
Enhancing QoS for IoT Devices through Heuristics-based
Computation Offloading in Multi-access Edge Computing

DECEMBER 2024 • VOLUME XVI • NUMBER 410

INFOCOMMUNICATIONS JOURNAL

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Enhancing QoS for IoT Devices through
Heuristics-based Computation Offloading in

Multi-access Edge Computing
Marouane Myyara, Oussama Lagnfdi, Anouar Darif, Abderrazak Farchane

Abstract—Multi-access Edge Computing (MEC) networks,
particularly with the advent of 5G, aim to reduce latency
and increase speed to meet the demands of resource-intensive
applications in the Internet of Things (IoT), such as private wire-
less networks, online gaming, industry, and remote healthcare.
These applications require guaranteed performance. However,
while Quality of Service (QoS) management is well established
in the Cloud, improving it remains a challenge in MEC en-
vironments. This study addresses this challenge by proposing
heuristic computation offloading algorithms for IoT-intensive
devices in MEC networks. These algorithms aim to minimize
service time while maximizing the QoS, taking into account tasks
and resource characteristics to determine the optimal execution
location for IoT device applications. We evaluated our approach
using the EdgeCloudSim simulator, and the results demonstrate
its superiority over existing solutions. Our approach significantly
improves QoS by reducing the service time of IoT application
tasks. This research fills a gap in efficient QoS improvement and
contributes to advances in computation offloading strategies in
MEC environments. It paves the way for enhanced performance
of IoT applications in these networks.

Index Terms—MEC, IoT, Computation Offloading, Quality of
Service, Heuristic Algorithms, EdgeCloudSim.

I. INTRODUCTION

The Internet of Things (IoT) is a rapidly expanding ecosys-
tem of diverse physical objects connected through various
networks, both wired and wireless [1]. It enhances internet
utilization by linking mobile devices and sensors. However,
IoT faces significant challenges, including high network la-
tency, availability, and mobility, often mitigated through Cloud
Computing [2]. Resource-constrained IoT devices struggle
with limited processing power, memory, and battery life,
complicating the execution of complex tasks. Additionally, the
surge in IoT devices can overload networks accessing Cloud
servers, hindering low-latency and high-capacity applications.
To address these issues, edge computing paradigms, such as
Mobile/Multi-access Edge Computing (MEC), have emerged.

MEC, introduced by the European Telecommunications
Standards Institute (ETSI) [3], enhances edge intelligence and
boosts processing and storage capabilities [4]. By bringing
cloud functionalities closer to the Radio Access Network
(RAN), it provides ultra-low latency and network context

M. Myyara, O. Lagnfdi, A. Darif, and A. Farchane are affiliated with
the Laboratory of Innovation in Mathematics, Applications, and Informa-
tion Technology, Polydisciplinary Faculty, Sultan Moulay Slimane Univer-
sity, Beni Mellal, 23000, Morocco. e-mails: marouane.myyara@usms.ac.ma,
lagnfdi.o@gmail.com, anouar.darif@gmail.com, and a.farchane@gmail.com

Manuscript received April 19, 2005; revised August 26, 2015.

awareness. ETSI identifies IoT as a key use case for MEC [4],
emphasizing the mutual benefits of their integration [2]. From
the MEC perspective, IoT expands MEC services to various
devices, while from the IoT viewpoint, MEC architecture
offers computing resources closer to users. This integration
significantly aids resource-constrained IoT devices by pro-
viding access to powerful computing at the network edge,
enabling efficient task execution and improved service quality.
According to [5], this integration provides three main benefits:
reduced infrastructure traffic, lower application latency, and
scalable network services. The key advantage is decreased
latency through MEC, which shortens distances and trans-
mission times between resources, facilitating efficient resource
provision for processing IoT applications [6].

Despite growing interest in MEC for IoT, research on
computation offloading remains limited. Recent studies focus
on reducing latency in MEC networks [7], [8], [9], but
offloading for resource-constrained IoT devices has received
insufficient attention. Effective offloading strategies can lower
latency, enhance service quality, and reduce reliance on cen-
tralized cloud systems. Optimizing MEC resources involves
managing limited server capacity to minimize execution delays
and improve user experience. Fair allocation mechanisms
are essential due to the diverse interests of IoT users and
edge servers. The dynamic nature of these systems highlights
the need for ongoing research to develop robust resource
allocation methods that maximize edge computing’s potential
and foster innovation.

This study aims to develop a heuristic-based offloading
strategy that optimizes task execution time and improves
QoS. This paper presents a novel heuristic-based offloading
strategy that addresses the specific challenges faced by IoT
devices. The paper’s structure includes a review of related
work (Section II), the system model and problem formulation
(Section III), the proposed heuristic-based offloading strat-
egy (Section IV), performance evaluation through simulation
results (Section V), and a conclusion with future research
perspectives (Section VI).

II. RELATED WORK

The integration of IoT with MEC provides significant
benefits, such as ultra-low latency, real-time data analytics,
improved resource management, increased capacity, and en-
hanced scalability. By localizing computing capabilities, MEC
reduces bandwidth needs and reliance on central Clouds,
minimizing data transfers to remote data centers.

Abstract—Multi-access Edge Computing (MEC) networks,
particularly with the advent of 5G, aim to reduce latency and
increase speed to meet the demands of resource-intensive ap-
plications in the Internet of Things (IoT), such as private wire-
less networks, online gaming, industry, and remote healthcare.
These applications require guaranteed performance. However,
while Quality of Service (QoS) management is well established
in the Cloud, improving it remains a challenge in MEC en- vi-
ronments. This study addresses this challenge by proposing heu-
ristic computation offloading algorithms for IoT-intensive devic-
es in MEC networks. These algorithms aim to minimize service
time while maximizing the QoS, taking into account tasks and
resource characteristics to determine the optimal execution lo-
cation for IoT device applications. We evaluated our approach
using the EdgeCloudSim simulator, and the results demonstrate
its superiority over existing solutions. Our approach significant-
ly improves QoS by reducing the service time of IoT application
tasks. This research fills a gap in efficient QoS improvement and
contributes to advances in computation offloading strategies in
MEC environments. It paves the way for enhanced performance
of IoT applications in these networks.

Index Terms—MEC, IoT, Computation Offloading, Quality of
Service, Heuristic Algorithms, EdgeCloudSim.

M. Myyara, O. Lagnfdi, A. Darif, and A. Farchane are affiliated with the
Laboratory of Innovation in Mathematics, Applications, and Information
Technology, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni
Mellal, 23000, Morocco. (E-mails: marouane.myyara@usms.ac.ma, lagnfdi.o@
gmail.com, anouar.darif@gmail.com, a.farchane@gmail.com)

Manuscript received April 19, 2005; revised August 26, 2015.

Enhancing QoS for IoT Devices through
Heuristics-based Computation Offloading in

Multi-access Edge Computing
Marouane Myyara, Oussama Lagnfdi, Anouar Darif, and Abderrazak Farchane

DOI: 10.36244/ICJ.2024.4.2

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Enhancing QoS for IoT Devices through
Heuristics-based Computation Offloading in

Multi-access Edge Computing
Marouane Myyara, Oussama Lagnfdi, Anouar Darif, Abderrazak Farchane

Abstract—Multi-access Edge Computing (MEC) networks,
particularly with the advent of 5G, aim to reduce latency
and increase speed to meet the demands of resource-intensive
applications in the Internet of Things (IoT), such as private wire-
less networks, online gaming, industry, and remote healthcare.
These applications require guaranteed performance. However,
while Quality of Service (QoS) management is well established
in the Cloud, improving it remains a challenge in MEC en-
vironments. This study addresses this challenge by proposing
heuristic computation offloading algorithms for IoT-intensive
devices in MEC networks. These algorithms aim to minimize
service time while maximizing the QoS, taking into account tasks
and resource characteristics to determine the optimal execution
location for IoT device applications. We evaluated our approach
using the EdgeCloudSim simulator, and the results demonstrate
its superiority over existing solutions. Our approach significantly
improves QoS by reducing the service time of IoT application
tasks. This research fills a gap in efficient QoS improvement and
contributes to advances in computation offloading strategies in
MEC environments. It paves the way for enhanced performance
of IoT applications in these networks.

Index Terms—MEC, IoT, Computation Offloading, Quality of
Service, Heuristic Algorithms, EdgeCloudSim.

I. INTRODUCTION

The Internet of Things (IoT) is a rapidly expanding ecosys-
tem of diverse physical objects connected through various
networks, both wired and wireless [1]. It enhances internet
utilization by linking mobile devices and sensors. However,
IoT faces significant challenges, including high network la-
tency, availability, and mobility, often mitigated through Cloud
Computing [2]. Resource-constrained IoT devices struggle
with limited processing power, memory, and battery life,
complicating the execution of complex tasks. Additionally, the
surge in IoT devices can overload networks accessing Cloud
servers, hindering low-latency and high-capacity applications.
To address these issues, edge computing paradigms, such as
Mobile/Multi-access Edge Computing (MEC), have emerged.

MEC, introduced by the European Telecommunications
Standards Institute (ETSI) [3], enhances edge intelligence and
boosts processing and storage capabilities [4]. By bringing
cloud functionalities closer to the Radio Access Network
(RAN), it provides ultra-low latency and network context

M. Myyara, O. Lagnfdi, A. Darif, and A. Farchane are affiliated with
the Laboratory of Innovation in Mathematics, Applications, and Informa-
tion Technology, Polydisciplinary Faculty, Sultan Moulay Slimane Univer-
sity, Beni Mellal, 23000, Morocco. e-mails: marouane.myyara@usms.ac.ma,
lagnfdi.o@gmail.com, anouar.darif@gmail.com, and a.farchane@gmail.com

Manuscript received April 19, 2005; revised August 26, 2015.

awareness. ETSI identifies IoT as a key use case for MEC [4],
emphasizing the mutual benefits of their integration [2]. From
the MEC perspective, IoT expands MEC services to various
devices, while from the IoT viewpoint, MEC architecture
offers computing resources closer to users. This integration
significantly aids resource-constrained IoT devices by pro-
viding access to powerful computing at the network edge,
enabling efficient task execution and improved service quality.
According to [5], this integration provides three main benefits:
reduced infrastructure traffic, lower application latency, and
scalable network services. The key advantage is decreased
latency through MEC, which shortens distances and trans-
mission times between resources, facilitating efficient resource
provision for processing IoT applications [6].

Despite growing interest in MEC for IoT, research on
computation offloading remains limited. Recent studies focus
on reducing latency in MEC networks [7], [8], [9], but
offloading for resource-constrained IoT devices has received
insufficient attention. Effective offloading strategies can lower
latency, enhance service quality, and reduce reliance on cen-
tralized cloud systems. Optimizing MEC resources involves
managing limited server capacity to minimize execution delays
and improve user experience. Fair allocation mechanisms
are essential due to the diverse interests of IoT users and
edge servers. The dynamic nature of these systems highlights
the need for ongoing research to develop robust resource
allocation methods that maximize edge computing’s potential
and foster innovation.

This study aims to develop a heuristic-based offloading
strategy that optimizes task execution time and improves
QoS. This paper presents a novel heuristic-based offloading
strategy that addresses the specific challenges faced by IoT
devices. The paper’s structure includes a review of related
work (Section II), the system model and problem formulation
(Section III), the proposed heuristic-based offloading strat-
egy (Section IV), performance evaluation through simulation
results (Section V), and a conclusion with future research
perspectives (Section VI).

II. RELATED WORK

The integration of IoT with MEC provides significant
benefits, such as ultra-low latency, real-time data analytics,
improved resource management, increased capacity, and en-
hanced scalability. By localizing computing capabilities, MEC
reduces bandwidth needs and reliance on central Clouds,
minimizing data transfers to remote data centers.

mailto:marouane.myyara%40usms.ac.ma?subject=
mailto:lagnfdi.o%40gmail.com?subject=
mailto:lagnfdi.o%40gmail.com?subject=
mailto:anouar.darif%40gmail.com?subject=
mailto:a.farchane%40gmail.com?subject=
https://doi.org/10.36244/ICJ.2024.4.2

Enhancing QoS for IoT Devices through Heuristics-based
Computation Offloading in Multi-access Edge Computing

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2024 • VOLUME XVI • NUMBER 4 11

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Researchers have explored collaborative computation of-
floading and resource allocation schemes to enhance task
processing efficiency in MEC systems. MEC facilitates effi-
cient computation, load balancing, and latency reduction by
migrating tasks to resource-rich infrastructures [10]. Recent
studies include dynamic offloading algorithms that optimize
user experience by minimizing service time and balancing
workloads [11], and a deadline-aware scheduling algorithm
that reduces execution time for critical tasks while considering
task type and weight [12]. While many studies focus on
optimizing task processing time, they often neglect the broader
concept of service time, which encompasses both processing
and transmission delays. This paper advances the field by
introducing a novel algorithm that incorporates each task’s
deadline and latency tolerance to minimize service time while
meeting QoS requirements.

Several research efforts have focused on optimizing compu-
tation offloading in MEC to enhance IoT device performance.
One approach is the Lagrange duality resource optimization
algorithm [13], which improves task offloading and resource
allocation compared to traditional methods like random of-
floading and load balancing. This highlights the importance of
efficient processing for real-time IoT applications, addressing
service time and QoS requirements. A notable study [14]
presents a collaborative computing framework that enables de-
vices to partially process tasks across terminals, edge servers,
and the Cloud using a pipeline-based offloading scheme.
Additionally, various models have been developed to reduce
latency and improve system efficiency, including an algorithm
specifically designed to minimize execution latency [15].

Effective joint resource management between MEC and the
central Cloud is crucial for meeting the service demands of
IoT applications, particularly given the limited capabilities of
edge devices compared to Cloud infrastructures [16]. Recent
research has focused on MEC network workload orchestration
and resource allocation strategies to improve IoT application
performance [17]. For instance, [18] explores computation
offloading and bandwidth distribution in IoT networks using
graph-based models for resource optimization. Heuristic meth-
ods, such as the iterative heuristic mobile edge computing
resource allocation algorithm [19], aim to enhance efficiency
and minimize latency.

Despite advancements in MEC and IoT integration, chal-
lenges specific to resource-constrained IoT devices remain un-
addressed. Our primary objective is to minimize task execution
time while considering computing resource constraints and
application requirements. Unlike prior studies, our research
focuses on optimizing QoS for end IoT devices within an
MEC framework. We propose a heuristic-based strategy for
offloading and resource allocation that adheres to constraints
while maximizing task execution efficiency, reducing latency,
and effectively utilizing computing resources.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The MEC system model, illustrated in Figure 1, features
a three-tier architecture: central cloud, MEC servers, and

wirelessly connected IoT devices. IoT devices can offload
resource-intensive computations to MEC servers or the cloud
for efficient processing. Each MEC server is linked to a
wireless access point or base station, covering a specific area
and serving IoT users. These servers, equipped with sufficient
hardware resources, connect to the Edge Orchestrator (EO)
via a backhaul link, which manages infrastructure resources,
server states, and capacities. Positioned close to users, the
servers connect to the EO through a MAN. The central cloud
consists of high-capacity servers provided by cloud service
providers, accessible via a WAN network linking the EO to
the upper layer. The offloading process begins with the device
and is guided by the EO, considering workload distribution,
computing resources, and network conditions.

M
E

C
 L

ay
er

C
lo

ud
 D

at
a

C
en

te
r

MEC Server MEC Server MEC Server
Edge

Orchestrator

WAN

MEC Server

WLAN

MANMAN

Io
T/

E
dg

e
D

ev
ic

es

Augmented Reality Traffic ManagementInfotainmentHealthHeavy Computation

Fig. 1: Multi-layer Multi-access Edge Computing architecture.

B. Notation and Variables

Let M represent the set of MEC nodes, C denote the Central
Cloud, and D the set of IoT devices, with IoTi indicating
device i. Each MEC node m ∈ M is associated with a set of
Virtual Machines (VMs). The computing capacity of each VM,
denoted by F , is measured in MIPS (Millions of Instructions
Per Second). Each IoT device i has one or more computation
tasks, represented by Ti, with each task τi,j characterized
by a length Li,j , indicating the data generated for the task.
The computational capacity required for task j from device
i is Ci,j . These parameters are defined in an XML file in
the EdgeCloudSim simulator [20], allowing for customization
based on application characteristics.

C. Computation Offloading Model

In a multi-layer MEC environment, computation tasks can
be executed locally on the IoT device, offloaded to MEC
servers, or offloaded to central Cloud servers. The computation
task offloading involves two sets of optimization variables:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Researchers have explored collaborative computation of-
floading and resource allocation schemes to enhance task
processing efficiency in MEC systems. MEC facilitates effi-
cient computation, load balancing, and latency reduction by
migrating tasks to resource-rich infrastructures [10]. Recent
studies include dynamic offloading algorithms that optimize
user experience by minimizing service time and balancing
workloads [11], and a deadline-aware scheduling algorithm
that reduces execution time for critical tasks while considering
task type and weight [12]. While many studies focus on
optimizing task processing time, they often neglect the broader
concept of service time, which encompasses both processing
and transmission delays. This paper advances the field by
introducing a novel algorithm that incorporates each task’s
deadline and latency tolerance to minimize service time while
meeting QoS requirements.

Several research efforts have focused on optimizing compu-
tation offloading in MEC to enhance IoT device performance.
One approach is the Lagrange duality resource optimization
algorithm [13], which improves task offloading and resource
allocation compared to traditional methods like random of-
floading and load balancing. This highlights the importance of
efficient processing for real-time IoT applications, addressing
service time and QoS requirements. A notable study [14]
presents a collaborative computing framework that enables de-
vices to partially process tasks across terminals, edge servers,
and the Cloud using a pipeline-based offloading scheme.
Additionally, various models have been developed to reduce
latency and improve system efficiency, including an algorithm
specifically designed to minimize execution latency [15].

Effective joint resource management between MEC and the
central Cloud is crucial for meeting the service demands of
IoT applications, particularly given the limited capabilities of
edge devices compared to Cloud infrastructures [16]. Recent
research has focused on MEC network workload orchestration
and resource allocation strategies to improve IoT application
performance [17]. For instance, [18] explores computation
offloading and bandwidth distribution in IoT networks using
graph-based models for resource optimization. Heuristic meth-
ods, such as the iterative heuristic mobile edge computing
resource allocation algorithm [19], aim to enhance efficiency
and minimize latency.

