform, labelled “test_bench/data_in” represents the 
gradient of the input error signal for the first test bench. This 
is crucial as it indicates how the LMS filter’s predictions 
deviate from the desired outcome. The waveform below, 
labelled “test_bench/desired_response” is the target or 
reference signal that the LMS filter aims to replicate or 
predict accurately. Then the next waveform, labelled 
“test_bench/FILTER_OUT,” shows the output of the filter 
applied to the first test bench’s data. This output is what the 
LMS filter has produced as its prediction or filtered signal. 
As the input signal flows through the LMS filter, a 
remarkable  transformation takes place and also this 
filter armed with its adaptive capabilities meticulously 
analyses the incoming data in real time. It constantly refines 
its internal coefficients to minimize the error between the 
desired signal and the filtered output. 

C. Performance metrics of the proposed methodology 
The performance metrics collectively provide a 

comprehensive evaluation of the proposed DA-LUT-FIR 
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multiplication. 
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in the proposed work in which using DA design requires 
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this number t0 1182. The reduction in slice registers is by 
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used in two different FIR filter designs where the proposed 
work using DA design requires 15,914 LUTs, while 
the proposed work using DA with an adaptive Channel 
Equalizer uses slightly more, totalling 16,504 LUTs. This 
slight increase in the number of LUTs is by the additional 
complexity introduced by the adaptive Channel Equalizer, 
which enhances the system's ability to dynamically adjust 
to varying channel conditions. Although there is a small 
increase in the number of LUTs, this trade-off results 
in improved performance and adaptability, making the 
design more robust and efficient in handling diverse signal 
environments.

The figure 11 compares the operating frequencies of 
filters in two different designs. The proposed work using 
DA design attains a frequency of 78.617 MHz, while 
the proposed work using DA with an adaptive Channel 
Equalizer operates at a slightly reduced frequency of 77.825 
MHz. This minor decrease in frequency is due to the added 
complexity and functionality of the adaptive Channel 
Equalizer, which allows the system to better adapt to varying 
channel conditions. Despite the small reduction in frequency, 
the enhanced adaptability and performance benefits of the 
adaptive equalizer outweigh this trade-off, resulting in a 
more robust and versatile system.
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that maintains functionality while lowering the hardware 
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adaptive Channel Equalizer (CE). Interestingly, the latter 
design, featuring the DA with an adaptive CE, demonstrates 
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optimally combining precomputed products of filter 
coefficients with input data, thereby simplifying complex 
multiplication operations. With streamlined footprint, the 
DA-LUT-FIR filter offers a significant advancement for 
efficient signal filtering. 
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LUT-FIR filter model with existing techniques, including 
the conventional DA-based filter, LUT-Less 2, Separated 
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DA with an adaptive CE, demonstrates a slight reduction in 
the number of adders required compared to the former, with 
counts of 1026 and 1027, respectively. This marginal decrease 
is attributed to the enhanced efficiency achieved through the 
adaptive CE, which dynamically adjusts to channel variations, 
optimizing the performance and reducing the demand for 
additional adders. Hence, while both designs offer competitive 
functionality, the incorporation of adaptive CE showcases a 
subtle but notable improvement in resource utilization.

D. Comparison of the proposed methodology

This section highlights the proposed method’s 
performance by comparing it to the outcomes of existing 
approaches and showing their results based on various 
metrics. The performance of the existing approaches such as 
conventional DA-based filter, LUT-Less 2, Separated LUT- 
DA, and DA-LUT using buffer [34], GBoost Classifier, Light 
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Figure 14 compares the time delay of the proposed DA- 
LUT-FIR filter model with existing techniques, including 
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minimizes the delays typically associated with more resource-
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filter occupies 10279 μm2, while LUT-Less 2, Separated LUT-
DA, and DA-LUT using buffer require 5854 μm2, 4554 μm2, 
and 5356 μm2, respectively. In contrast, the proposed model 
achieves a compact area of 5500 μm2 by optimally combining 
precomputed products of filter coefficients with input data, 
thereby simplifying complex multiplication operations. 
With streamlined footprint, the DA-LUT-FIR filter offers a 
significant advancement for efficient signal filtering.
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Figure 14 compares the time delay of the proposed DA-
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the conventional DA-based filter, LUT-Less 2, Separated 
LUT-DA, and DA-LUT using buffer. The conventional DA-
based filter experiences a delay of 459 ps, while LUT-Less 
2, Separated LUT-DA, and DA-LUT using buffer have 
delays of 920 ps, 254 ps, and 201 ps, respectively. In 
contrast, the proposed approach achieves an impressive 
delay of just 190 ps. By using the DA-LUT architecture, this 
innovative filter minimizes the delays typically associated 
with more resource-intensive FIR filter implementations, 
showcasing its potential for enhancing performance in time-
sensitive scenarios. 
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Figure 15 illustrates the power dissipation of the proposed 
DA-LUT-FIR filter, which is particularly lower than that of 
traditional FIR filters, making it an appealing option for 
SDR applications. Existing approaches, including the 
conventional DA-based filter, LUT-Less 2, Separated LUT-
DA, and DA-LUT using buffer, show power dissipation 
values of 2.14 mW, 7.52 mW, 8.99 mW, and 1.02 mW, 
respectively. In contrast, the proposed model achieves a 
power dissipation of just 1 mW. By integrating DA and 
LUT technologie, the proposed filter minimizes power 
consumption, making it ideal for power-sensitive 
environments in SDR applications. 