Despite advancements in MEC and IoT integration, chal-
lenges specific to resource-constrained IoT devices remain un-
addressed. Our primary objective is to minimize task execution
time while considering computing resource constraints and
application requirements. Unlike prior studies, our research
focuses on optimizing QoS for end IoT devices within an
MEC framework. We propose a heuristic-based strategy for
offloading and resource allocation that adheres to constraints
while maximizing task execution efficiency, reducing latency,
and effectively utilizing computing resources.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The MEC system model, illustrated in Figure 1, features
a three-tier architecture: central cloud, MEC servers, and

wirelessly connected IoT devices. IoT devices can offload
resource-intensive computations to MEC servers or the cloud
for efficient processing. Each MEC server is linked to a
wireless access point or base station, covering a specific area
and serving IoT users. These servers, equipped with sufficient
hardware resources, connect to the Edge Orchestrator (EO)
via a backhaul link, which manages infrastructure resources,
server states, and capacities. Positioned close to users, the
servers connect to the EO through a MAN. The central cloud
consists of high-capacity servers provided by cloud service
providers, accessible via a WAN network linking the EO to
the upper layer. The offloading process begins with the device
and is guided by the EO, considering workload distribution,
computing resources, and network conditions.

M
E

C
 L

ay
er

C
lo

ud
 D

at
a

C
en

te
r

MEC Server MEC Server MEC Server
Edge

Orchestrator

WAN

MEC Server

WLAN

MANMAN

Io
T/

E
dg

e
D

ev
ic

es

Augmented Reality Traffic ManagementInfotainmentHealthHeavy Computation

Fig. 1: Multi-layer Multi-access Edge Computing architecture.

B. Notation and Variables

Let M represent the set of MEC nodes, C denote the Central
Cloud, and D the set of IoT devices, with IoTi indicating
device i. Each MEC node m ∈ M is associated with a set of
Virtual Machines (VMs). The computing capacity of each VM,
denoted by F , is measured in MIPS (Millions of Instructions
Per Second). Each IoT device i has one or more computation
tasks, represented by Ti, with each task τi,j characterized
by a length Li,j , indicating the data generated for the task.
The computational capacity required for task j from device
i is Ci,j . These parameters are defined in an XML file in
the EdgeCloudSim simulator [20], allowing for customization
based on application characteristics.

C. Computation Offloading Model

In a multi-layer MEC environment, computation tasks can
be executed locally on the IoT device, offloaded to MEC
servers, or offloaded to central Cloud servers. The computation
task offloading involves two sets of optimization variables:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Researchers have explored collaborative computation of-
floading and resource allocation schemes to enhance task
processing efficiency in MEC systems. MEC facilitates effi-
cient computation, load balancing, and latency reduction by
migrating tasks to resource-rich infrastructures [10]. Recent
studies include dynamic offloading algorithms that optimize
user experience by minimizing service time and balancing
workloads [11], and a deadline-aware scheduling algorithm
that reduces execution time for critical tasks while considering
task type and weight [12]. While many studies focus on
optimizing task processing time, they often neglect the broader
concept of service time, which encompasses both processing
and transmission delays. This paper advances the field by
introducing a novel algorithm that incorporates each task’s
deadline and latency tolerance to minimize service time while
meeting QoS requirements.

Several research efforts have focused on optimizing compu-
tation offloading in MEC to enhance IoT device performance.
One approach is the Lagrange duality resource optimization
algorithm [13], which improves task offloading and resource
allocation compared to traditional methods like random of-
floading and load balancing. This highlights the importance of
efficient processing for real-time IoT applications, addressing
service time and QoS requirements. A notable study [14]
presents a collaborative computing framework that enables de-
vices to partially process tasks across terminals, edge servers,
and the Cloud using a pipeline-based offloading scheme.
Additionally, various models have been developed to reduce
latency and improve system efficiency, including an algorithm
specifically designed to minimize execution latency [15].

Effective joint resource management between MEC and the
central Cloud is crucial for meeting the service demands of
IoT applications, particularly given the limited capabilities of
edge devices compared to Cloud infrastructures [16]. Recent
research has focused on MEC network workload orchestration
and resource allocation strategies to improve IoT application
performance [17]. For instance, [18] explores computation
offloading and bandwidth distribution in IoT networks using
graph-based models for resource optimization. Heuristic meth-
ods, such as the iterative heuristic mobile edge computing
resource allocation algorithm [19], aim to enhance efficiency
and minimize latency.

Despite advancements in MEC and IoT integration, chal-
lenges specific to resource-constrained IoT devices remain un-
addressed. Our primary objective is to minimize task execution
time while considering computing resource constraints and
application requirements. Unlike prior studies, our research
focuses on optimizing QoS for end IoT devices within an
MEC framework. We propose a heuristic-based strategy for
offloading and resource allocation that adheres to constraints
while maximizing task execution efficiency, reducing latency,
and effectively utilizing computing resources.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The MEC system model, illustrated in Figure 1, features
a three-tier architecture: central cloud, MEC servers, and

wirelessly connected IoT devices. IoT devices can offload
resource-intensive computations to MEC servers or the cloud
for efficient processing. Each MEC server is linked to a
wireless access point or base station, covering a specific area
and serving IoT users. These servers, equipped with sufficient
hardware resources, connect to the Edge Orchestrator (EO)
via a backhaul link, which manages infrastructure resources,
server states, and capacities. Positioned close to users, the
servers connect to the EO through a MAN. The central cloud
consists of high-capacity servers provided by cloud service
providers, accessible via a WAN network linking the EO to
the upper layer. The offloading process begins with the device
and is guided by the EO, considering workload distribution,
computing resources, and network conditions.

M
E

C
 L

ay
er

C
lo

ud
 D

at
a

C
en

te
r

MEC Server MEC Server MEC Server
Edge

Orchestrator

WAN

MEC Server

WLAN

MANMAN

Io
T/

E
dg

e
D

ev
ic

es

Augmented Reality Traffic ManagementInfotainmentHealthHeavy Computation

Fig. 1: Multi-layer Multi-access Edge Computing architecture.

B. Notation and Variables

Let M represent the set of MEC nodes, C denote the Central
Cloud, and D the set of IoT devices, with IoTi indicating
device i. Each MEC node m ∈ M is associated with a set of
Virtual Machines (VMs). The computing capacity of each VM,
denoted by F , is measured in MIPS (Millions of Instructions
Per Second). Each IoT device i has one or more computation
tasks, represented by Ti, with each task τi,j characterized
by a length Li,j , indicating the data generated for the task.
The computational capacity required for task j from device
i is Ci,j . These parameters are defined in an XML file in
the EdgeCloudSim simulator [20], allowing for customization
based on application characteristics.

C. Computation Offloading Model

In a multi-layer MEC environment, computation tasks can
be executed locally on the IoT device, offloaded to MEC
servers, or offloaded to central Cloud servers. The computation
task offloading involves two sets of optimization variables:

Fig. 1: Multi-layer Multi-access Edge Computing architecture.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Researchers have explored collaborative computation of-
floading and resource allocation schemes to enhance task
processing efficiency in MEC systems. MEC facilitates effi-
cient computation, load balancing, and latency reduction by
migrating tasks to resource-rich infrastructures [10]. Recent
studies include dynamic offloading algorithms that optimize
user experience by minimizing service time and balancing
workloads [11], and a deadline-aware scheduling algorithm
that reduces execution time for critical tasks while considering
task type and weight [12]. While many studies focus on
optimizing task processing time, they often neglect the broader
concept of service time, which encompasses both processing
and transmission delays. This paper advances the field by
introducing a novel algorithm that incorporates each task’s
deadline and latency tolerance to minimize service time while
meeting QoS requirements.

Several research efforts have focused on optimizing compu-
tation offloading in MEC to enhance IoT device performance.
One approach is the Lagrange duality resource optimization
algorithm [13], which improves task offloading and resource
allocation compared to traditional methods like random of-
floading and load balancing. This highlights the importance of
efficient processing for real-time IoT applications, addressing
service time and QoS requirements. A notable study [14]
presents a collaborative computing framework that enables de-
vices to partially process tasks across terminals, edge servers,
and the Cloud using a pipeline-based offloading scheme.
Additionally, various models have been developed to reduce
latency and improve system efficiency, including an algorithm
specifically designed to minimize execution latency [15].

Effective joint resource management between MEC and the
central Cloud is crucial for meeting the service demands of
IoT applications, particularly given the limited capabilities of
edge devices compared to Cloud infrastructures [16]. Recent
research has focused on MEC network workload orchestration
and resource allocation strategies to improve IoT application
performance [17]. For instance, [18] explores computation
offloading and bandwidth distribution in IoT networks using
graph-based models for resource optimization. Heuristic meth-
ods, such as the iterative heuristic mobile edge computing
resource allocation algorithm [19], aim to enhance efficiency
and minimize latency.

Despite advancements in MEC and IoT integration, chal-
lenges specific to resource-constrained IoT devices remain un-
addressed. Our primary objective is to minimize task execution
time while considering computing resource constraints and
application requirements. Unlike prior studies, our research
focuses on optimizing QoS for end IoT devices within an
MEC framework. We propose a heuristic-based strategy for
offloading and resource allocation that adheres to constraints
while maximizing task execution efficiency, reducing latency,
and effectively utilizing computing resources.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The MEC system model, illustrated in Figure 1, features
a three-tier architecture: central cloud, MEC servers, and

wirelessly connected IoT devices. IoT devices can offload
resource-intensive computations to MEC servers or the cloud
for efficient processing. Each MEC server is linked to a
wireless access point or base station, covering a specific area
and serving IoT users. These servers, equipped with sufficient
hardware resources, connect to the Edge Orchestrator (EO)
via a backhaul link, which manages infrastructure resources,
server states, and capacities. Positioned close to users, the
servers connect to the EO through a MAN. The central cloud
consists of high-capacity servers provided by cloud service
providers, accessible via a WAN network linking the EO to
the upper layer. The offloading process begins with the device
and is guided by the EO, considering workload distribution,
computing resources, and network conditions.

M
E

C
 L

ay
er

C
lo

ud
 D

at
a

C
en

te
r

MEC Server MEC Server MEC Server
Edge

Orchestrator

WAN

MEC Server

WLAN

MANMAN

Io
T/

E
dg

e
D

ev
ic

es

Augmented Reality Traffic ManagementInfotainmentHealthHeavy Computation

Fig. 1: Multi-layer Multi-access Edge Computing architecture.

B. Notation and Variables

Let M represent the set of MEC nodes, C denote the Central
Cloud, and D the set of IoT devices, with IoTi indicating
device i. Each MEC node m ∈ M is associated with a set of
Virtual Machines (VMs). The computing capacity of each VM,
denoted by F , is measured in MIPS (Millions of Instructions
Per Second). Each IoT device i has one or more computation
tasks, represented by Ti, with each task τi,j characterized
by a length Li,j , indicating the data generated for the task.
The computational capacity required for task j from device
i is Ci,j . These parameters are defined in an XML file in
the EdgeCloudSim simulator [20], allowing for customization
based on application characteristics.

C. Computation Offloading Model

In a multi-layer MEC environment, computation tasks can
be executed locally on the IoT device, offloaded to MEC
servers, or offloaded to central Cloud servers. The computation
task offloading involves two sets of optimization variables:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

• Binary Variable A: This variable is defined as A = {αi,j |
i ∈ D, j ∈ Ti}. Here, αi,j takes a value of 0 if task data
τi,j is offloaded, and 1 if it is executed locally.

• Binary Variable B: This variable is defined as B = {βi,j |
i ∈ D, j ∈ Ti}. Here, βi,j equals 1 if the task is offloaded
to an MEC server, and 0 if it is offloaded to the Cloud.

D. Task Computation Model

In this section, we focus on the task computation models in
the MEC architecture, providing estimations for determining
local processing times and remote processing times.

1) Local Computation: Local computation processes tasks
directly on the user’s IoT device, resulting in low latency
since data does not need to be transferred to a remote server.
However, if the task size is large or the device’s computing
capacity is limited, offloading may be necessary. Let FIoTi

denote the computing power of the IoT device i in MIPS. The
overall service time for local computation, denoted as T IoT

τi,j ,
can be calculated as:

T IoT
τi,j =

Li,j

FIoTi

(1)

The local computation delay depends on task size and
computing power. Larger tasks or weaker computing power
result in longer delays. Local computation has no transmission
delays as data is processed on the user’s IoT device.

2) Computation in MEC Servers: Computation in MEC
servers leverages proximity to end-users to achieve low la-
tency. Offloading tasks to nearby MEC servers typically re-
duces service time compared to local computation. However,
task execution on MEC servers incurs delays due to wireless
transmission from IoT devices. The total execution time on
an MEC server includes both transmission and computation
delays. Let FMECm denote the computing power of the m-th
MEC server. The execution time of task τi,j on MEC server
m can be expressed as:

Tm
Com(i,j) =

Li,j

FMECm

(2)

The total delay, considering both transmission and compu-
tation times, for transmitting the input data and receiving the
computation results from the IoT layer to the MEC server
through the wireless channel can be expressed as:

TMECm
τi,j = Tm

Com(i,j) + Tm
Up(i,j) + Tm

Dw(i,j) (3)

where Tm
Com(i,j) represents the computation time for task j

on MEC server m, Tm
Up(i,j) represents the upload data transfer

time, and Tm
Dw(i,j) represents the download data transfer time

from the MEC server back to the IoT device.
3) Computation in Cloud Servers: Computation in Cloud

servers offers high processing power and storage capacity but
incurs higher latency due to the distance of data transfer. When
MEC servers cannot process offloaded tasks promptly, they are
sent to the Cloud server over the wireless network. The total
delay in Cloud server computation consists of transmission
and processing delays. The computation time in the Cloud is
given by:

T cloud
Com(i,j) =

Li,j

FCloud
(4)

Where FCloud represents the computing power of the Cloud
server in MIPS. Similar to the MEC server case, there is
a transmission delay for uploading and downloading data,
denoted as T cloud

Up(i,j) and T cloud
Dw(i,j) respectively. The total delay

for offloading a task to the Cloud server is the sum of the
computation time and the transmission delay:

TCloud
τi,j = T cloud

Com(i,j) + T cloud
Up(i,j) + T cloud

Dw(i,j) (5)

Figure 2 illustrates task computation models for local
computation, MEC servers, and Cloud servers, indicating
task offloading and allocation in the MEC architecture. It’s
important to note that transmission delay in the Cloud server
case is typically longer due to distance and potential network
congestion.

Local Computation

No Offloading

Computation in Cloud Server

Access Point

Cloud Data Center

Computation in MEC Server

Base Station

Transmit to the Cloud

Transmit Input Data Received Output Data

Fig. 2: An illustration of Computation Offloading type in MEC
networks

E. Problem Formulation

The objective of this study is to minimize the execution time
of computing tasks in an MEC system by optimizing task
offloading and resource allocation. We consider application
constraints, available computing capacities, and resources. Our
problem is formulated as a minimization problem with an
objective function that incorporates task constraints, resource
capacities, and offloading decision variables:

Minimize P =
D∑
i=1

Ti∑
j=1

M∑
m=1

αi,jT
IoT
τi,j + (1− αi,j)× (6)

(
βi,jT

MECm
τi,j + (1− βi,j)T

Cloud
τi,j

)

Enhancing QoS for IoT Devices through Heuristics-based
Computation Offloading in Multi-access Edge Computing

DECEMBER 2024 • VOLUME XVI • NUMBER 412

INFOCOMMUNICATIONS JOURNALJOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

• Binary Variable A: This variable is defined as A = {αi,j |
i ∈ D, j ∈ Ti}. Here, αi,j takes a value of 0 if task data
τi,j is offloaded, and 1 if it is executed locally.

• Binary Variable B: This variable is defined as B = {βi,j |
i ∈ D, j ∈ Ti}. Here, βi,j equals 1 if the task is offloaded
to an MEC server, and 0 if it is offloaded to the Cloud.

D. Task Computation Model

In this section, we focus on the task computation models in
the MEC architecture, providing estimations for determining
local processing times and remote processing times.

1) Local Computation: Local computation processes tasks
directly on the user’s IoT device, resulting in low latency
since data does not need to be transferred to a remote server.
However, if the task size is large or the device’s computing
capacity is limited, offloading may be necessary. Let FIoTi

denote the computing power of the IoT device i in MIPS. The
overall service time for local computation, denoted as T IoT

τi,j ,
can be calculated as:

T IoT
τi,j =

Li,j

FIoTi

(1)

The local computation delay depends on task size and
computing power. Larger tasks or weaker computing power
result in longer delays. Local computation has no transmission
delays as data is processed on the user’s IoT device.

2) Computation in MEC Servers: Computation in MEC
servers leverages proximity to end-users to achieve low la-
tency. Offloading tasks to nearby MEC servers typically re-
duces service time compared to local computation. However,
task execution on MEC servers incurs delays due to wireless
transmission from IoT devices. The total execution time on
an MEC server includes both transmission and computation
delays. Let FMECm denote the computing power of the m-th
MEC server. The execution time of task τi,j on MEC server
m can be expressed as:

Tm
Com(i,j) =

Li,j

FMECm

(2)

The total delay, considering both transmission and compu-
tation times, for transmitting the input data and receiving the
computation results from the IoT layer to the MEC server
through the wireless channel can be expressed as:

TMECm
τi,j = Tm

Com(i,j) + Tm
Up(i,j) + Tm

Dw(i,j) (3)

where Tm
Com(i,j) represents the computation time for task j

on MEC server m, Tm
Up(i,j) represents the upload data transfer

time, and Tm
Dw(i,j) represents the download data transfer time

from the MEC server back to the IoT device.
3) Computation in Cloud Servers: Computation in Cloud

servers offers high processing power and storage capacity but
incurs higher latency due to the distance of data transfer. When
MEC servers cannot process offloaded tasks promptly, they are
sent to the Cloud server over the wireless network. The total
delay in Cloud server computation consists of transmission
and processing delays. The computation time in the Cloud is
given by:

T cloud
Com(i,j) =

Li,j

FCloud
(4)

Where FCloud represents the computing power of the Cloud
server in MIPS. Similar to the MEC server case, there is
a transmission delay for uploading and downloading data,
denoted as T cloud

Up(i,j) and T cloud
Dw(i,j) respectively. The total delay

for offloading a task to the Cloud server is the sum of the
computation time and the transmission delay:

TCloud
τi,j = T cloud

Com(i,j) + T cloud
Up(i,j) + T cloud

Dw(i,j) (5)

Figure 2 illustrates task computation models for local
computation, MEC servers, and Cloud servers, indicating
task offloading and allocation in the MEC architecture. It’s
important to note that transmission delay in the Cloud server
case is typically longer due to distance and potential network
congestion.

Local Computation

No Offloading

Computation in Cloud Server

Access Point

Cloud Data Center

Computation in MEC Server

Base Station

Transmit to the Cloud

Transmit Input Data Received Output Data

Fig. 2: An illustration of Computation Offloading type in MEC
networks

E. Problem Formulation

The objective of this study is to minimize the execution time
of computing tasks in an MEC system by optimizing task
offloading and resource allocation. We consider application
constraints, available computing capacities, and resources. Our
problem is formulated as a minimization problem with an
objective function that incorporates task constraints, resource
capacities, and offloading decision variables:

Minimize P =
D∑
i=1

Ti∑
j=1

M∑
m=1

αi,jT
IoT
τi,j + (1− αi,j)× (6)

(
βi,jT

MECm
τi,j + (1− βi,j)T

Cloud
τi,j

)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

• Binary Variable A: This variable is defined as A = {αi,j |
i ∈ D, j ∈ Ti}. Here, αi,j takes a value of 0 if task data
τi,j is offloaded, and 1 if it is executed locally.

• Binary Variable B: This variable is defined as B = {βi,j |
i ∈ D, j ∈ Ti}. Here, βi,j equals 1 if the task is offloaded
to an MEC server, and 0 if it is offloaded to the Cloud.

D. Task Computation Model

In this section, we focus on the task computation models in
the MEC architecture, providing estimations for determining
local processing times and remote processing times.

1) Local Computation: Local computation processes tasks
directly on the user’s IoT device, resulting in low latency
since data does not need to be transferred to a remote server.
However, if the task size is large or the device’s computing
capacity is limited, offloading may be necessary. Let FIoTi

denote the computing power of the IoT device i in MIPS. The
overall service time for local computation, denoted as T IoT

τi,j ,
can be calculated as:

T IoT
τi,j =

Li,j

FIoTi

(1)

The local computation delay depends on task size and
computing power. Larger tasks or weaker computing power
result in longer delays. Local computation has no transmission
delays as data is processed on the user’s IoT device.

2) Computation in MEC Servers: Computation in MEC
servers leverages proximity to end-users to achieve low la-
tency. Offloading tasks to nearby MEC servers typically re-
duces service time compared to local computation. However,
task execution on MEC servers incurs delays due to wireless
transmission from IoT devices. The total execution time on
an MEC server includes both transmission and computation
delays. Let FMECm denote the computing power of the m-th
MEC server. The execution time of task τi,j on MEC server
m can be expressed as:

Tm
Com(i,j) =

Li,j

FMECm

(2)

The total delay, considering both transmission and compu-
tation times, for transmitting the input data and receiving the
computation results from the IoT layer to the MEC server
through the wireless channel can be expressed as:

TMECm
τi,j = Tm

Com(i,j) + Tm
Up(i,j) + Tm

Dw(i,j) (3)

where Tm
Com(i,j) represents the computation time for task j

on MEC server m, Tm
Up(i,j) represents the upload data transfer

time, and Tm
Dw(i,j) represents the download data transfer time

from the MEC server back to the IoT device.
3) Computation in Cloud Servers: Computation in Cloud

servers offers high processing power and storage capacity but
incurs higher latency due to the distance of data transfer. When
MEC servers cannot process offloaded tasks promptly, they are
sent to the Cloud server over the wireless network. The total
delay in Cloud server computation consists of transmission
and processing delays. The computation time in the Cloud is
given by:

T cloud
Com(i,j) =

Li,j

FCloud
(4)

Where FCloud represents the computing power of the Cloud
server in MIPS. Similar to the MEC server case, there is
a transmission delay for uploading and downloading data,
denoted as T cloud

Up(i,j) and T cloud
Dw(i,j) respectively. The total delay

for offloading a task to the Cloud server is the sum of the
computation time and the transmission delay:

TCloud
τi,j = T cloud

Com(i,j) + T cloud
Up(i,j) + T cloud

Dw(i,j) (5)

Figure 2 illustrates task computation models for local
computation, MEC servers, and Cloud servers, indicating
task offloading and allocation in the MEC architecture. It’s
important to note that transmission delay in the Cloud server
case is typically longer due to distance and potential network
congestion.

Local Computation

No Offloading

Computation in Cloud Server

Access Point

Cloud Data Center

Computation in MEC Server

Base Station

Transmit to the Cloud

Transmit Input Data Received Output Data

Fig. 2: An illustration of Computation Offloading type in MEC
networks

E. Problem Formulation

The objective of this study is to minimize the execution time
of computing tasks in an MEC system by optimizing task
offloading and resource allocation. We consider application
constraints, available computing capacities, and resources. Our
problem is formulated as a minimization problem with an
objective function that incorporates task constraints, resource
capacities, and offloading decision variables:

Minimize P =
D∑
i=1

Ti∑
j=1

M∑
m=1

αi,jT
IoT
τi,j + (1− αi,j)× (6)

(
βi,jT

MECm
τi,j + (1− βi,j)T

Cloud
τi,j

)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

• Binary Variable A: This variable is defined as A = {αi,j |
i ∈ D, j ∈ Ti}. Here, αi,j takes a value of 0 if task data
τi,j is offloaded, and 1 if it is executed locally.

• Binary Variable B: This variable is defined as B = {βi,j |
i ∈ D, j ∈ Ti}. Here, βi,j equals 1 if the task is offloaded
to an MEC server, and 0 if it is offloaded to the Cloud.

D. Task Computation Model

In this section, we focus on the task computation models in
the MEC architecture, providing estimations for determining
local processing times and remote processing times.

1) Local Computation: Local computation processes tasks
directly on the user’s IoT device, resulting in low latency
since data does not need to be transferred to a remote server.
However, if the task size is large or the device’s computing
capacity is limited, offloading may be necessary. Let FIoTi

denote the computing power of the IoT device i in MIPS. The
overall service time for local computation, denoted as T IoT

τi,j ,
can be calculated as:

T IoT
τi,j =

Li,j

FIoTi

(1)

The local computation delay depends on task size and
computing power. Larger tasks or weaker computing power
result in longer delays. Local computation has no transmission
delays as data is processed on the user’s IoT device.

2) Computation in MEC Servers: Computation in MEC
servers leverages proximity to end-users to achieve low la-
tency. Offloading tasks to nearby MEC servers typically re-
duces service time compared to local computation. However,
task execution on MEC servers incurs delays due to wireless
transmission from IoT devices. The total execution time on
an MEC server includes both transmission and computation
delays. Let FMECm denote the computing power of the m-th
MEC server. The execution time of task τi,j on MEC server
m can be expressed as:

Tm
Com(i,j) =

Li,j

FMECm

(2)

The total delay, considering both transmission and compu-
tation times, for transmitting the input data and receiving the
computation results from the IoT layer to the MEC server
through the wireless channel can be expressed as:

TMECm
τi,j = Tm

Com(i,j) + Tm
Up(i,j) + Tm

Dw(i,j) (3)

where Tm
Com(i,j) represents the computation time for task j

on MEC server m, Tm
Up(i,j) represents the upload data transfer

time, and Tm
Dw(i,j) represents the download data transfer time

from the MEC server back to the IoT device.
3) Computation in Cloud Servers: Computation in Cloud

servers offers high processing power and storage capacity but
incurs higher latency due to the distance of data transfer. When
MEC servers cannot process offloaded tasks promptly, they are
sent to the Cloud server over the wireless network. The total
delay in Cloud server computation consists of transmission
and processing delays. The computation time in the Cloud is
given by:

T cloud
Com(i,j) =

Li,j

FCloud
(4)

Where FCloud represents the computing power of the Cloud
server in MIPS. Similar to the MEC server case, there is
a transmission delay for uploading and downloading data,
denoted as T cloud

Up(i,j) and T cloud
Dw(i,j) respectively. The total delay

for offloading a task to the Cloud server is the sum of the
computation time and the transmission delay:

TCloud
τi,j = T cloud

Com(i,j) + T cloud
Up(i,j) + T cloud

Dw(i,j) (5)

Figure 2 illustrates task computation models for local
computation, MEC servers, and Cloud servers, indicating
task offloading and allocation in the MEC architecture. It’s
important to note that transmission delay in the Cloud server
case is typically longer due to distance and potential network
congestion.

Local Computation

No Offloading

Computation in Cloud Server

Access Point

Cloud Data Center

Computation in MEC Server

Base Station

Transmit to the Cloud

Transmit Input Data Received Output Data

Fig. 2: An illustration of Computation Offloading type in MEC
networks

E. Problem Formulation

The objective of this study is to minimize the execution time
of computing tasks in an MEC system by optimizing task
offloading and resource allocation. We consider application
constraints, available computing capacities, and resources. Our
problem is formulated as a minimization problem with an
objective function that incorporates task constraints, resource
capacities, and offloading decision variables:

Minimize P =
D∑
i=1

Ti∑
j=1

M∑
m=1

αi,jT
IoT
τi,j + (1− αi,j)× (6)

(
βi,jT

MECm
τi,j + (1− βi,j)T

Cloud
τi,j

)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

• Binary Variable A: This variable is defined as A = {αi,j |
i ∈ D, j ∈ Ti}. Here, αi,j takes a value of 0 if task data
τi,j is offloaded, and 1 if it is executed locally.

• Binary Variable B: This variable is defined as B = {βi,j |
i ∈ D, j ∈ Ti}. Here, βi,j equals 1 if the task is offloaded
to an MEC server, and 0 if it is offloaded to the Cloud.

D. Task Computation Model

In this section, we focus on the task computation models in
the MEC architecture, providing estimations for determining
local processing times and remote processing times.

1) Local Computation: Local computation processes tasks
directly on the user’s IoT device, resulting in low latency
since data does not need to be transferred to a remote server.
However, if the task size is large or the device’s computing
capacity is limited, offloading may be necessary. Let FIoTi

denote the computing power of the IoT device i in MIPS. The
overall service time for local computation, denoted as T IoT

τi,j ,
can be calculated as:

T IoT
τi,j =

Li,j

FIoTi

(1)

The local computation delay depends on task size and
computing power. Larger tasks or weaker computing power
result in longer delays. Local computation has no transmission
delays as data is processed on the user’s IoT device.

2) Computation in MEC Servers: Computation in MEC
servers leverages proximity to end-users to achieve low la-
tency. Offloading tasks to nearby MEC servers typically re-
duces service time compared to local computation. However,
task execution on MEC servers incurs delays due to wireless
transmission from IoT devices. The total execution time on
an MEC server includes both transmission and computation
delays. Let FMECm denote the computing power of the m-th
MEC server. The execution time of task τi,j on MEC server
m can be expressed as:

Tm
Com(i,j) =

Li,j

FMECm

(2)

The total delay, considering both transmission and compu-
tation times, for transmitting the input data and receiving the
computation results from the IoT layer to the MEC server
through the wireless channel can be expressed as:

TMECm
τi,j = Tm

Com(i,j) + Tm
Up(i,j) + Tm

Dw(i,j) (3)

where Tm
Com(i,j) represents the computation time for task j

on MEC server m, Tm
Up(i,j) represents the upload data transfer

time, and Tm
Dw(i,j) represents the download data transfer time

from the MEC server back to the IoT device.
3) Computation in Cloud Servers: Computation in Cloud

servers offers high processing power and storage capacity but
incurs higher latency due to the distance of data transfer. When
MEC servers cannot process offloaded tasks promptly, they are
sent to the Cloud server over the wireless network. The total
delay in Cloud server computation consists of transmission
and processing delays. The computation time in the Cloud is
given by:

T cloud
Com(i,j) =

Li,j

FCloud
(4)

Where FCloud represents the computing power of the Cloud
server in MIPS. Similar to the MEC server case, there is
a transmission delay for uploading and downloading data,
denoted as T cloud

Up(i,j) and T cloud
Dw(i,j) respectively. The total delay

for offloading a task to the Cloud server is the sum of the
computation time and the transmission delay:

TCloud
τi,j = T cloud

Com(i,j) + T cloud
Up(i,j) + T cloud

Dw(i,j) (5)

Figure 2 illustrates task computation models for local
computation, MEC servers, and Cloud servers, indicating
task offloading and allocation in the MEC architecture. It’s
important to note that transmission delay in the Cloud server
case is typically longer due to distance and potential network
congestion.

Local Computation

No Offloading

Computation in Cloud Server

Access Point

Cloud Data Center

Computation in MEC Server

Base Station

Transmit to the Cloud

Transmit Input Data Received Output Data

Fig. 2: An illustration of Computation Offloading type in MEC
networks

E. Problem Formulation

The objective of this study is to minimize the execution time
of computing tasks in an MEC system by optimizing task
offloading and resource allocation. We consider application
constraints, available computing capacities, and resources. Our
problem is formulated as a minimization problem with an
objective function that incorporates task constraints, resource
capacities, and offloading decision variables:

Minimize P =
D∑
i=1

Ti∑
j=1

M∑
m=1

αi,jT
IoT
τi,j + (1− αi,j)× (6)

(
βi,jT

MECm
τi,j + (1− βi,j)T

Cloud
τi,j

)

Fig. 2: An illustration of Computation Offloading type in MEC networks

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

• Binary Variable A: This variable is defined as A = {αi,j |
i ∈ D, j ∈ Ti}. Here, αi,j takes a value of 0 if task data
τi,j is offloaded, and 1 if it is executed locally.

• Binary Variable B: This variable is defined as B = {βi,j |
i ∈ D, j ∈ Ti}. Here, βi,j equals 1 if the task is offloaded
to an MEC server, and 0 if it is offloaded to the Cloud.

D. Task Computation Model

In this section, we focus on the task computation models in
the MEC architecture, providing estimations for determining
local processing times and remote processing times.

1) Local Computation: Local computation processes tasks
directly on the user’s IoT device, resulting in low latency
since data does not need to be transferred to a remote server.
However, if the task size is large or the device’s computing
capacity is limited, offloading may be necessary. Let FIoTi

denote the computing power of the IoT device i in MIPS. The
overall service time for local computation, denoted as T IoT

τi,j ,
can be calculated as:

T IoT
τi,j =

Li,j

FIoTi

(1)

The local computation delay depends on task size and
computing power. Larger tasks or weaker computing power
result in longer delays. Local computation has no transmission
delays as data is processed on the user’s IoT device.

2) Computation in MEC Servers: Computation in MEC
servers leverages proximity to end-users to achieve low la-
tency. Offloading tasks to nearby MEC servers typically re-
duces service time compared to local computation. However,
task execution on MEC servers incurs delays due to wireless
transmission from IoT devices. The total execution time on
an MEC server includes both transmission and computation
delays. Let FMECm denote the computing power of the m-th
MEC server. The execution time of task τi,j on MEC server
m can be expressed as:

Tm
Com(i,j) =

Li,j

FMECm

(2)

The total delay, considering both transmission and compu-
tation times, for transmitting the input data and receiving the
computation results from the IoT layer to the MEC server
through the wireless channel can be expressed as:

TMECm
τi,j = Tm

Com(i,j) + Tm
Up(i,j) + Tm

Dw(i,j) (3)

where Tm
Com(i,j) represents the computation time for task j

on MEC server m, Tm
Up(i,j) represents the upload data transfer

time, and Tm
Dw(i,j) represents the download data transfer time

from the MEC server back to the IoT device.
3) Computation in Cloud Servers: Computation in Cloud

servers offers high processing power and storage capacity but
incurs higher latency due to the distance of data transfer. When
MEC servers cannot process offloaded tasks promptly, they are
sent to the Cloud server over the wireless network. The total
delay in Cloud server computation consists of transmission
and processing delays. The computation time in the Cloud is
given by:

T cloud
Com(i,j) =

Li,j

FCloud
(4)

Where FCloud represents the computing power of the Cloud
server in MIPS. Similar to the MEC server case, there is
a transmission delay for uploading and downloading data,
denoted as T cloud

Up(i,j) and T cloud
Dw(i,j) respectively. The total delay

for offloading a task to the Cloud server is the sum of the
computation time and the transmission delay:

TCloud
τi,j = T cloud

Com(i,j) + T cloud
Up(i,j) + T cloud

Dw(i,j) (5)

Figure 2 illustrates task computation models for local
computation, MEC servers, and Cloud servers, indicating
task offloading and allocation in the MEC architecture. It’s
important to note that transmission delay in the Cloud server
case is typically longer due to distance and potential network
congestion.

Local Computation

No Offloading

Computation in Cloud Server

Access Point

Cloud Data Center

Computation in MEC Server

Base Station

Transmit to the Cloud

Transmit Input Data Received Output Data

Fig. 2: An illustration of Computation Offloading type in MEC
networks

E. Problem Formulation

The objective of this study is to minimize the execution time
of computing tasks in an MEC system by optimizing task
offloading and resource allocation. We consider application
constraints, available computing capacities, and resources. Our
problem is formulated as a minimization problem with an
objective function that incorporates task constraints, resource
capacities, and offloading decision variables:

Minimize P =
D∑
i=1

Ti∑
j=1

M∑
m=1

αi,jT
IoT
τi,j + (1− αi,j)× (6)

(
βi,jT

MECm
τi,j + (1− βi,j)T

Cloud
τi,j

)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

• Binary Variable A: This variable is defined as A = {αi,j |
i ∈ D, j ∈ Ti}. Here, αi,j takes a value of 0 if task data
τi,j is offloaded, and 1 if it is executed locally.

• Binary Variable B: This variable is defined as B = {βi,j |
i ∈ D, j ∈ Ti}. Here, βi,j equals 1 if the task is offloaded
to an MEC server, and 0 if it is offloaded to the Cloud.

D. Task Computation Model

In this section, we focus on the task computation models in
the MEC architecture, providing estimations for determining
local processing times and remote processing times.

1) Local Computation: Local computation processes tasks
directly on the user’s IoT device, resulting in low latency
since data does not need to be transferred to a remote server.
However, if the task size is large or the device’s computing
capacity is limited, offloading may be necessary. Let FIoTi

denote the computing power of the IoT device i in MIPS. The
overall service time for local computation, denoted as T IoT

τi,j ,
can be calculated as:

T IoT
τi,j =

Li,j

FIoTi

(1)

The local computation delay depends on task size and
computing power. Larger tasks or weaker computing power
result in longer delays. Local computation has no transmission
delays as data is processed on the user’s IoT device.