 
 

Figure 16: Comparison of Design Complexity  
 

Figure 16 compares the design complexity of the proposed 
DA-LUT-FIR filter model with existing approaches, 
including the array multiplier, booth radix-4, and booth 
radix-MAC unit, which exhibit design complexities of 327 
LE, 285 LE, and 261 LE, respectively. Compare to this, the 
proposed model achieves a design complexity of just 250 
LE. This reduction demonstrates the innovative nature of the 
DA-LUT-FIR filter, significantly decreasing the inherent 
complexity typically associated with conventional FIR 
filters and highlighting its efficiency in filter design. 
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Figure 17 compares speed of the proposed DA-LUT-FIR 
filter model with existing models, including the array 
multiplier, booth radix-4, and booth radix-MAC unit, which 
achieve speeds of 129.57 MHz, 244.02 MHz, and 255.43 
MHz, respectively. The proposed model reaches a speed of 
260 MHz. By integrating DA with the LUT approach, it 
accelerates multiplication operations through precomputed 
values stored in its LUT, eliminating the need for resource-
intensive multipliers.  
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Figure 18 provides a comparative analysis of latency in 
nanoseconds across different FIR filter designs. The 
baseline latency for 'Existing work' is approximately 448 ns. 
In contrast, the 'Proposed work using DA with Channel 
Equalizer by adaptive filter design (SDR)' achieves a 
remarkable reduction in latency to around 86.126 ns. The 
'Proposed work using DA design' shows a slight increase in 
latency, yet it remains significantly lower than the existing 
work, with a latency of approximately 101 ns. The proposed 
designs have significantly reduced latency, making them 
crucial for applications requiring quick response times. 
 

TABLE I 
 OVERALL TABLE FOR PERFORMANCE ANALYSIS AND COMPARISON 
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Figure 19 presents a comparative analysis of 

throughput performance across three different designs. The 
Existing work demonstrates modest throughput, 
significantly below 142.4 Mbps. The 'Proposed work using 
DA design' shows a substantial improvement, achieving a 
throughput of 633.062 Mbps. Furthermore, the 'Proposed 
work using DA with Channel Equalizer by adaptive filter 
design (SDR)' showcases an impressive throughput close to 
938.12 Mbps. The proposed designs significantly improve 

throughput by integrating an adaptive filter and channel 
equalization in software-defined radio, doubling the 
previous models' throughput. 
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Figure 20 compares the accuracy of the proposed 

DA-LUT-FIR filter model with existing models, including 
GBoost Classifier, Light GBM and Gradient Boosting, 
which exhibit accuracy rates of 75%, 85%, and 95%, 
respectively. The proposed model achieves a significantly 
higher accuracy of 98%. This improvement underscores the 
innovative design of the DA-LUT-FIR filter, which not only 
enhances performance but also minimizes the errors 
typically associated with traditional filtering methods, 
highlighting its effectiveness in digital signal processing 
applications. 
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proposed DA-LUT-FIR filter model with existing models, 
including GFSK, GMSK and BPSK OFDM, which exhibit 
design complexities of 98%, 77% and 82% respectively. In 
contrast, the proposed model achieves a significantly lower 
overhead of 74%. This reduction demonstrates the 
innovative nature of the Enhanced Intellectual PMU 
Controller, significantly decreasing the overhead typically 
associated with traditional methods and highlighting its 
efficiency in electric drive applications. 
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work 
 

Proposed work 
using DA design 

Proposed work using 
DA with Channel 

Equalizer by adaptive 
filter design (SDR) 