2) Computation in MEC Servers: Computation in MEC
servers leverages proximity to end-users to achieve low la-
tency. Offloading tasks to nearby MEC servers typically re-
duces service time compared to local computation. However,
task execution on MEC servers incurs delays due to wireless
transmission from IoT devices. The total execution time on
an MEC server includes both transmission and computation
delays. Let FMECm denote the computing power of the m-th
MEC server. The execution time of task τi,j on MEC server
m can be expressed as:

Tm
Com(i,j) =

Li,j

FMECm

(2)

The total delay, considering both transmission and compu-
tation times, for transmitting the input data and receiving the
computation results from the IoT layer to the MEC server
through the wireless channel can be expressed as:

TMECm
τi,j = Tm

Com(i,j) + Tm
Up(i,j) + Tm

Dw(i,j) (3)

where Tm
Com(i,j) represents the computation time for task j

on MEC server m, Tm
Up(i,j) represents the upload data transfer

time, and Tm
Dw(i,j) represents the download data transfer time

from the MEC server back to the IoT device.
3) Computation in Cloud Servers: Computation in Cloud

servers offers high processing power and storage capacity but
incurs higher latency due to the distance of data transfer. When
MEC servers cannot process offloaded tasks promptly, they are
sent to the Cloud server over the wireless network. The total
delay in Cloud server computation consists of transmission
and processing delays. The computation time in the Cloud is
given by:

T cloud
Com(i,j) =

Li,j

FCloud
(4)

Where FCloud represents the computing power of the Cloud
server in MIPS. Similar to the MEC server case, there is
a transmission delay for uploading and downloading data,
denoted as T cloud

Up(i,j) and T cloud
Dw(i,j) respectively. The total delay

for offloading a task to the Cloud server is the sum of the
computation time and the transmission delay:

TCloud
τi,j = T cloud

Com(i,j) + T cloud
Up(i,j) + T cloud

Dw(i,j) (5)

Figure 2 illustrates task computation models for local
computation, MEC servers, and Cloud servers, indicating
task offloading and allocation in the MEC architecture. It’s
important to note that transmission delay in the Cloud server
case is typically longer due to distance and potential network
congestion.

Local Computation

No Offloading

Computation in Cloud Server

Access Point

Cloud Data Center

Computation in MEC Server

Base Station

Transmit to the Cloud

Transmit Input Data Received Output Data

Fig. 2: An illustration of Computation Offloading type in MEC
networks

E. Problem Formulation

The objective of this study is to minimize the execution time
of computing tasks in an MEC system by optimizing task
offloading and resource allocation. We consider application
constraints, available computing capacities, and resources. Our
problem is formulated as a minimization problem with an
objective function that incorporates task constraints, resource
capacities, and offloading decision variables:

Minimize P =
D∑
i=1

Ti∑
j=1

M∑
m=1

αi,jT
IoT
τi,j + (1− αi,j)× (6)

(
βi,jT

MECm
τi,j + (1− βi,j)T

Cloud
τi,j

)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

• Binary Variable A: This variable is defined as A = {αi,j |
i ∈ D, j ∈ Ti}. Here, αi,j takes a value of 0 if task data
τi,j is offloaded, and 1 if it is executed locally.

• Binary Variable B: This variable is defined as B = {βi,j |
i ∈ D, j ∈ Ti}. Here, βi,j equals 1 if the task is offloaded
to an MEC server, and 0 if it is offloaded to the Cloud.

D. Task Computation Model

In this section, we focus on the task computation models in
the MEC architecture, providing estimations for determining
local processing times and remote processing times.

1) Local Computation: Local computation processes tasks
directly on the user’s IoT device, resulting in low latency
since data does not need to be transferred to a remote server.
However, if the task size is large or the device’s computing
capacity is limited, offloading may be necessary. Let FIoTi

denote the computing power of the IoT device i in MIPS. The
overall service time for local computation, denoted as T IoT

τi,j ,
can be calculated as:

T IoT
τi,j =

Li,j

FIoTi

(1)

The local computation delay depends on task size and
computing power. Larger tasks or weaker computing power
result in longer delays. Local computation has no transmission
delays as data is processed on the user’s IoT device.

2) Computation in MEC Servers: Computation in MEC
servers leverages proximity to end-users to achieve low la-
tency. Offloading tasks to nearby MEC servers typically re-
duces service time compared to local computation. However,
task execution on MEC servers incurs delays due to wireless
transmission from IoT devices. The total execution time on
an MEC server includes both transmission and computation
delays. Let FMECm denote the computing power of the m-th
MEC server. The execution time of task τi,j on MEC server
m can be expressed as:

Tm
Com(i,j) =

Li,j

FMECm

(2)

The total delay, considering both transmission and compu-
tation times, for transmitting the input data and receiving the
computation results from the IoT layer to the MEC server
through the wireless channel can be expressed as:

TMECm
τi,j = Tm

Com(i,j) + Tm
Up(i,j) + Tm

Dw(i,j) (3)

where Tm
Com(i,j) represents the computation time for task j

on MEC server m, Tm
Up(i,j) represents the upload data transfer

time, and Tm
Dw(i,j) represents the download data transfer time

from the MEC server back to the IoT device.
3) Computation in Cloud Servers: Computation in Cloud

servers offers high processing power and storage capacity but
incurs higher latency due to the distance of data transfer. When
MEC servers cannot process offloaded tasks promptly, they are
sent to the Cloud server over the wireless network. The total
delay in Cloud server computation consists of transmission
and processing delays. The computation time in the Cloud is
given by:

T cloud
Com(i,j) =

Li,j

FCloud
(4)

Where FCloud represents the computing power of the Cloud
server in MIPS. Similar to the MEC server case, there is
a transmission delay for uploading and downloading data,
denoted as T cloud

Up(i,j) and T cloud
Dw(i,j) respectively. The total delay

for offloading a task to the Cloud server is the sum of the
computation time and the transmission delay:

TCloud
τi,j = T cloud

Com(i,j) + T cloud
Up(i,j) + T cloud

Dw(i,j) (5)

Figure 2 illustrates task computation models for local
computation, MEC servers, and Cloud servers, indicating
task offloading and allocation in the MEC architecture. It’s
important to note that transmission delay in the Cloud server
case is typically longer due to distance and potential network
congestion.

Local Computation

No Offloading

Computation in Cloud Server

Access Point

Cloud Data Center

Computation in MEC Server

Base Station

Transmit to the Cloud

Transmit Input Data Received Output Data

Fig. 2: An illustration of Computation Offloading type in MEC
networks

E. Problem Formulation

The objective of this study is to minimize the execution time
of computing tasks in an MEC system by optimizing task
offloading and resource allocation. We consider application
constraints, available computing capacities, and resources. Our
problem is formulated as a minimization problem with an
objective function that incorporates task constraints, resource
capacities, and offloading decision variables:

Minimize P =
D∑
i=1

Ti∑
j=1

M∑
m=1

αi,jT
IoT
τi,j + (1− αi,j)× (6)

(
βi,jT

MECm
τi,j + (1− βi,j)T

Cloud
τi,j

)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

• Binary Variable A: This variable is defined as A = {αi,j |
i ∈ D, j ∈ Ti}. Here, αi,j takes a value of 0 if task data
τi,j is offloaded, and 1 if it is executed locally.

• Binary Variable B: This variable is defined as B = {βi,j |
i ∈ D, j ∈ Ti}. Here, βi,j equals 1 if the task is offloaded
to an MEC server, and 0 if it is offloaded to the Cloud.

D. Task Computation Model

In this section, we focus on the task computation models in
the MEC architecture, providing estimations for determining
local processing times and remote processing times.

1) Local Computation: Local computation processes tasks
directly on the user’s IoT device, resulting in low latency
since data does not need to be transferred to a remote server.
However, if the task size is large or the device’s computing
capacity is limited, offloading may be necessary. Let FIoTi

denote the computing power of the IoT device i in MIPS. The
overall service time for local computation, denoted as T IoT

τi,j ,
can be calculated as:

T IoT
τi,j =

Li,j

FIoTi

(1)

The local computation delay depends on task size and
computing power. Larger tasks or weaker computing power
result in longer delays. Local computation has no transmission
delays as data is processed on the user’s IoT device.

2) Computation in MEC Servers: Computation in MEC
servers leverages proximity to end-users to achieve low la-
tency. Offloading tasks to nearby MEC servers typically re-
duces service time compared to local computation. However,
task execution on MEC servers incurs delays due to wireless
transmission from IoT devices. The total execution time on
an MEC server includes both transmission and computation
delays. Let FMECm denote the computing power of the m-th
MEC server. The execution time of task τi,j on MEC server
m can be expressed as:

Tm
Com(i,j) =

Li,j

FMECm

(2)

The total delay, considering both transmission and compu-
tation times, for transmitting the input data and receiving the
computation results from the IoT layer to the MEC server
through the wireless channel can be expressed as:

TMECm
τi,j = Tm

Com(i,j) + Tm
Up(i,j) + Tm

Dw(i,j) (3)

where Tm
Com(i,j) represents the computation time for task j

on MEC server m, Tm
Up(i,j) represents the upload data transfer

time, and Tm
Dw(i,j) represents the download data transfer time

from the MEC server back to the IoT device.
3) Computation in Cloud Servers: Computation in Cloud

servers offers high processing power and storage capacity but
incurs higher latency due to the distance of data transfer. When
MEC servers cannot process offloaded tasks promptly, they are
sent to the Cloud server over the wireless network. The total
delay in Cloud server computation consists of transmission
and processing delays. The computation time in the Cloud is
given by:

T cloud
Com(i,j) =

Li,j

FCloud
(4)

Where FCloud represents the computing power of the Cloud
server in MIPS. Similar to the MEC server case, there is
a transmission delay for uploading and downloading data,
denoted as T cloud

Up(i,j) and T cloud
Dw(i,j) respectively. The total delay

for offloading a task to the Cloud server is the sum of the
computation time and the transmission delay:

TCloud
τi,j = T cloud

Com(i,j) + T cloud
Up(i,j) + T cloud

Dw(i,j) (5)

Figure 2 illustrates task computation models for local
computation, MEC servers, and Cloud servers, indicating
task offloading and allocation in the MEC architecture. It’s
important to note that transmission delay in the Cloud server
case is typically longer due to distance and potential network
congestion.

Local Computation

No Offloading

Computation in Cloud Server

Access Point

Cloud Data Center

Computation in MEC Server

Base Station

Transmit to the Cloud

Transmit Input Data Received Output Data

Fig. 2: An illustration of Computation Offloading type in MEC
networks

E. Problem Formulation

The objective of this study is to minimize the execution time
of computing tasks in an MEC system by optimizing task
offloading and resource allocation. We consider application
constraints, available computing capacities, and resources. Our
problem is formulated as a minimization problem with an
objective function that incorporates task constraints, resource
capacities, and offloading decision variables:

Minimize P =
D∑
i=1

Ti∑
j=1

M∑
m=1

αi,jT
IoT
τi,j + (1− αi,j)× (6)

(
βi,jT

MECm
τi,j + (1− βi,j)T

Cloud
τi,j

)

Enhancing QoS for IoT Devices through Heuristics-based
Computation Offloading in Multi-access Edge Computing

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2024 • VOLUME XVI • NUMBER 4 13

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Subject to:
αi,j , βi,j ∈ {0, 1} , ∀i ∈ D, ∀j ∈ Ti (6a)

D∑
i=1

Ti∑
j=1

(1− αi,j)× βi,jCi,j ≤
M∑

m=1

FMECm
(6b)

D∑
i=1

Ti∑
j=1

(1− αi,j)(1− βi,j)Ci,j ≤ FCloud (6c)

D∑
i=1

Ti∑
j=1

αi,jCi,j ≤
D∑
i=1

FIoTi
(6d)

D∑
i=1

Ti∑
j=1

M∑
m=1

(1− αi,j)βi,jFMECm
≤

M∑
m=1

ThMECm
(6e)

The problem is subject to the following constraints: Con-
straint (6a) ensures that the decision variables (αi,j , βi,j) are
binary. Constraint (6b) guarantees that the server’s computing
capacity is sufficient if a task is offloaded to an MEC server.
Constraint (6c) verifies that the capacity is adequate for tasks
offloaded to the cloud server. Constraint (6d) ensures the
device’s computing capacity is sufficient for local execution.
Finally, constraint (6e) restricts MEC server resource utiliza-
tion to a specified threshold ThMECm , typically set around 80%.

By addressing this optimization challenge, we can identify
effective task offloading and resource allocation strategies
that minimize total execution time while adhering to MEC
system constraints. This problem can be formulated as an
Integer Linear Programming (ILP) model, which provides
optimal solutions [21] but faces high computational com-
plexity, complicating real-time implementation for large-scale
applications. To overcome this, heuristic strategies have been
developed, balancing solution quality with computational ef-
ficiency. These methods enable real-time offloading decisions
and resource optimization associated with ILP, ensuring sys-
tem agility in managing dynamic task arrivals.

IV. HEURISTIC-BASED OFFLOADING STRATEGY FOR QOS
IMPROVEMENT

We propose a Heuristic-based Offloading strategy to en-
hance QoS (HOQoS) in MEC environments. Our goal is to
optimize offloading decisions for computing tasks while con-
sidering time constraints, resource limitations, and application
requirements. Utilizing greedy heuristics, we explore the solu-
tion space to make optimal decisions for each task, factoring in
predicted execution times across different architecture layers.
By assessing the impact of offloading on overall service time,
we aim for significant QoS improvement.

A key component of our strategy is the Offloading Decision
Variable Identification (ODVI) algorithm (Algorithm 1), which
determines the best offloading decision (αi,j , βi,j) for each
incoming task τi,j . The algorithm initializes the minimum
time as infinite and the decision variables as zero. For each
task, it calculates the local execution time T IoT

τi,j and estimates
delays on MEC servers TMECm

τi,j and in the Cloud TCloud
τi,j . The

task is assigned to the server with the shortest delay Tmin,
while respecting the maximum acceptable delay constraint.
The decision variables (αi,j , βi,j) are then based on the chosen
optimal location, focusing on individual tasks rather than
overall execution time.

Algorithm 1 Offloading Decision Variable Identification
(ODVI)

Require: (M, C,D, Ti)
Ensure: (αi,j , βi,j) Offloading decision variables

1: TMin(i,j) ← ∞
2: Decision variables (αi,j , βi,j) ← ∅
3: for i ∈ D do
4: for j ∈ Ti do
5: for m ∈ M do
6: TMin(i,j) ← min(TMin(i,j), T

IoT
τi,j , TMECm

τi,j , TCloud
τi,j)

7: end for
8: if TMin(i,j) = T IoT

τi,j then
9: αi,j ← 1

10: else
11: if TMin(i,j) = TCloud

τi,j then
12: αi,j ← 0
13: βi,j ← 0
14: else
15: αi,j ← 0
16: βi,j ← 1
17: end if
18: end if
19: end for
20: end for
21: return (αi,j , βi,j)

The ODVI algorithm, while effective for individual task
offloading, has limitations in global optimization and resource
contention management. Its focus on single tasks can lead to
suboptimal overall system performance and does not address
resource contention among multiple tasks. To overcome these
issues, we introduce the Virtual Machine Selection for Execu-
tion (VMSE) algorithm (Algorithm 2).

VMSE tackles the global optimization problem by con-
sidering overall system resource allocation when selecting
a virtual machine for each incoming task τi,j . It implic-
itly manages resource contention by prioritizing VMs with
lower utilization. The algorithm evaluates the characteristics
of incoming tasks against the current utilization of MEC
servers and the Cloud, selecting the least utilized VM that
meets the task’s performance, resource, and time constraints.
This integration significantly enhances QoS through efficient
resource utilization and improved task execution efficiency.

To optimize task offloading and resource allocation, we de-
veloped the HOQoS algorithm (Algorithm 3), which integrates
the features of the ODVI and VMSE algorithms. First, the
ODVI algorithm evaluates available execution environments
by considering MEC server performance and network latency,
generating decision variable pairs based on task characteristics
such as size, complexity, and time constraints. These pairs
represent potential execution options for each task. Next, the
VMSE algorithm selects the optimal execution location by

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Subject to:
αi,j , βi,j ∈ {0, 1} , ∀i ∈ D, ∀j ∈ Ti (6a)

D∑
i=1

Ti∑
j=1

(1− αi,j)× βi,jCi,j ≤
M∑

m=1

FMECm
(6b)

D∑
i=1

Ti∑
j=1

(1− αi,j)(1− βi,j)Ci,j ≤ FCloud (6c)

D∑
i=1

Ti∑
j=1

αi,jCi,j ≤
D∑
i=1

FIoTi
(6d)

D∑
i=1

Ti∑
j=1

M∑
m=1

(1− αi,j)βi,jFMECm
≤

M∑
m=1

ThMECm
(6e)

The problem is subject to the following constraints: Con-
straint (6a) ensures that the decision variables (αi,j , βi,j) are
binary. Constraint (6b) guarantees that the server’s computing
capacity is sufficient if a task is offloaded to an MEC server.
Constraint (6c) verifies that the capacity is adequate for tasks
offloaded to the cloud server. Constraint (6d) ensures the
device’s computing capacity is sufficient for local execution.
Finally, constraint (6e) restricts MEC server resource utiliza-
tion to a specified threshold ThMECm , typically set around 80%.

By addressing this optimization challenge, we can identify
effective task offloading and resource allocation strategies
that minimize total execution time while adhering to MEC
system constraints. This problem can be formulated as an
Integer Linear Programming (ILP) model, which provides
optimal solutions [21] but faces high computational com-
plexity, complicating real-time implementation for large-scale
applications. To overcome this, heuristic strategies have been
developed, balancing solution quality with computational ef-
ficiency. These methods enable real-time offloading decisions
and resource optimization associated with ILP, ensuring sys-
tem agility in managing dynamic task arrivals.

IV. HEURISTIC-BASED OFFLOADING STRATEGY FOR QOS
IMPROVEMENT

We propose a Heuristic-based Offloading strategy to en-
hance QoS (HOQoS) in MEC environments. Our goal is to
optimize offloading decisions for computing tasks while con-
sidering time constraints, resource limitations, and application
requirements. Utilizing greedy heuristics, we explore the solu-
tion space to make optimal decisions for each task, factoring in
predicted execution times across different architecture layers.
By assessing the impact of offloading on overall service time,
we aim for significant QoS improvement.

A key component of our strategy is the Offloading Decision
Variable Identification (ODVI) algorithm (Algorithm 1), which
determines the best offloading decision (αi,j , βi,j) for each
incoming task τi,j . The algorithm initializes the minimum
time as infinite and the decision variables as zero. For each
task, it calculates the local execution time T IoT

τi,j and estimates
delays on MEC servers TMECm

τi,j and in the Cloud TCloud
τi,j . The

task is assigned to the server with the shortest delay Tmin,
while respecting the maximum acceptable delay constraint.
The decision variables (αi,j , βi,j) are then based on the chosen
optimal location, focusing on individual tasks rather than
overall execution time.

Algorithm 1 Offloading Decision Variable Identification
(ODVI)

Require: (M, C,D, Ti)
Ensure: (αi,j , βi,j) Offloading decision variables

1: TMin(i,j) ← ∞
2: Decision variables (αi,j , βi,j) ← ∅
3: for i ∈ D do
4: for j ∈ Ti do
5: for m ∈ M do
6: TMin(i,j) ← min(TMin(i,j), T

IoT
τi,j , TMECm

τi,j , TCloud
τi,j)

7: end for
8: if TMin(i,j) = T IoT

τi,j then
9: αi,j ← 1

10: else
11: if TMin(i,j) = TCloud

τi,j then
12: αi,j ← 0
13: βi,j ← 0
14: else
15: αi,j ← 0
16: βi,j ← 1
17: end if
18: end if
19: end for
20: end for
21: return (αi,j , βi,j)

The ODVI algorithm, while effective for individual task
offloading, has limitations in global optimization and resource
contention management. Its focus on single tasks can lead to
suboptimal overall system performance and does not address
resource contention among multiple tasks. To overcome these
issues, we introduce the Virtual Machine Selection for Execu-
tion (VMSE) algorithm (Algorithm 2).

VMSE tackles the global optimization problem by con-
sidering overall system resource allocation when selecting
a virtual machine for each incoming task τi,j . It implic-
itly manages resource contention by prioritizing VMs with
lower utilization. The algorithm evaluates the characteristics
of incoming tasks against the current utilization of MEC
servers and the Cloud, selecting the least utilized VM that
meets the task’s performance, resource, and time constraints.
This integration significantly enhances QoS through efficient
resource utilization and improved task execution efficiency.

To optimize task offloading and resource allocation, we de-
veloped the HOQoS algorithm (Algorithm 3), which integrates
the features of the ODVI and VMSE algorithms. First, the
ODVI algorithm evaluates available execution environments
by considering MEC server performance and network latency,
generating decision variable pairs based on task characteristics
such as size, complexity, and time constraints. These pairs
represent potential execution options for each task. Next, the
VMSE algorithm selects the optimal execution location by

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Subject to:
αi,j , βi,j ∈ {0, 1} , ∀i ∈ D, ∀j ∈ Ti (6a)

D∑
i=1

Ti∑
j=1

(1− αi,j)× βi,jCi,j ≤
M∑

m=1

FMECm
(6b)

D∑
i=1

Ti∑
j=1

(1− αi,j)(1− βi,j)Ci,j ≤ FCloud (6c)

D∑
i=1

Ti∑
j=1

αi,jCi,j ≤
D∑
i=1

FIoTi
(6d)

D∑
i=1

Ti∑
j=1

M∑
m=1

(1− αi,j)βi,jFMECm
≤

M∑
m=1

ThMECm
(6e)

The problem is subject to the following constraints: Con-
straint (6a) ensures that the decision variables (αi,j , βi,j) are
binary. Constraint (6b) guarantees that the server’s computing
capacity is sufficient if a task is offloaded to an MEC server.
Constraint (6c) verifies that the capacity is adequate for tasks
offloaded to the cloud server. Constraint (6d) ensures the
device’s computing capacity is sufficient for local execution.
Finally, constraint (6e) restricts MEC server resource utiliza-
tion to a specified threshold ThMECm , typically set around 80%.

By addressing this optimization challenge, we can identify
effective task offloading and resource allocation strategies
that minimize total execution time while adhering to MEC
system constraints. This problem can be formulated as an
Integer Linear Programming (ILP) model, which provides
optimal solutions [21] but faces high computational com-
plexity, complicating real-time implementation for large-scale
applications. To overcome this, heuristic strategies have been
developed, balancing solution quality with computational ef-
ficiency. These methods enable real-time offloading decisions
and resource optimization associated with ILP, ensuring sys-
tem agility in managing dynamic task arrivals.

IV. HEURISTIC-BASED OFFLOADING STRATEGY FOR QOS
IMPROVEMENT

We propose a Heuristic-based Offloading strategy to en-
hance QoS (HOQoS) in MEC environments. Our goal is to
optimize offloading decisions for computing tasks while con-
sidering time constraints, resource limitations, and application
requirements. Utilizing greedy heuristics, we explore the solu-
tion space to make optimal decisions for each task, factoring in
predicted execution times across different architecture layers.
By assessing the impact of offloading on overall service time,
we aim for significant QoS improvement.

A key component of our strategy is the Offloading Decision
Variable Identification (ODVI) algorithm (Algorithm 1), which
determines the best offloading decision (αi,j , βi,j) for each
incoming task τi,j . The algorithm initializes the minimum
time as infinite and the decision variables as zero. For each
task, it calculates the local execution time T IoT

τi,j and estimates
delays on MEC servers TMECm

τi,j and in the Cloud TCloud
τi,j . The

task is assigned to the server with the shortest delay Tmin,
while respecting the maximum acceptable delay constraint.
The decision variables (αi,j , βi,j) are then based on the chosen
optimal location, focusing on individual tasks rather than
overall execution time.

Algorithm 1 Offloading Decision Variable Identification
(ODVI)

Require: (M, C,D, Ti)
Ensure: (αi,j , βi,j) Offloading decision variables

1: TMin(i,j) ← ∞
2: Decision variables (αi,j , βi,j) ← ∅
3: for i ∈ D do
4: for j ∈ Ti do
5: for m ∈ M do
6: TMin(i,j) ← min(TMin(i,j), T

IoT
τi,j , TMECm

τi,j , TCloud
τi,j)

7: end for
8: if TMin(i,j) = T IoT

τi,j then
9: αi,j ← 1

10: else
11: if TMin(i,j) = TCloud

τi,j then
12: αi,j ← 0
13: βi,j ← 0
14: else
15: αi,j ← 0
16: βi,j ← 1
17: end if
18: end if
19: end for
20: end for
21: return (αi,j , βi,j)

The ODVI algorithm, while effective for individual task
offloading, has limitations in global optimization and resource
contention management. Its focus on single tasks can lead to
suboptimal overall system performance and does not address
resource contention among multiple tasks. To overcome these
issues, we introduce the Virtual Machine Selection for Execu-
tion (VMSE) algorithm (Algorithm 2).

VMSE tackles the global optimization problem by con-
sidering overall system resource allocation when selecting
a virtual machine for each incoming task τi,j . It implic-
itly manages resource contention by prioritizing VMs with
lower utilization. The algorithm evaluates the characteristics
of incoming tasks against the current utilization of MEC
servers and the Cloud, selecting the least utilized VM that
meets the task’s performance, resource, and time constraints.
This integration significantly enhances QoS through efficient
resource utilization and improved task execution efficiency.

To optimize task offloading and resource allocation, we de-
veloped the HOQoS algorithm (Algorithm 3), which integrates
the features of the ODVI and VMSE algorithms. First, the
ODVI algorithm evaluates available execution environments
by considering MEC server performance and network latency,
generating decision variable pairs based on task characteristics
such as size, complexity, and time constraints. These pairs
represent potential execution options for each task. Next, the
VMSE algorithm selects the optimal execution location by

Enhancing QoS for IoT Devices through Heuristics-based
Computation Offloading in Multi-access Edge Computing

DECEMBER 2024 • VOLUME XVI • NUMBER 414

INFOCOMMUNICATIONS JOURNAL

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Algorithm 2 Virtual Machine Selection for Execution (VMSE)

Require: Incoming task τi,j , Node(Ropt[τi,j])
Ensure: VM satisfying task’s (τi,j) resource requirements.

1: task ← τi,j
2: selectedVM ← null
3: bestUtili ← ∞
4: for host ∈ getInfrastructureHostList(Node(Ropt[τi,j])) do
5: vmList ← getVmList(host)
6: for vm ∈ vmList do
7: if task.Utilization() ≤ vm.getCapacity() then
8: currentUtili ← vm.getCurrentUtilization()
9: if currentUtili < bestUtili then

10: selectedVM ← vm
11: bestUtili ← currentUtili
12: else if currentUtili == bestUtili then
13: selectedVM ← SelectVM(selectedVM,vm)
14: end if
15: end if
16: end for
17: end for
18: return selectedVM

assessing task characteristics and resource availability on MEC
servers and in the Cloud. It evaluates each virtual machine’s
performance and chooses the one that best meets the task’s
requirements regarding performance, resource availability, and
time constraints.

Algorithm 3 Heuristic-based offloading for improving quality
of service (HOQoS)

Require: ((αi,j , βi,j),M, C,D, Ti,j)
Ensure: Optimal Resource Allocation Ropt[τi,j] and selected

VM VMselected[τi,j]
1: Ropt[τi,j] ← null
2: VMselected[τi,j] ← null
3: for i ∈ D do
4: for j ∈ Ti do
5: (αi,j , βi,j) ← Call Algorithm 1
6: if αi,j = 1 then ▷ Local allocation
7: Ropt[τi,j] ← LocalNode
8: else if βi,j = 1 then ▷ MEC allocation
9: Ropt[τi,j] ← MECNode

10: else ▷ Cloud allocation
11: Ropt[τi,j] ← CloudNode
12: end if
13: VMselected[τi,j] ← Call Algorithm 2
14: end for
15: end for
16: return Ropt and VMselected[τi,j]

The HOQoS algorithm employs a sequential task processing
strategy, handling tasks individually rather than in batches.
This approach is crucial for achieving system agility and effec-
tively managing dynamic task arrivals. By adapting resource
allocation in real time, the algorithm ensures a rapid and
optimized response, even with irregular or unpredictable task

arrival rates. Thus, sequential processing is integral to the al-
gorithm’s ability to efficiently manage dynamic environments.

V. PERFORMANCE EVALUATION

In the performance evaluation section, we conducted sim-
ulations using the EdgeCloudSim simulator [20]. We analyze
the performance of our MEC architecture using various mea-
surement and evaluation methods.

A. Simulation Parameters

The simulation parameters used for our evaluations are
summarized in Table I. The simulations are implemented in
Java, and the generated plots are visualized using Matlab. The
experiments are conducted on a computer with 4 Intel Core
i7-9600U processors clocked at 2.59 GHz and 8 GB of RAM.

TABLE I: Simulation Parameters.

Parameter IoT MEC Cloud

Number of devices 100 - 2,300 14 1

Number of hosts 1 1 1

Number of VMs per host 1 8 4

Number of Cores per VM 1 2 4

VM CPU Speed (in MIPS) 4,000 10,000 100,000

EdgeCloudSim utilizes four distinct application types to
realistically simulate diverse scenarios, as detailed in [20].
Table II summarizes the characteristics of each application
type: Heavy applications are characterized by high data trans-
mission, high computational intensity, and low sensitivity to
delays. Infotainment applications generally require moder-
ate data transmission, high computational intensity, and low
sensitivity to delays. AR/VR applications involve high data
transmission volumes, moderate computational intensity, and
high sensitivity to delays. Health applications typically feature
moderate data transmission, moderate computational intensity,
and moderate sensitivity to delays. Each application is assessed
based on several criteria, including usage percentage, which
indicates the share of each application in overall usage, and
Cloud selection probability, which demonstrates the tendency
to use the Cloud for their operation. The volumes of data up-
loaded and downloaded, as well as the task length, emphasize
the requirements for bandwidth and processing.

TABLE II: Application Characteristics

Characteristics Heavy Infotainment AR/VR Health

Task Length (GI) 45 15 9 3

Delay Sensitivity 0.1 0.3 0.9 0.7

Max. Delay Req. (s) 2 1.5 1 0.5

Data Upload (KB) 2500 25 1500 20

Data Download (KB) 200 1000 25 1250

In addition to the characteristics of the applications pre-
sented in Table II, it is important to specify the technical
parameters of the simulated environment. The bandwidth of
the wireless local area network (WLAN) is set at 200 Mbps,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Subject to:
αi,j , βi,j ∈ {0, 1} , ∀i ∈ D, ∀j ∈ Ti (6a)

D∑
i=1

Ti∑
j=1

(1− αi,j)× βi,jCi,j ≤
M∑

m=1

FMECm
(6b)

D∑
i=1

Ti∑
j=1

(1− αi,j)(1− βi,j)Ci,j ≤ FCloud (6c)

D∑
i=1

Ti∑
j=1

αi,jCi,j ≤
D∑
i=1

FIoTi
(6d)

D∑
i=1

Ti∑
j=1

M∑
m=1

(1− αi,j)βi,jFMECm
≤

M∑
m=1

ThMECm
(6e)

The problem is subject to the following constraints: Con-
straint (6a) ensures that the decision variables (αi,j , βi,j) are
binary. Constraint (6b) guarantees that the server’s computing
capacity is sufficient if a task is offloaded to an MEC server.
Constraint (6c) verifies that the capacity is adequate for tasks
offloaded to the cloud server. Constraint (6d) ensures the
device’s computing capacity is sufficient for local execution.
Finally, constraint (6e) restricts MEC server resource utiliza-
tion to a specified threshold ThMECm , typically set around 80%.

By addressing this optimization challenge, we can identify
effective task offloading and resource allocation strategies
that minimize total execution time while adhering to MEC
system constraints. This problem can be formulated as an
Integer Linear Programming (ILP) model, which provides
optimal solutions [21] but faces high computational com-
plexity, complicating real-time implementation for large-scale
applications. To overcome this, heuristic strategies have been
developed, balancing solution quality with computational ef-
ficiency. These methods enable real-time offloading decisions
and resource optimization associated with ILP, ensuring sys-
tem agility in managing dynamic task arrivals.

IV. HEURISTIC-BASED OFFLOADING STRATEGY FOR QOS
IMPROVEMENT

We propose a Heuristic-based Offloading strategy to en-
hance QoS (HOQoS) in MEC environments. Our goal is to
optimize offloading decisions for computing tasks while con-
sidering time constraints, resource limitations, and application
requirements. Utilizing greedy heuristics, we explore the solu-
tion space to make optimal decisions for each task, factoring in
predicted execution times across different architecture layers.
By assessing the impact of offloading on overall service time,
we aim for significant QoS improvement.

A key component of our strategy is the Offloading Decision
Variable Identification (ODVI) algorithm (Algorithm 1), which
determines the best offloading decision (αi,j , βi,j) for each
incoming task τi,j . The algorithm initializes the minimum
time as infinite and the decision variables as zero. For each
task, it calculates the local execution time T IoT

τi,j and estimates
delays on MEC servers TMECm

τi,j and in the Cloud TCloud
τi,j . The

task is assigned to the server with the shortest delay Tmin,
while respecting the maximum acceptable delay constraint.
The decision variables (αi,j , βi,j) are then based on the chosen
optimal location, focusing on individual tasks rather than
overall execution time.

Algorithm 1 Offloading Decision Variable Identification
(ODVI)

Require: (M, C,D, Ti)
Ensure: (αi,j , βi,j) Offloading decision variables

1: TMin(i,j) ← ∞
2: Decision variables (αi,j , βi,j) ← ∅
3: for i ∈ D do
4: for j ∈ Ti do
5: for m ∈ M do
6: TMin(i,j) ← min(TMin(i,j), T

IoT
τi,j , TMECm

τi,j , TCloud
τi,j)

7: end for
8: if TMin(i,j) = T IoT

τi,j then
9: αi,j ← 1

10: else
11: if TMin(i,j) = TCloud

τi,j then
12: αi,j ← 0
13: βi,j ← 0
14: else
15: αi,j ← 0
16: βi,j ← 1
17: end if
18: end if
19: end for
20: end for
21: return (αi,j , βi,j)

The ODVI algorithm, while effective for individual task
offloading, has limitations in global optimization and resource
contention management. Its focus on single tasks can lead to
suboptimal overall system performance and does not address
resource contention among multiple tasks. To overcome these
issues, we introduce the Virtual Machine Selection for Execu-
tion (VMSE) algorithm (Algorithm 2).

VMSE tackles the global optimization problem by con-
sidering overall system resource allocation when selecting
a virtual machine for each incoming task τi,j . It implic-
itly manages resource contention by prioritizing VMs with
lower utilization. The algorithm evaluates the characteristics
of incoming tasks against the current utilization of MEC
servers and the Cloud, selecting the least utilized VM that
meets the task’s performance, resource, and time constraints.
This integration significantly enhances QoS through efficient
resource utilization and improved task execution efficiency.

To optimize task offloading and resource allocation, we de-
veloped the HOQoS algorithm (Algorithm 3), which integrates
the features of the ODVI and VMSE algorithms. First, the
ODVI algorithm evaluates available execution environments
by considering MEC server performance and network latency,
generating decision variable pairs based on task characteristics
such as size, complexity, and time constraints. These pairs
represent potential execution options for each task. Next, the
VMSE algorithm selects the optimal execution location by

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Algorithm 2 Virtual Machine Selection for Execution (VMSE)

Require: Incoming task τi,j , Node(Ropt[τi,j])
Ensure: VM satisfying task’s (τi,j) resource requirements.

1: task ← τi,j
2: selectedVM ← null
3: bestUtili ← ∞
4: for host ∈ getInfrastructureHostList(Node(Ropt[τi,j])) do
5: vmList ← getVmList(host)
6: for vm ∈ vmList do
7: if task.Utilization() ≤ vm.getCapacity() then
8: currentUtili ← vm.getCurrentUtilization()
9: if currentUtili < bestUtili then

10: selectedVM ← vm
11: bestUtili ← currentUtili
12: else if currentUtili == bestUtili then
13: selectedVM ← SelectVM(selectedVM,vm)
14: end if
15: end if
16: end for
17: end for
18: return selectedVM

assessing task characteristics and resource availability on MEC
servers and in the Cloud. It evaluates each virtual machine’s
performance and chooses the one that best meets the task’s
requirements regarding performance, resource availability, and
time constraints.

Algorithm 3 Heuristic-based offloading for improving quality
of service (HOQoS)

Require: ((αi,j , βi,j),M, C,D, Ti,j)
Ensure: Optimal Resource Allocation Ropt[τi,j] and selected

VM VMselected[τi,j]
1: Ropt[τi,j] ← null
2: VMselected[τi,j] ← null
3: for i ∈ D do
4: for j ∈ Ti do
5: (αi,j , βi,j) ← Call Algorithm 1
6: if αi,j = 1 then ▷ Local allocation
7: Ropt[τi,j] ← LocalNode
8: else if βi,j = 1 then ▷ MEC allocation
9: Ropt[τi,j] ← MECNode

10: else ▷ Cloud allocation
11: Ropt[τi,j] ← CloudNode
12: end if
13: VMselected[τi,j] ← Call Algorithm 2
14: end for
15: end for
16: return Ropt and VMselected[τi,j]

The HOQoS algorithm employs a sequential task processing
strategy, handling tasks individually rather than in batches.
This approach is crucial for achieving system agility and effec-
tively managing dynamic task arrivals. By adapting resource
allocation in real time, the algorithm ensures a rapid and
optimized response, even with irregular or unpredictable task

arrival rates. Thus, sequential processing is integral to the al-
gorithm’s ability to efficiently manage dynamic environments.