Block Size 8 8 8 
Filter 

Length 64 64 64 

FF 1656 752 952 
Delay 56 ns 21.41 ns 9.627 ns 
Area 

(Slices) 839936 6503 8421 

Power 
(Vdd = 
1.8V) 

251.2 mW 95 mW 95mW 

Slice 
Registers 6144 2062 1182 

No of LUT 16,129 15,914 16504 
AND/OR 

gates 190464 14568 9715 

Throughpu
t 142.4 Mbps 633.062 Mbps 938.12 Mbps 

Frequency 65.7 MHz 78.617 MHz 77.825 MHz 

Latency 56ns*8=448 
ns 

Product of delay and 
size of data= 

12.637ns*8=101.096
ns 

Product of delay and size 
of 

data=08.527ns*8=86.126
ns 

No of 
adders 
used 

2077 1027 1026 

Area-delay 
product 

839936*56ns
= 

47036416 ns 

4145*21.42 ns= 
88785.9 ns 

8421*9.627 ns = 
81068.967 ns 

Power-
delay 

product 

251.20 mW 
*56 ns= 
14067.2 
mW/ns 

0.095*21.42 mW = 
2.0349 W/ns 

0.095*9.627 ns= 
0.914565 ns 

optimally combining precomputed products of filter 
coefficients with input data, thereby simplifying complex 
multiplication operations. With streamlined footprint, the 
DA-LUT-FIR filter offers a significant advancement for 
efficient signal filtering. 
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contrast, the proposed approach achieves an impressive 
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with more resource-intensive FIR filter implementations, 
showcasing its potential for enhancing performance in time-
sensitive scenarios. 
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Figure 15 illustrates the power dissipation of the proposed 
DA-LUT-FIR filter, which is particularly lower than that of 
traditional FIR filters, making it an appealing option for 
SDR applications. Existing approaches, including the 
conventional DA-based filter, LUT-Less 2, Separated LUT-
DA, and DA-LUT using buffer, show power dissipation 
values of 2.14 mW, 7.52 mW, 8.99 mW, and 1.02 mW, 
respectively. In contrast, the proposed model achieves a 
power dissipation of just 1 mW. By integrating DA and 
LUT technologie, the proposed filter minimizes power 
consumption, making it ideal for power-sensitive 
environments in SDR applications. 
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filter model with existing models, including the array 
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achieve speeds of 129.57 MHz, 244.02 MHz, and 255.43 
MHz, respectively. The proposed model reaches a speed of 
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DA, and DA-LUT using buffer, show power dissipation 
values of 2.14 mW, 7.52 mW, 8.99 mW, and 1.02 mW, 
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power dissipation of just 1 mW. By integrating DA and 
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consumption, making it ideal for power-sensitive 
environments in SDR applications. 

 
 

Figure 16: Comparison of Design Complexity  
 

Figure 16 compares the design complexity of the proposed 
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including the array multiplier, booth radix-4, and booth 
radix-MAC unit, which exhibit design complexities of 327 
LE, 285 LE, and 261 LE, respectively. Compare to this, the 
proposed model achieves a design complexity of just 250 
LE. This reduction demonstrates the innovative nature of the 
DA-LUT-FIR filter, significantly decreasing the inherent 
complexity typically associated with conventional FIR 
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Figure 17 compares speed of the proposed DA-LUT-FIR 
filter model with existing models, including the array 
multiplier, booth radix-4, and booth radix-MAC unit, which 
achieve speeds of 129.57 MHz, 244.02 MHz, and 255.43 
MHz, respectively. The proposed model reaches a speed of 
260 MHz. By integrating DA with the LUT approach, it 
accelerates multiplication operations through precomputed 
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Figure 16 compares the design complexity of the proposed 
DA-LUT-FIR filter model with existing approaches, including 
the array multiplier, booth radix-4, and booth radix-MAC unit, 
which exhibit design complexities of 327 LE, 285 LE, and 
261 LE, respectively. Compare to this, the proposed model 
achieves a design complexity of just 250 LE. This reduction 
demonstrates the innovative nature of the DA-LUT-FIR filter, 
significantly decreasing the inherent complexity typically 
associated with conventional FIR filters and highlighting its 
efficiency in filter design.