V. PERFORMANCE EVALUATION

In the performance evaluation section, we conducted sim-
ulations using the EdgeCloudSim simulator [20]. We analyze
the performance of our MEC architecture using various mea-
surement and evaluation methods.

A. Simulation Parameters

The simulation parameters used for our evaluations are
summarized in Table I. The simulations are implemented in
Java, and the generated plots are visualized using Matlab. The
experiments are conducted on a computer with 4 Intel Core
i7-9600U processors clocked at 2.59 GHz and 8 GB of RAM.

TABLE I: Simulation Parameters.

Parameter IoT MEC Cloud

Number of devices 100 - 2,300 14 1

Number of hosts 1 1 1

Number of VMs per host 1 8 4

Number of Cores per VM 1 2 4

VM CPU Speed (in MIPS) 4,000 10,000 100,000

EdgeCloudSim utilizes four distinct application types to
realistically simulate diverse scenarios, as detailed in [20].
Table II summarizes the characteristics of each application
type: Heavy applications are characterized by high data trans-
mission, high computational intensity, and low sensitivity to
delays. Infotainment applications generally require moder-
ate data transmission, high computational intensity, and low
sensitivity to delays. AR/VR applications involve high data
transmission volumes, moderate computational intensity, and
high sensitivity to delays. Health applications typically feature
moderate data transmission, moderate computational intensity,
and moderate sensitivity to delays. Each application is assessed
based on several criteria, including usage percentage, which
indicates the share of each application in overall usage, and
Cloud selection probability, which demonstrates the tendency
to use the Cloud for their operation. The volumes of data up-
loaded and downloaded, as well as the task length, emphasize
the requirements for bandwidth and processing.

TABLE II: Application Characteristics

Characteristics Heavy Infotainment AR/VR Health

Task Length (GI) 45 15 9 3

Delay Sensitivity 0.1 0.3 0.9 0.7

Max. Delay Req. (s) 2 1.5 1 0.5

Data Upload (KB) 2500 25 1500 20

Data Download (KB) 200 1000 25 1250

In addition to the characteristics of the applications pre-
sented in Table II, it is important to specify the technical
parameters of the simulated environment. The bandwidth of
the wireless local area network (WLAN) is set at 200 Mbps,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Algorithm 2 Virtual Machine Selection for Execution (VMSE)

Require: Incoming task τi,j , Node(Ropt[τi,j])
Ensure: VM satisfying task’s (τi,j) resource requirements.

1: task ← τi,j
2: selectedVM ← null
3: bestUtili ← ∞
4: for host ∈ getInfrastructureHostList(Node(Ropt[τi,j])) do
5: vmList ← getVmList(host)
6: for vm ∈ vmList do
7: if task.Utilization() ≤ vm.getCapacity() then
8: currentUtili ← vm.getCurrentUtilization()
9: if currentUtili < bestUtili then

10: selectedVM ← vm
11: bestUtili ← currentUtili
12: else if currentUtili == bestUtili then
13: selectedVM ← SelectVM(selectedVM,vm)
14: end if
15: end if
16: end for
17: end for
18: return selectedVM

assessing task characteristics and resource availability on MEC
servers and in the Cloud. It evaluates each virtual machine’s
performance and chooses the one that best meets the task’s
requirements regarding performance, resource availability, and
time constraints.

Algorithm 3 Heuristic-based offloading for improving quality
of service (HOQoS)

Require: ((αi,j , βi,j),M, C,D, Ti,j)
Ensure: Optimal Resource Allocation Ropt[τi,j] and selected

VM VMselected[τi,j]
1: Ropt[τi,j] ← null
2: VMselected[τi,j] ← null
3: for i ∈ D do
4: for j ∈ Ti do
5: (αi,j , βi,j) ← Call Algorithm 1
6: if αi,j = 1 then ▷ Local allocation
7: Ropt[τi,j] ← LocalNode
8: else if βi,j = 1 then ▷ MEC allocation
9: Ropt[τi,j] ← MECNode

10: else ▷ Cloud allocation
11: Ropt[τi,j] ← CloudNode
12: end if
13: VMselected[τi,j] ← Call Algorithm 2
14: end for
15: end for
16: return Ropt and VMselected[τi,j]

The HOQoS algorithm employs a sequential task processing
strategy, handling tasks individually rather than in batches.
This approach is crucial for achieving system agility and effec-
tively managing dynamic task arrivals. By adapting resource
allocation in real time, the algorithm ensures a rapid and
optimized response, even with irregular or unpredictable task

arrival rates. Thus, sequential processing is integral to the al-
gorithm’s ability to efficiently manage dynamic environments.

V. PERFORMANCE EVALUATION

In the performance evaluation section, we conducted sim-
ulations using the EdgeCloudSim simulator [20]. We analyze
the performance of our MEC architecture using various mea-
surement and evaluation methods.

A. Simulation Parameters

The simulation parameters used for our evaluations are
summarized in Table I. The simulations are implemented in
Java, and the generated plots are visualized using Matlab. The
experiments are conducted on a computer with 4 Intel Core
i7-9600U processors clocked at 2.59 GHz and 8 GB of RAM.

TABLE I: Simulation Parameters.

Parameter IoT MEC Cloud

Number of devices 100 - 2,300 14 1

Number of hosts 1 1 1

Number of VMs per host 1 8 4

Number of Cores per VM 1 2 4

VM CPU Speed (in MIPS) 4,000 10,000 100,000

EdgeCloudSim utilizes four distinct application types to
realistically simulate diverse scenarios, as detailed in [20].
Table II summarizes the characteristics of each application
type: Heavy applications are characterized by high data trans-
mission, high computational intensity, and low sensitivity to
delays. Infotainment applications generally require moder-
ate data transmission, high computational intensity, and low
sensitivity to delays. AR/VR applications involve high data
transmission volumes, moderate computational intensity, and
high sensitivity to delays. Health applications typically feature
moderate data transmission, moderate computational intensity,
and moderate sensitivity to delays. Each application is assessed
based on several criteria, including usage percentage, which
indicates the share of each application in overall usage, and
Cloud selection probability, which demonstrates the tendency
to use the Cloud for their operation. The volumes of data up-
loaded and downloaded, as well as the task length, emphasize
the requirements for bandwidth and processing.

TABLE II: Application Characteristics

Characteristics Heavy Infotainment AR/VR Health

Task Length (GI) 45 15 9 3

Delay Sensitivity 0.1 0.3 0.9 0.7

Max. Delay Req. (s) 2 1.5 1 0.5

Data Upload (KB) 2500 25 1500 20

Data Download (KB) 200 1000 25 1250

In addition to the characteristics of the applications pre-
sented in Table II, it is important to specify the technical
parameters of the simulated environment. The bandwidth of
the wireless local area network (WLAN) is set at 200 Mbps,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Algorithm 2 Virtual Machine Selection for Execution (VMSE)

Require: Incoming task τi,j , Node(Ropt[τi,j])
Ensure: VM satisfying task’s (τi,j) resource requirements.

1: task ← τi,j
2: selectedVM ← null
3: bestUtili ← ∞
4: for host ∈ getInfrastructureHostList(Node(Ropt[τi,j])) do
5: vmList ← getVmList(host)
6: for vm ∈ vmList do
7: if task.Utilization() ≤ vm.getCapacity() then
8: currentUtili ← vm.getCurrentUtilization()
9: if currentUtili < bestUtili then

10: selectedVM ← vm
11: bestUtili ← currentUtili
12: else if currentUtili == bestUtili then
13: selectedVM ← SelectVM(selectedVM,vm)
14: end if
15: end if
16: end for
17: end for
18: return selectedVM

assessing task characteristics and resource availability on MEC
servers and in the Cloud. It evaluates each virtual machine’s
performance and chooses the one that best meets the task’s
requirements regarding performance, resource availability, and
time constraints.

Algorithm 3 Heuristic-based offloading for improving quality
of service (HOQoS)

Require: ((αi,j , βi,j),M, C,D, Ti,j)
Ensure: Optimal Resource Allocation Ropt[τi,j] and selected

VM VMselected[τi,j]
1: Ropt[τi,j] ← null
2: VMselected[τi,j] ← null
3: for i ∈ D do
4: for j ∈ Ti do
5: (αi,j , βi,j) ← Call Algorithm 1
6: if αi,j = 1 then ▷ Local allocation
7: Ropt[τi,j] ← LocalNode
8: else if βi,j = 1 then ▷ MEC allocation
9: Ropt[τi,j] ← MECNode

10: else ▷ Cloud allocation
11: Ropt[τi,j] ← CloudNode
12: end if
13: VMselected[τi,j] ← Call Algorithm 2
14: end for
15: end for
16: return Ropt and VMselected[τi,j]

The HOQoS algorithm employs a sequential task processing
strategy, handling tasks individually rather than in batches.
This approach is crucial for achieving system agility and effec-
tively managing dynamic task arrivals. By adapting resource
allocation in real time, the algorithm ensures a rapid and
optimized response, even with irregular or unpredictable task

arrival rates. Thus, sequential processing is integral to the al-
gorithm’s ability to efficiently manage dynamic environments.

V. PERFORMANCE EVALUATION

In the performance evaluation section, we conducted sim-
ulations using the EdgeCloudSim simulator [20]. We analyze
the performance of our MEC architecture using various mea-
surement and evaluation methods.

A. Simulation Parameters

The simulation parameters used for our evaluations are
summarized in Table I. The simulations are implemented in
Java, and the generated plots are visualized using Matlab. The
experiments are conducted on a computer with 4 Intel Core
i7-9600U processors clocked at 2.59 GHz and 8 GB of RAM.

TABLE I: Simulation Parameters.

Parameter IoT MEC Cloud

Number of devices 100 - 2,300 14 1

Number of hosts 1 1 1

Number of VMs per host 1 8 4

Number of Cores per VM 1 2 4

VM CPU Speed (in MIPS) 4,000 10,000 100,000

EdgeCloudSim utilizes four distinct application types to
realistically simulate diverse scenarios, as detailed in [20].
Table II summarizes the characteristics of each application
type: Heavy applications are characterized by high data trans-
mission, high computational intensity, and low sensitivity to
delays. Infotainment applications generally require moder-
ate data transmission, high computational intensity, and low
sensitivity to delays. AR/VR applications involve high data
transmission volumes, moderate computational intensity, and
high sensitivity to delays. Health applications typically feature
moderate data transmission, moderate computational intensity,
and moderate sensitivity to delays. Each application is assessed
based on several criteria, including usage percentage, which
indicates the share of each application in overall usage, and
Cloud selection probability, which demonstrates the tendency
to use the Cloud for their operation. The volumes of data up-
loaded and downloaded, as well as the task length, emphasize
the requirements for bandwidth and processing.

TABLE II: Application Characteristics

Characteristics Heavy Infotainment AR/VR Health

Task Length (GI) 45 15 9 3

Delay Sensitivity 0.1 0.3 0.9 0.7

Max. Delay Req. (s) 2 1.5 1 0.5

Data Upload (KB) 2500 25 1500 20

Data Download (KB) 200 1000 25 1250

In addition to the characteristics of the applications pre-
sented in Table II, it is important to specify the technical
parameters of the simulated environment. The bandwidth of
the wireless local area network (WLAN) is set at 200 Mbps,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Algorithm 2 Virtual Machine Selection for Execution (VMSE)

Require: Incoming task τi,j , Node(Ropt[τi,j])
Ensure: VM satisfying task’s (τi,j) resource requirements.

1: task ← τi,j
2: selectedVM ← null
3: bestUtili ← ∞
4: for host ∈ getInfrastructureHostList(Node(Ropt[τi,j])) do
5: vmList ← getVmList(host)
6: for vm ∈ vmList do
7: if task.Utilization() ≤ vm.getCapacity() then
8: currentUtili ← vm.getCurrentUtilization()
9: if currentUtili < bestUtili then

10: selectedVM ← vm
11: bestUtili ← currentUtili
12: else if currentUtili == bestUtili then
13: selectedVM ← SelectVM(selectedVM,vm)
14: end if
15: end if
16: end for
17: end for
18: return selectedVM

assessing task characteristics and resource availability on MEC
servers and in the Cloud. It evaluates each virtual machine’s
performance and chooses the one that best meets the task’s
requirements regarding performance, resource availability, and
time constraints.

Algorithm 3 Heuristic-based offloading for improving quality
of service (HOQoS)

Require: ((αi,j , βi,j),M, C,D, Ti,j)
Ensure: Optimal Resource Allocation Ropt[τi,j] and selected

VM VMselected[τi,j]
1: Ropt[τi,j] ← null
2: VMselected[τi,j] ← null
3: for i ∈ D do
4: for j ∈ Ti do
5: (αi,j , βi,j) ← Call Algorithm 1
6: if αi,j = 1 then ▷ Local allocation
7: Ropt[τi,j] ← LocalNode
8: else if βi,j = 1 then ▷ MEC allocation
9: Ropt[τi,j] ← MECNode

10: else ▷ Cloud allocation
11: Ropt[τi,j] ← CloudNode
12: end if
13: VMselected[τi,j] ← Call Algorithm 2
14: end for
15: end for
16: return Ropt and VMselected[τi,j]

The HOQoS algorithm employs a sequential task processing
strategy, handling tasks individually rather than in batches.
This approach is crucial for achieving system agility and effec-
tively managing dynamic task arrivals. By adapting resource
allocation in real time, the algorithm ensures a rapid and
optimized response, even with irregular or unpredictable task

arrival rates. Thus, sequential processing is integral to the al-
gorithm’s ability to efficiently manage dynamic environments.

V. PERFORMANCE EVALUATION

In the performance evaluation section, we conducted sim-
ulations using the EdgeCloudSim simulator [20]. We analyze
the performance of our MEC architecture using various mea-
surement and evaluation methods.

A. Simulation Parameters

The simulation parameters used for our evaluations are
summarized in Table I. The simulations are implemented in
Java, and the generated plots are visualized using Matlab. The
experiments are conducted on a computer with 4 Intel Core
i7-9600U processors clocked at 2.59 GHz and 8 GB of RAM.

TABLE I: Simulation Parameters.

Parameter IoT MEC Cloud

Number of devices 100 - 2,300 14 1

Number of hosts 1 1 1

Number of VMs per host 1 8 4

Number of Cores per VM 1 2 4

VM CPU Speed (in MIPS) 4,000 10,000 100,000

EdgeCloudSim utilizes four distinct application types to
realistically simulate diverse scenarios, as detailed in [20].
Table II summarizes the characteristics of each application
type: Heavy applications are characterized by high data trans-
mission, high computational intensity, and low sensitivity to
delays. Infotainment applications generally require moder-
ate data transmission, high computational intensity, and low
sensitivity to delays. AR/VR applications involve high data
transmission volumes, moderate computational intensity, and
high sensitivity to delays. Health applications typically feature
moderate data transmission, moderate computational intensity,
and moderate sensitivity to delays. Each application is assessed
based on several criteria, including usage percentage, which
indicates the share of each application in overall usage, and
Cloud selection probability, which demonstrates the tendency
to use the Cloud for their operation. The volumes of data up-
loaded and downloaded, as well as the task length, emphasize
the requirements for bandwidth and processing.

TABLE II: Application Characteristics

Characteristics Heavy Infotainment AR/VR Health

Task Length (GI) 45 15 9 3

Delay Sensitivity 0.1 0.3 0.9 0.7

Max. Delay Req. (s) 2 1.5 1 0.5

Data Upload (KB) 2500 25 1500 20

Data Download (KB) 200 1000 25 1250

In addition to the characteristics of the applications pre-
sented in Table II, it is important to specify the technical
parameters of the simulated environment. The bandwidth of
the wireless local area network (WLAN) is set at 200 Mbps,

TABLE I
Simulation Parameters.

TABLE II
Application Characteristics.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Algorithm 2 Virtual Machine Selection for Execution (VMSE)

Require: Incoming task τi,j , Node(Ropt[τi,j])
Ensure: VM satisfying task’s (τi,j) resource requirements.

1: task ← τi,j
2: selectedVM ← null
3: bestUtili ← ∞
4: for host ∈ getInfrastructureHostList(Node(Ropt[τi,j])) do
5: vmList ← getVmList(host)
6: for vm ∈ vmList do
7: if task.Utilization() ≤ vm.getCapacity() then
8: currentUtili ← vm.getCurrentUtilization()
9: if currentUtili < bestUtili then

10: selectedVM ← vm
11: bestUtili ← currentUtili
12: else if currentUtili == bestUtili then
13: selectedVM ← SelectVM(selectedVM,vm)
14: end if
15: end if
16: end for
17: end for
18: return selectedVM

assessing task characteristics and resource availability on MEC
servers and in the Cloud. It evaluates each virtual machine’s
performance and chooses the one that best meets the task’s
requirements regarding performance, resource availability, and
time constraints.

Algorithm 3 Heuristic-based offloading for improving quality
of service (HOQoS)

Require: ((αi,j , βi,j),M, C,D, Ti,j)
Ensure: Optimal Resource Allocation Ropt[τi,j] and selected

VM VMselected[τi,j]
1: Ropt[τi,j] ← null
2: VMselected[τi,j] ← null
3: for i ∈ D do
4: for j ∈ Ti do
5: (αi,j , βi,j) ← Call Algorithm 1
6: if αi,j = 1 then ▷ Local allocation
7: Ropt[τi,j] ← LocalNode
8: else if βi,j = 1 then ▷ MEC allocation
9: Ropt[τi,j] ← MECNode

10: else ▷ Cloud allocation
11: Ropt[τi,j] ← CloudNode
12: end if
13: VMselected[τi,j] ← Call Algorithm 2
14: end for
15: end for
16: return Ropt and VMselected[τi,j]

The HOQoS algorithm employs a sequential task processing
strategy, handling tasks individually rather than in batches.
This approach is crucial for achieving system agility and effec-
tively managing dynamic task arrivals. By adapting resource
allocation in real time, the algorithm ensures a rapid and
optimized response, even with irregular or unpredictable task

arrival rates. Thus, sequential processing is integral to the al-
gorithm’s ability to efficiently manage dynamic environments.

V. PERFORMANCE EVALUATION

In the performance evaluation section, we conducted sim-
ulations using the EdgeCloudSim simulator [20]. We analyze
the performance of our MEC architecture using various mea-
surement and evaluation methods.

A. Simulation Parameters

The simulation parameters used for our evaluations are
summarized in Table I. The simulations are implemented in
Java, and the generated plots are visualized using Matlab. The
experiments are conducted on a computer with 4 Intel Core
i7-9600U processors clocked at 2.59 GHz and 8 GB of RAM.

TABLE I: Simulation Parameters.

Parameter IoT MEC Cloud

Number of devices 100 - 2,300 14 1

Number of hosts 1 1 1

Number of VMs per host 1 8 4

Number of Cores per VM 1 2 4

VM CPU Speed (in MIPS) 4,000 10,000 100,000

EdgeCloudSim utilizes four distinct application types to
realistically simulate diverse scenarios, as detailed in [20].
Table II summarizes the characteristics of each application
type: Heavy applications are characterized by high data trans-
mission, high computational intensity, and low sensitivity to
delays. Infotainment applications generally require moder-
ate data transmission, high computational intensity, and low
sensitivity to delays. AR/VR applications involve high data
transmission volumes, moderate computational intensity, and
high sensitivity to delays. Health applications typically feature
moderate data transmission, moderate computational intensity,
and moderate sensitivity to delays. Each application is assessed
based on several criteria, including usage percentage, which
indicates the share of each application in overall usage, and
Cloud selection probability, which demonstrates the tendency
to use the Cloud for their operation. The volumes of data up-
loaded and downloaded, as well as the task length, emphasize
the requirements for bandwidth and processing.

TABLE II: Application Characteristics

Characteristics Heavy Infotainment AR/VR Health

Task Length (GI) 45 15 9 3

Delay Sensitivity 0.1 0.3 0.9 0.7

Max. Delay Req. (s) 2 1.5 1 0.5

Data Upload (KB) 2500 25 1500 20

Data Download (KB) 200 1000 25 1250

In addition to the characteristics of the applications pre-
sented in Table II, it is important to specify the technical
parameters of the simulated environment. The bandwidth of
the wireless local area network (WLAN) is set at 200 Mbps,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Algorithm 2 Virtual Machine Selection for Execution (VMSE)

Require: Incoming task τi,j , Node(Ropt[τi,j])
Ensure: VM satisfying task’s (τi,j) resource requirements.

1: task ← τi,j
2: selectedVM ← null
3: bestUtili ← ∞
4: for host ∈ getInfrastructureHostList(Node(Ropt[τi,j])) do
5: vmList ← getVmList(host)
6: for vm ∈ vmList do
7: if task.Utilization() ≤ vm.getCapacity() then
8: currentUtili ← vm.getCurrentUtilization()
9: if currentUtili < bestUtili then

10: selectedVM ← vm
11: bestUtili ← currentUtili
12: else if currentUtili == bestUtili then
13: selectedVM ← SelectVM(selectedVM,vm)
14: end if
15: end if
16: end for
17: end for
18: return selectedVM

assessing task characteristics and resource availability on MEC
servers and in the Cloud. It evaluates each virtual machine’s
performance and chooses the one that best meets the task’s
requirements regarding performance, resource availability, and
time constraints.

Algorithm 3 Heuristic-based offloading for improving quality
of service (HOQoS)

Require: ((αi,j , βi,j),M, C,D, Ti,j)
Ensure: Optimal Resource Allocation Ropt[τi,j] and selected

VM VMselected[τi,j]
1: Ropt[τi,j] ← null
2: VMselected[τi,j] ← null
3: for i ∈ D do
4: for j ∈ Ti do
5: (αi,j , βi,j) ← Call Algorithm 1
6: if αi,j = 1 then ▷ Local allocation
7: Ropt[τi,j] ← LocalNode
8: else if βi,j = 1 then ▷ MEC allocation
9: Ropt[τi,j] ← MECNode

10: else ▷ Cloud allocation
11: Ropt[τi,j] ← CloudNode
12: end if
13: VMselected[τi,j] ← Call Algorithm 2
14: end for
15: end for
16: return Ropt and VMselected[τi,j]

The HOQoS algorithm employs a sequential task processing
strategy, handling tasks individually rather than in batches.
This approach is crucial for achieving system agility and effec-
tively managing dynamic task arrivals. By adapting resource
allocation in real time, the algorithm ensures a rapid and
optimized response, even with irregular or unpredictable task

arrival rates. Thus, sequential processing is integral to the al-
gorithm’s ability to efficiently manage dynamic environments.

V. PERFORMANCE EVALUATION

In the performance evaluation section, we conducted sim-
ulations using the EdgeCloudSim simulator [20]. We analyze
the performance of our MEC architecture using various mea-
surement and evaluation methods.

A. Simulation Parameters

The simulation parameters used for our evaluations are
summarized in Table I. The simulations are implemented in
Java, and the generated plots are visualized using Matlab. The
experiments are conducted on a computer with 4 Intel Core
i7-9600U processors clocked at 2.59 GHz and 8 GB of RAM.

TABLE I: Simulation Parameters.

Parameter IoT MEC Cloud

Number of devices 100 - 2,300 14 1

Number of hosts 1 1 1

Number of VMs per host 1 8 4

Number of Cores per VM 1 2 4

VM CPU Speed (in MIPS) 4,000 10,000 100,000

EdgeCloudSim utilizes four distinct application types to
realistically simulate diverse scenarios, as detailed in [20].
Table II summarizes the characteristics of each application
type: Heavy applications are characterized by high data trans-
mission, high computational intensity, and low sensitivity to
delays. Infotainment applications generally require moder-
ate data transmission, high computational intensity, and low
sensitivity to delays. AR/VR applications involve high data
transmission volumes, moderate computational intensity, and
high sensitivity to delays. Health applications typically feature
moderate data transmission, moderate computational intensity,
and moderate sensitivity to delays. Each application is assessed
based on several criteria, including usage percentage, which
indicates the share of each application in overall usage, and
Cloud selection probability, which demonstrates the tendency
to use the Cloud for their operation. The volumes of data up-
loaded and downloaded, as well as the task length, emphasize
the requirements for bandwidth and processing.

TABLE II: Application Characteristics

Characteristics Heavy Infotainment AR/VR Health

Task Length (GI) 45 15 9 3

Delay Sensitivity 0.1 0.3 0.9 0.7

Max. Delay Req. (s) 2 1.5 1 0.5

Data Upload (KB) 2500 25 1500 20

Data Download (KB) 200 1000 25 1250

In addition to the characteristics of the applications pre-
sented in Table II, it is important to specify the technical
parameters of the simulated environment. The bandwidth of
the wireless local area network (WLAN) is set at 200 Mbps,

Enhancing QoS for IoT Devices through Heuristics-based
Computation Offloading in Multi-access Edge Computing

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2024 • VOLUME XVI • NUMBER 4 15

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

while the bandwidth of the wide area network (WAN) is 15
Mbps. The propagation delay on the WAN is 0.1 seconds.
These parameters also influence system performance and
should be taken into account when evaluating the results of
the simulation.

B. Simulation Results

This section presents the results of simulations conducted
to evaluate the performance of different resource management
approaches and computation offloading strategies in a high-
density IoT environment. The studied approaches are:

• Only MEC: All tasks are executed on the MEC server.
This approach is straightforward but may be limited in
terms of resources and processing capacity.

• Only Cloud: All tasks are executed on the Cloud server.
This approach offers high processing capacity but can
lead to significant latency due to the distance between
IoT devices and the cloud.

• Random: Tasks are randomly distributed between the
MEC and Cloud servers. This implementation is simple
but may not be optimal in terms of performance.

• DCOA-ST: A dynamic computation Offloading approach
based on the service time [11]. This approach considers
the current system state to decide where to execute
tasks, potentially improving performance. It provides a
systematic approach to task assignment but may lack
flexibility in dynamic environments.

• LCDA*: The LCDA approach [12], which aims to min-
imize the execution time of delay-sensitive tasks while
ensuring no deadline violations. Their algorithm selects
servers and schedules tasks to optimize service time in
a dynamic environment. While LCDA effectively adapts
to changing workloads, it may not fully account for task
sensitivity or latency constraints.

We can evaluate their relative advantages and limitations by
comparing these methodologies with our HOQoS algorithm.
HOQoS integrates factors such as execution time, task sensi-
tivity to delays, latency requirements, resource utilization, and
server processing capabilities. Through rigorous evaluations
and performance comparisons, we illustrate the enhanced
effectiveness of HOQoS in optimizing computation offloading
and resource allocation within MEC environments, ultimately
improving the quality of service for IoT applications.

1) Simulation Based on Average Service Time: We evaluate
the average service time, a critical factor influencing service
quality and user experience. Figure 3 illustrates the impact
of the number of IoT devices on service times for different
resource management approaches. For 100 devices, HOQoS
and LCDA* show shallow service times of 0.8 seconds, while
Only MEC and DCOA-ST display times of 0.9 seconds. At
900 devices, HOQoS maintains a service time of 1 second,
while Only Cloud shows an alarming increase to 5.1 seconds,
confirming its inadequacy in high-load scenarios. Other ap-
proaches, such as Random and DCOA-ST, exhibit times of
2.1 seconds and 1.15 seconds, respectively. For 1500 devices,
HOQoS slightly increases to 1.2 seconds, while Only Cloud
reaches 7.1 seconds. Finally, at 2300 devices, HOQoS reports

a service time of 1.5 seconds, whereas Only Cloud remains
high at 7.2 seconds.

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

1

2

3

4

5

6

7

8

Number of Iot Devices

Se
rv

ic
e

Ti
m

e
(s

ec
)

y MECOnl
y CloudOnl
domRan
OA−STDC

A*LCD
HOQoS

Fig. 3: Service time as a function of the number of IoT devices.

2) Simulation Based on Task Failure Rates: In assessing
task execution success, task failure rates are key indicators
influenced by factors such as excessive virtual machine usage
and insufficient network bandwidth. Figure 4 illustrates how
failure rates vary across algorithms with different numbers of
IoT devices. The HOQoS approach consistently maintains low
failure rates, even as device numbers increase, highlighting
its robustness in high-density IoT environments. For 300
devices, HOQoS and Only MEC have low failure rates of 1%,
while LCDA* has the highest at 10%. At 900 devices, Only

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

10

20

30

40

50

60

70

80

90

100

Number of Iot Devices

Fa
ile

d
Ta

sk
s (

%
)

y MECOnl
y CloudOnl
domRan
A−STODC
A*LCD

HOQoS

Fig. 4: Task failure rate as a function of the number of IoT
devices.

Cloud shows a concerning 74% failure rate, whereas HOQoS
maintains a reasonable 1.5%. With 1500 devices, Only Cloud’s

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Algorithm 2 Virtual Machine Selection for Execution (VMSE)

Require: Incoming task τi,j , Node(Ropt[τi,j])
Ensure: VM satisfying task’s (τi,j) resource requirements.

1: task ← τi,j
2: selectedVM ← null
3: bestUtili ← ∞
4: for host ∈ getInfrastructureHostList(Node(Ropt[τi,j])) do
5: vmList ← getVmList(host)
6: for vm ∈ vmList do
7: if task.Utilization() ≤ vm.getCapacity() then
8: currentUtili ← vm.getCurrentUtilization()
9: if currentUtili < bestUtili then

10: selectedVM ← vm
11: bestUtili ← currentUtili
12: else if currentUtili == bestUtili then
13: selectedVM ← SelectVM(selectedVM,vm)
14: end if
15: end if
16: end for
17: end for
18: return selectedVM

assessing task characteristics and resource availability on MEC
servers and in the Cloud. It evaluates each virtual machine’s
performance and chooses the one that best meets the task’s
requirements regarding performance, resource availability, and
time constraints.

Algorithm 3 Heuristic-based offloading for improving quality
of service (HOQoS)

Require: ((αi,j , βi,j),M, C,D, Ti,j)
Ensure: Optimal Resource Allocation Ropt[τi,j] and selected

VM VMselected[τi,j]
1: Ropt[τi,j] ← null
2: VMselected[τi,j] ← null
3: for i ∈ D do
4: for j ∈ Ti do
5: (αi,j , βi,j) ← Call Algorithm 1
6: if αi,j = 1 then ▷ Local allocation
7: Ropt[τi,j] ← LocalNode
8: else if βi,j = 1 then ▷ MEC allocation
9: Ropt[τi,j] ← MECNode

10: else ▷ Cloud allocation
11: Ropt[τi,j] ← CloudNode
12: end if
13: VMselected[τi,j] ← Call Algorithm 2
14: end for
15: end for
16: return Ropt and VMselected[τi,j]

The HOQoS algorithm employs a sequential task processing
strategy, handling tasks individually rather than in batches.
This approach is crucial for achieving system agility and effec-
tively managing dynamic task arrivals. By adapting resource
allocation in real time, the algorithm ensures a rapid and
optimized response, even with irregular or unpredictable task

arrival rates. Thus, sequential processing is integral to the al-
gorithm’s ability to efficiently manage dynamic environments.

V. PERFORMANCE EVALUATION

In the performance evaluation section, we conducted sim-
ulations using the EdgeCloudSim simulator [20]. We analyze
the performance of our MEC architecture using various mea-
surement and evaluation methods.

A. Simulation Parameters

The simulation parameters used for our evaluations are
summarized in Table I. The simulations are implemented in
Java, and the generated plots are visualized using Matlab. The
experiments are conducted on a computer with 4 Intel Core
i7-9600U processors clocked at 2.59 GHz and 8 GB of RAM.

TABLE I: Simulation Parameters.

Parameter IoT MEC Cloud

Number of devices 100 - 2,300 14 1

Number of hosts 1 1 1

Number of VMs per host 1 8 4

Number of Cores per VM 1 2 4

VM CPU Speed (in MIPS) 4,000 10,000 100,000

EdgeCloudSim utilizes four distinct application types to
realistically simulate diverse scenarios, as detailed in [20].
Table II summarizes the characteristics of each application
type: Heavy applications are characterized by high data trans-
mission, high computational intensity, and low sensitivity to
delays. Infotainment applications generally require moder-
ate data transmission, high computational intensity, and low
sensitivity to delays. AR/VR applications involve high data
transmission volumes, moderate computational intensity, and
high sensitivity to delays. Health applications typically feature
moderate data transmission, moderate computational intensity,
and moderate sensitivity to delays. Each application is assessed
based on several criteria, including usage percentage, which
indicates the share of each application in overall usage, and
Cloud selection probability, which demonstrates the tendency
to use the Cloud for their operation. The volumes of data up-
loaded and downloaded, as well as the task length, emphasize
the requirements for bandwidth and processing.

TABLE II: Application Characteristics

Characteristics Heavy Infotainment AR/VR Health

Task Length (GI) 45 15 9 3

Delay Sensitivity 0.1 0.3 0.9 0.7

Max. Delay Req. (s) 2 1.5 1 0.5

Data Upload (KB) 2500 25 1500 20

Data Download (KB) 200 1000 25 1250

In addition to the characteristics of the applications pre-
sented in Table II, it is important to specify the technical
parameters of the simulated environment. The bandwidth of
the wireless local area network (WLAN) is set at 200 Mbps,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

while the bandwidth of the wide area network (WAN) is 15
Mbps. The propagation delay on the WAN is 0.1 seconds.
These parameters also influence system performance and
should be taken into account when evaluating the results of
the simulation.

B. Simulation Results

This section presents the results of simulations conducted
to evaluate the performance of different resource management
approaches and computation offloading strategies in a high-
density IoT environment. The studied approaches are:

• Only MEC: All tasks are executed on the MEC server.
This approach is straightforward but may be limited in
terms of resources and processing capacity.

• Only Cloud: All tasks are executed on the Cloud server.
This approach offers high processing capacity but can
lead to significant latency due to the distance between
IoT devices and the cloud.

• Random: Tasks are randomly distributed between the
MEC and Cloud servers. This implementation is simple
but may not be optimal in terms of performance.

• DCOA-ST: A dynamic computation Offloading approach
based on the service time [11]. This approach considers
the current system state to decide where to execute
tasks, potentially improving performance. It provides a
systematic approach to task assignment but may lack
flexibility in dynamic environments.

• LCDA*: The LCDA approach [12], which aims to min-
imize the execution time of delay-sensitive tasks while
ensuring no deadline violations. Their algorithm selects
servers and schedules tasks to optimize service time in
a dynamic environment. While LCDA effectively adapts
to changing workloads, it may not fully account for task
sensitivity or latency constraints.

We can evaluate their relative advantages and limitations by
comparing these methodologies with our HOQoS algorithm.
HOQoS integrates factors such as execution time, task sensi-
tivity to delays, latency requirements, resource utilization, and
server processing capabilities. Through rigorous evaluations
and performance comparisons, we illustrate the enhanced
effectiveness of HOQoS in optimizing computation offloading
and resource allocation within MEC environments, ultimately
improving the quality of service for IoT applications.

1) Simulation Based on Average Service Time: We evaluate
the average service time, a critical factor influencing service
quality and user experience. Figure 3 illustrates the impact
of the number of IoT devices on service times for different
resource management approaches. For 100 devices, HOQoS
and LCDA* show shallow service times of 0.8 seconds, while
Only MEC and DCOA-ST display times of 0.9 seconds. At
900 devices, HOQoS maintains a service time of 1 second,
while Only Cloud shows an alarming increase to 5.1 seconds,
confirming its inadequacy in high-load scenarios. Other ap-
proaches, such as Random and DCOA-ST, exhibit times of
2.1 seconds and 1.15 seconds, respectively. For 1500 devices,
HOQoS slightly increases to 1.2 seconds, while Only Cloud
reaches 7.1 seconds. Finally, at 2300 devices, HOQoS reports

a service time of 1.5 seconds, whereas Only Cloud remains
high at 7.2 seconds.

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

1

2

3

4

5

6

7

8

Number of Iot Devices

Se
rv

ic
e

Ti
m

e
(s

ec
)

y MECOnl
y CloudOnl
domRan
OA−STDC

A*LCD
HOQoS

Fig. 3: Service time as a function of the number of IoT devices.

2) Simulation Based on Task Failure Rates: In assessing
task execution success, task failure rates are key indicators
influenced by factors such as excessive virtual machine usage
and insufficient network bandwidth. Figure 4 illustrates how
failure rates vary across algorithms with different numbers of
IoT devices. The HOQoS approach consistently maintains low
failure rates, even as device numbers increase, highlighting
its robustness in high-density IoT environments. For 300
devices, HOQoS and Only MEC have low failure rates of 1%,
while LCDA* has the highest at 10%. At 900 devices, Only

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

10

20

30

40

50

60

70

80

90

100

Number of Iot Devices

Fa
ile

d
Ta

sk
s (

%
)

y MECOnl
y CloudOnl
domRan
A−STODC
A*LCD

HOQoS

Fig. 4: Task failure rate as a function of the number of IoT
devices.

Cloud shows a concerning 74% failure rate, whereas HOQoS
maintains a reasonable 1.5%. With 1500 devices, Only Cloud’s

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

while the bandwidth of the wide area network (WAN) is 15
Mbps. The propagation delay on the WAN is 0.1 seconds.
These parameters also influence system performance and
should be taken into account when evaluating the results of
the simulation.