Figure 18 provides a comparative analysis of latency in 
nanoseconds across different FIR filter designs. The baseline 
latency for 'Existing work' is approximately 448 ns. In contrast, 
the 'Proposed work using DA with Channel Equalizer by 
adaptive filter design (SDR)' achieves a remarkable reduction 
in latency to around 86.126 ns. The 'Proposed work using 
DA design' shows a slight increase in latency, yet it remains 
significantly lower than the existing work, with a latency of 
approximately 101 ns. The proposed designs have significantly 
reduced latency, making them crucial for applications requiring 
quick response times.
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power-sensitive environments in SDR applications.
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values of 2.14 mW, 7.52 mW, 8.99 mW, and 1.02 mW, 
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including the array multiplier, booth radix-4, and booth 
radix-MAC unit, which exhibit design complexities of 327 
LE, 285 LE, and 261 LE, respectively. Compare to this, the 
proposed model achieves a design complexity of just 250 
LE. This reduction demonstrates the innovative nature of the 
DA-LUT-FIR filter, significantly decreasing the inherent 
complexity typically associated with conventional FIR 
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Figure 18 provides a comparative analysis of latency in 
nanoseconds across different FIR filter designs. The 
baseline latency for 'Existing work' is approximately 448 ns. 
In contrast, the 'Proposed work using DA with Channel 
Equalizer by adaptive filter design (SDR)' achieves a 
remarkable reduction in latency to around 86.126 ns. The 
'Proposed work using DA design' shows a slight increase in 
latency, yet it remains significantly lower than the existing 
work, with a latency of approximately 101 ns. The proposed 
designs have significantly reduced latency, making them 
crucial for applications requiring quick response times. 
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Figure 19 presents a comparative analysis of 

throughput performance across three different designs. The 
Existing work demonstrates modest throughput, 
significantly below 142.4 Mbps. The 'Proposed work using 
DA design' shows a substantial improvement, achieving a 
throughput of 633.062 Mbps. Furthermore, the 'Proposed 
work using DA with Channel Equalizer by adaptive filter 
design (SDR)' showcases an impressive throughput close to 
938.12 Mbps. The proposed designs significantly improve 

throughput by integrating an adaptive filter and channel 
equalization in software-defined radio, doubling the 
previous models' throughput. 
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Figure 20 compares the accuracy of the proposed 

DA-LUT-FIR filter model with existing models, including 
GBoost Classifier, Light GBM and Gradient Boosting, 
which exhibit accuracy rates of 75%, 85%, and 95%, 
respectively. The proposed model achieves a significantly 
higher accuracy of 98%. This improvement underscores the 
innovative design of the DA-LUT-FIR filter, which not only 
enhances performance but also minimizes the errors 
typically associated with traditional filtering methods, 
highlighting its effectiveness in digital signal processing 
applications. 
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proposed DA-LUT-FIR filter model with existing models, 
including GFSK, GMSK and BPSK OFDM, which exhibit 
design complexities of 98%, 77% and 82% respectively. In 
contrast, the proposed model achieves a significantly lower 
overhead of 74%. This reduction demonstrates the 
innovative nature of the Enhanced Intellectual PMU 
Controller, significantly decreasing the overhead typically 
associated with traditional methods and highlighting its 
efficiency in electric drive applications. 
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Figure 19 presents a comparative analysis of throughput 
performance across three different designs. The Existing 
work demonstrates modest throughput, significantly below 
142.4 Mbps. The 'Proposed work using DA design' shows a 
substantial improvement, achieving a throughput of 633.062 
Mbps. Furthermore, the 'Proposed work using DA with 
Channel Equalizer by adaptive filter design (SDR)' showcases 
an impressive throughput close to 938.12 Mbps. The proposed 
designs significantly improve throughput by integrating an 
adaptive filter and channel equalization in software-defined 
radio, doubling the previous models' throughput.

Figure 21 compares the design complexity of the proposed 
DA-LUT-FIR filter model with existing models, including 
GFSK, GMSK and BPSK OFDM, which exhibit design 
complexities of 98%, 77% and 82% respectively. In contrast, 
the proposed model achieves a significantly lower overhead 
of 74%. This reduction demonstrates the innovative nature 
of the Enhanced Intellectual PMU Controller, significantly 
decreasing the overhead typically associated with traditional 
methods and highlighting its efficiency in electric drive 
applications.

Figure 22 presents an accuracy comparison of various SDR 
platforms utilizing different FPGA models, including USRP 
[36], Adalm Pluto [37], and BladeRF [38], which achieve 
accuracy rates of 99.6%, 98.2%, and 99.5%, respectively. 
In contrast, the proposed model using the Artix-7 FPGA 
demonstrates a significantly higher accuracy of 99.8%. This 
substantial improvement highlights the advanced capabilities 
of the Artix-7 FPGA in enhancing the performance of SDR 
applications, effectively minimizing errors associated with 
traditional models and showcasing its potential in delivering 
superior digital communication outcomes.

Overall, the proposed models' performance is analyzed 
and compared with the existing approaches such as 
conventional DA-based filter, LUT-Less 2, Separated LUT- 
DA, DA-LUT using buffer array multiplier, boothradix-4, and 
boothradix-MAC, GBoost Classifier, Light GBM, Gradient 
Boosting, GFSK, GMSK and BPSK OFD. While comparing 
the proposed approach with existing models, the proposed 
approach achieves the best result of delay 190ps, the power 
dissipation of 1mW, the design complexity attains the value 
of 250 LE, the processing speed of 260MHz, reduced latency 

Figure 20 compares the accuracy of the proposed DA-
LUT-FIR filter model with existing models, including GBoost 
Classifier, Light GBM and Gradient Boosting, which exhibit 
accuracy rates of 75%, 85%, and 95%, respectively. The 
proposed model achieves a significantly higher accuracy of 
98%. This improvement underscores the innovative design of 
the DA-LUT-FIR filter, which not only enhances performance 
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and overhead of 86 ns and 74%, increased throughput and 
accuracy of 938.12 Mbps and 99%. Hence the proposed 
method effectively reduces the noise from SDR applications 
and enhances the performance of throughput and latency in 
DA-LUT-based FIR filters.

E. Overall Performance Analysis

The overall performance analysis of the proposed work 
and its comparison with other existing works is summarized 
in table 1.

Figure 22 presents an accuracy comparison of various SDR 
platforms utilizing different FPGA models, including USRP 
[36], Adalm Pluto [37], and BladeRF [38], which achieve 
accuracy rates of 99.6%, 98.2%, and 99.5%, respectively. In 
contrast, the proposed model using the Artix-7 FPGA 
demonstrates a significantly higher accuracy of 99.8%. This 
substantial improvement highlights the advanced 
capabilities of the Artix-7 FPGA in enhancing the 
performance of SDR applications, effectively minimizing 
errors associated with traditional models and showcasing its 
potential in delivering superior digital communication 
outcomes. 

Overall, the proposed models' performance is 
analyzed and compared with the existing approaches such as 
conventional DA-based filter, LUT-Less 2, Separated LUT-
DA, DA-LUT using buffer array multiplier, boothradix-4, 
and boothradix-MAC, GBoost Classifier, Light GBM, 
Gradient Boosting, GFSK, GMSK and BPSK OFD. While 
comparing the proposed approach with existing models, the 
proposed approach achieves the best result of delay 190ps, 
the power dissipation of 1mW, the design complexity attains 
the value of 250 LE, the processing speed of 260MHz, 
reduced latency and overhead of 86 ns and 74%, increased 
throughput and accuracy of 938.12 Mbps and 99%. Hence 
the proposed method effectively reduces the noise from 
SDR applications and enhances the performance of 
throughput and latency in DA-LUT-based FIR filters. 

E. Overall Performance Analysis 
 The overall performance analysis of the proposed 
work and its comparison with other existing works is 
summarized in table 1. 

V. CONCLUSION 
This study presents a comprehensive evaluation of 

a novel FIR filter architecture based on Distributed 
Arithmetic and Look-Up Tables, implemented on an Artix-7 
FPGA. This DA-LUT-FIR filter design addresses several 
key limitations of traditional multiplier-based FIR filters, 
which often suffer from high hardware complexity, 
significant power consumption, and slower processing 
speeds. This proposed filter was implemented with quicker 
multipliers and adders thereby decreasing bit error rate and 
latency which in turn helps to boost the throughput of data 
given in bits.  Additionally, the decimation factor frequently 
changes the FIR filter coefficients, allowing filters to vary 
their frequency response. According to the experimental 
findings, fewer LUT for FIR filter coefficients result in less 
memory usage and latency. The employment of a highly 
adaptable parallel prefix adder during partial product 
accumulation was another factor that contributed to the 
decreased latency. The use of DA and LUTs in the 
architecture proves to be a powerful combination, delivering 
remarkable performance improvements and making the 
filter highly suitable for real-time digital signal processing 
tasks. The numerical findings from this study—such as the 
operating speed of 260 MHz, power dissipation of 1 mW, 
delay of 190 ps, and throughput of 938.12 Mbps—
demonstrate substantial improvements over existing 
methods. These results make the DA-LUT-FIR filter a 
highly suitable choice for real-time digital signal processing 
tasks, contributing significantly to the advancement of FIR 
filter design for future SDR systems. 
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