B. Simulation Results

This section presents the results of simulations conducted
to evaluate the performance of different resource management
approaches and computation offloading strategies in a high-
density IoT environment. The studied approaches are:

• Only MEC: All tasks are executed on the MEC server.
This approach is straightforward but may be limited in
terms of resources and processing capacity.

• Only Cloud: All tasks are executed on the Cloud server.
This approach offers high processing capacity but can
lead to significant latency due to the distance between
IoT devices and the cloud.

• Random: Tasks are randomly distributed between the
MEC and Cloud servers. This implementation is simple
but may not be optimal in terms of performance.

• DCOA-ST: A dynamic computation Offloading approach
based on the service time [11]. This approach considers
the current system state to decide where to execute
tasks, potentially improving performance. It provides a
systematic approach to task assignment but may lack
flexibility in dynamic environments.

• LCDA*: The LCDA approach [12], which aims to min-
imize the execution time of delay-sensitive tasks while
ensuring no deadline violations. Their algorithm selects
servers and schedules tasks to optimize service time in
a dynamic environment. While LCDA effectively adapts
to changing workloads, it may not fully account for task
sensitivity or latency constraints.

We can evaluate their relative advantages and limitations by
comparing these methodologies with our HOQoS algorithm.
HOQoS integrates factors such as execution time, task sensi-
tivity to delays, latency requirements, resource utilization, and
server processing capabilities. Through rigorous evaluations
and performance comparisons, we illustrate the enhanced
effectiveness of HOQoS in optimizing computation offloading
and resource allocation within MEC environments, ultimately
improving the quality of service for IoT applications.

1) Simulation Based on Average Service Time: We evaluate
the average service time, a critical factor influencing service
quality and user experience. Figure 3 illustrates the impact
of the number of IoT devices on service times for different
resource management approaches. For 100 devices, HOQoS
and LCDA* show shallow service times of 0.8 seconds, while
Only MEC and DCOA-ST display times of 0.9 seconds. At
900 devices, HOQoS maintains a service time of 1 second,
while Only Cloud shows an alarming increase to 5.1 seconds,
confirming its inadequacy in high-load scenarios. Other ap-
proaches, such as Random and DCOA-ST, exhibit times of
2.1 seconds and 1.15 seconds, respectively. For 1500 devices,
HOQoS slightly increases to 1.2 seconds, while Only Cloud
reaches 7.1 seconds. Finally, at 2300 devices, HOQoS reports

a service time of 1.5 seconds, whereas Only Cloud remains
high at 7.2 seconds.

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

1

2

3

4

5

6

7

8

Number of Iot Devices

Se
rv

ic
e

Ti
m

e
(s

ec
)

y MECOnl
y CloudOnl
domRan
OA−STDC

A*LCD
HOQoS

Fig. 3: Service time as a function of the number of IoT devices.

2) Simulation Based on Task Failure Rates: In assessing
task execution success, task failure rates are key indicators
influenced by factors such as excessive virtual machine usage
and insufficient network bandwidth. Figure 4 illustrates how
failure rates vary across algorithms with different numbers of
IoT devices. The HOQoS approach consistently maintains low
failure rates, even as device numbers increase, highlighting
its robustness in high-density IoT environments. For 300
devices, HOQoS and Only MEC have low failure rates of 1%,
while LCDA* has the highest at 10%. At 900 devices, Only

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

10

20

30

40

50

60

70

80

90

100

Number of Iot Devices

Fa
ile

d
Ta

sk
s (

%
)

y MECOnl
y CloudOnl
domRan
A−STODC
A*LCD

HOQoS

Fig. 4: Task failure rate as a function of the number of IoT
devices.

Cloud shows a concerning 74% failure rate, whereas HOQoS
maintains a reasonable 1.5%. With 1500 devices, Only Cloud’s

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

while the bandwidth of the wide area network (WAN) is 15
Mbps. The propagation delay on the WAN is 0.1 seconds.
These parameters also influence system performance and
should be taken into account when evaluating the results of
the simulation.

B. Simulation Results

This section presents the results of simulations conducted
to evaluate the performance of different resource management
approaches and computation offloading strategies in a high-
density IoT environment. The studied approaches are:

• Only MEC: All tasks are executed on the MEC server.
This approach is straightforward but may be limited in
terms of resources and processing capacity.

• Only Cloud: All tasks are executed on the Cloud server.
This approach offers high processing capacity but can
lead to significant latency due to the distance between
IoT devices and the cloud.

• Random: Tasks are randomly distributed between the
MEC and Cloud servers. This implementation is simple
but may not be optimal in terms of performance.

• DCOA-ST: A dynamic computation Offloading approach
based on the service time [11]. This approach considers
the current system state to decide where to execute
tasks, potentially improving performance. It provides a
systematic approach to task assignment but may lack
flexibility in dynamic environments.

• LCDA*: The LCDA approach [12], which aims to min-
imize the execution time of delay-sensitive tasks while
ensuring no deadline violations. Their algorithm selects
servers and schedules tasks to optimize service time in
a dynamic environment. While LCDA effectively adapts
to changing workloads, it may not fully account for task
sensitivity or latency constraints.

We can evaluate their relative advantages and limitations by
comparing these methodologies with our HOQoS algorithm.
HOQoS integrates factors such as execution time, task sensi-
tivity to delays, latency requirements, resource utilization, and
server processing capabilities. Through rigorous evaluations
and performance comparisons, we illustrate the enhanced
effectiveness of HOQoS in optimizing computation offloading
and resource allocation within MEC environments, ultimately
improving the quality of service for IoT applications.

1) Simulation Based on Average Service Time: We evaluate
the average service time, a critical factor influencing service
quality and user experience. Figure 3 illustrates the impact
of the number of IoT devices on service times for different
resource management approaches. For 100 devices, HOQoS
and LCDA* show shallow service times of 0.8 seconds, while
Only MEC and DCOA-ST display times of 0.9 seconds. At
900 devices, HOQoS maintains a service time of 1 second,
while Only Cloud shows an alarming increase to 5.1 seconds,
confirming its inadequacy in high-load scenarios. Other ap-
proaches, such as Random and DCOA-ST, exhibit times of
2.1 seconds and 1.15 seconds, respectively. For 1500 devices,
HOQoS slightly increases to 1.2 seconds, while Only Cloud
reaches 7.1 seconds. Finally, at 2300 devices, HOQoS reports

a service time of 1.5 seconds, whereas Only Cloud remains
high at 7.2 seconds.

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

1

2

3

4

5

6

7

8

Number of Iot Devices

Se
rv

ic
e

Ti
m

e
(s

ec
)

y MECOnl
y CloudOnl
domRan
OA−STDC

A*LCD
HOQoS

Fig. 3: Service time as a function of the number of IoT devices.

2) Simulation Based on Task Failure Rates: In assessing
task execution success, task failure rates are key indicators
influenced by factors such as excessive virtual machine usage
and insufficient network bandwidth. Figure 4 illustrates how
failure rates vary across algorithms with different numbers of
IoT devices. The HOQoS approach consistently maintains low
failure rates, even as device numbers increase, highlighting
its robustness in high-density IoT environments. For 300
devices, HOQoS and Only MEC have low failure rates of 1%,
while LCDA* has the highest at 10%. At 900 devices, Only

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

10

20

30

40

50

60

70

80

90

100

Number of Iot Devices

Fa
ile

d
Ta

sk
s (

%
)

y MECOnl
y CloudOnl
domRan
A−STODC
A*LCD

HOQoS

Fig. 4: Task failure rate as a function of the number of IoT
devices.

Cloud shows a concerning 74% failure rate, whereas HOQoS
maintains a reasonable 1.5%. With 1500 devices, Only Cloud’s

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

while the bandwidth of the wide area network (WAN) is 15
Mbps. The propagation delay on the WAN is 0.1 seconds.
These parameters also influence system performance and
should be taken into account when evaluating the results of
the simulation.

B. Simulation Results

This section presents the results of simulations conducted
to evaluate the performance of different resource management
approaches and computation offloading strategies in a high-
density IoT environment. The studied approaches are:

• Only MEC: All tasks are executed on the MEC server.
This approach is straightforward but may be limited in
terms of resources and processing capacity.

• Only Cloud: All tasks are executed on the Cloud server.
This approach offers high processing capacity but can
lead to significant latency due to the distance between
IoT devices and the cloud.

• Random: Tasks are randomly distributed between the
MEC and Cloud servers. This implementation is simple
but may not be optimal in terms of performance.

• DCOA-ST: A dynamic computation Offloading approach
based on the service time [11]. This approach considers
the current system state to decide where to execute
tasks, potentially improving performance. It provides a
systematic approach to task assignment but may lack
flexibility in dynamic environments.

• LCDA*: The LCDA approach [12], which aims to min-
imize the execution time of delay-sensitive tasks while
ensuring no deadline violations. Their algorithm selects
servers and schedules tasks to optimize service time in
a dynamic environment. While LCDA effectively adapts
to changing workloads, it may not fully account for task
sensitivity or latency constraints.

We can evaluate their relative advantages and limitations by
comparing these methodologies with our HOQoS algorithm.
HOQoS integrates factors such as execution time, task sensi-
tivity to delays, latency requirements, resource utilization, and
server processing capabilities. Through rigorous evaluations
and performance comparisons, we illustrate the enhanced
effectiveness of HOQoS in optimizing computation offloading
and resource allocation within MEC environments, ultimately
improving the quality of service for IoT applications.

1) Simulation Based on Average Service Time: We evaluate
the average service time, a critical factor influencing service
quality and user experience. Figure 3 illustrates the impact
of the number of IoT devices on service times for different
resource management approaches. For 100 devices, HOQoS
and LCDA* show shallow service times of 0.8 seconds, while
Only MEC and DCOA-ST display times of 0.9 seconds. At
900 devices, HOQoS maintains a service time of 1 second,
while Only Cloud shows an alarming increase to 5.1 seconds,
confirming its inadequacy in high-load scenarios. Other ap-
proaches, such as Random and DCOA-ST, exhibit times of
2.1 seconds and 1.15 seconds, respectively. For 1500 devices,
HOQoS slightly increases to 1.2 seconds, while Only Cloud
reaches 7.1 seconds. Finally, at 2300 devices, HOQoS reports

a service time of 1.5 seconds, whereas Only Cloud remains
high at 7.2 seconds.

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

1

2

3

4

5

6

7

8

Number of Iot Devices

Se
rv

ic
e

Ti
m

e
(s

ec
)

y MECOnl
y CloudOnl
domRan
OA−STDC

A*LCD
HOQoS

Fig. 3: Service time as a function of the number of IoT devices.

2) Simulation Based on Task Failure Rates: In assessing
task execution success, task failure rates are key indicators
influenced by factors such as excessive virtual machine usage
and insufficient network bandwidth. Figure 4 illustrates how
failure rates vary across algorithms with different numbers of
IoT devices. The HOQoS approach consistently maintains low
failure rates, even as device numbers increase, highlighting
its robustness in high-density IoT environments. For 300
devices, HOQoS and Only MEC have low failure rates of 1%,
while LCDA* has the highest at 10%. At 900 devices, Only

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

10

20

30

40

50

60

70

80

90

100

Number of Iot Devices

Fa
ile

d
Ta

sk
s (

%
)

y MECOnl
y CloudOnl
domRan
A−STODC
A*LCD

HOQoS

Fig. 4: Task failure rate as a function of the number of IoT
devices.

Cloud shows a concerning 74% failure rate, whereas HOQoS
maintains a reasonable 1.5%. With 1500 devices, Only Cloud’s

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

while the bandwidth of the wide area network (WAN) is 15
Mbps. The propagation delay on the WAN is 0.1 seconds.
These parameters also influence system performance and
should be taken into account when evaluating the results of
the simulation.

B. Simulation Results

This section presents the results of simulations conducted
to evaluate the performance of different resource management
approaches and computation offloading strategies in a high-
density IoT environment. The studied approaches are:

• Only MEC: All tasks are executed on the MEC server.
This approach is straightforward but may be limited in
terms of resources and processing capacity.

• Only Cloud: All tasks are executed on the Cloud server.
This approach offers high processing capacity but can
lead to significant latency due to the distance between
IoT devices and the cloud.

• Random: Tasks are randomly distributed between the
MEC and Cloud servers. This implementation is simple
but may not be optimal in terms of performance.

• DCOA-ST: A dynamic computation Offloading approach
based on the service time [11]. This approach considers
the current system state to decide where to execute
tasks, potentially improving performance. It provides a
systematic approach to task assignment but may lack
flexibility in dynamic environments.

• LCDA*: The LCDA approach [12], which aims to min-
imize the execution time of delay-sensitive tasks while
ensuring no deadline violations. Their algorithm selects
servers and schedules tasks to optimize service time in
a dynamic environment. While LCDA effectively adapts
to changing workloads, it may not fully account for task
sensitivity or latency constraints.

We can evaluate their relative advantages and limitations by
comparing these methodologies with our HOQoS algorithm.
HOQoS integrates factors such as execution time, task sensi-
tivity to delays, latency requirements, resource utilization, and
server processing capabilities. Through rigorous evaluations
and performance comparisons, we illustrate the enhanced
effectiveness of HOQoS in optimizing computation offloading
and resource allocation within MEC environments, ultimately
improving the quality of service for IoT applications.

1) Simulation Based on Average Service Time: We evaluate
the average service time, a critical factor influencing service
quality and user experience. Figure 3 illustrates the impact
of the number of IoT devices on service times for different
resource management approaches. For 100 devices, HOQoS
and LCDA* show shallow service times of 0.8 seconds, while
Only MEC and DCOA-ST display times of 0.9 seconds. At
900 devices, HOQoS maintains a service time of 1 second,
while Only Cloud shows an alarming increase to 5.1 seconds,
confirming its inadequacy in high-load scenarios. Other ap-
proaches, such as Random and DCOA-ST, exhibit times of
2.1 seconds and 1.15 seconds, respectively. For 1500 devices,
HOQoS slightly increases to 1.2 seconds, while Only Cloud
reaches 7.1 seconds. Finally, at 2300 devices, HOQoS reports

a service time of 1.5 seconds, whereas Only Cloud remains
high at 7.2 seconds.

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

1

2

3

4

5

6

7

8

Number of Iot Devices
Se

rv
ic

e
Ti

m
e

(s
ec

)

y MECOnl
y CloudOnl
domRan
OA−STDC

A*LCD
HOQoS

Fig. 3: Service time as a function of the number of IoT devices.

2) Simulation Based on Task Failure Rates: In assessing
task execution success, task failure rates are key indicators
influenced by factors such as excessive virtual machine usage
and insufficient network bandwidth. Figure 4 illustrates how
failure rates vary across algorithms with different numbers of
IoT devices. The HOQoS approach consistently maintains low
failure rates, even as device numbers increase, highlighting
its robustness in high-density IoT environments. For 300
devices, HOQoS and Only MEC have low failure rates of 1%,
while LCDA* has the highest at 10%. At 900 devices, Only

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

10

20

30

40

50

60

70

80

90

100

Number of Iot Devices

Fa
ile

d
Ta

sk
s (

%
)

y MECOnl
y CloudOnl
domRan
A−STODC
A*LCD

HOQoS

Fig. 4: Task failure rate as a function of the number of IoT
devices.

Cloud shows a concerning 74% failure rate, whereas HOQoS
maintains a reasonable 1.5%. With 1500 devices, Only Cloud’s

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

while the bandwidth of the wide area network (WAN) is 15
Mbps. The propagation delay on the WAN is 0.1 seconds.
These parameters also influence system performance and
should be taken into account when evaluating the results of
the simulation.

B. Simulation Results

This section presents the results of simulations conducted
to evaluate the performance of different resource management
approaches and computation offloading strategies in a high-
density IoT environment. The studied approaches are:

• Only MEC: All tasks are executed on the MEC server.
This approach is straightforward but may be limited in
terms of resources and processing capacity.

• Only Cloud: All tasks are executed on the Cloud server.
This approach offers high processing capacity but can
lead to significant latency due to the distance between
IoT devices and the cloud.

• Random: Tasks are randomly distributed between the
MEC and Cloud servers. This implementation is simple
but may not be optimal in terms of performance.

• DCOA-ST: A dynamic computation Offloading approach
based on the service time [11]. This approach considers
the current system state to decide where to execute
tasks, potentially improving performance. It provides a
systematic approach to task assignment but may lack
flexibility in dynamic environments.

• LCDA*: The LCDA approach [12], which aims to min-
imize the execution time of delay-sensitive tasks while
ensuring no deadline violations. Their algorithm selects
servers and schedules tasks to optimize service time in
a dynamic environment. While LCDA effectively adapts
to changing workloads, it may not fully account for task
sensitivity or latency constraints.

We can evaluate their relative advantages and limitations by
comparing these methodologies with our HOQoS algorithm.
HOQoS integrates factors such as execution time, task sensi-
tivity to delays, latency requirements, resource utilization, and
server processing capabilities. Through rigorous evaluations
and performance comparisons, we illustrate the enhanced
effectiveness of HOQoS in optimizing computation offloading
and resource allocation within MEC environments, ultimately
improving the quality of service for IoT applications.

1) Simulation Based on Average Service Time: We evaluate
the average service time, a critical factor influencing service
quality and user experience. Figure 3 illustrates the impact
of the number of IoT devices on service times for different
resource management approaches. For 100 devices, HOQoS
and LCDA* show shallow service times of 0.8 seconds, while
Only MEC and DCOA-ST display times of 0.9 seconds. At
900 devices, HOQoS maintains a service time of 1 second,
while Only Cloud shows an alarming increase to 5.1 seconds,
confirming its inadequacy in high-load scenarios. Other ap-
proaches, such as Random and DCOA-ST, exhibit times of
2.1 seconds and 1.15 seconds, respectively. For 1500 devices,
HOQoS slightly increases to 1.2 seconds, while Only Cloud
reaches 7.1 seconds. Finally, at 2300 devices, HOQoS reports

a service time of 1.5 seconds, whereas Only Cloud remains
high at 7.2 seconds.

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

1

2

3

4

5

6

7

8

Number of Iot Devices

Se
rv

ic
e

Ti
m

e
(s

ec
)

y MECOnl
y CloudOnl
domRan
OA−STDC

A*LCD
HOQoS

Fig. 3: Service time as a function of the number of IoT devices.

2) Simulation Based on Task Failure Rates: In assessing
task execution success, task failure rates are key indicators
influenced by factors such as excessive virtual machine usage
and insufficient network bandwidth. Figure 4 illustrates how
failure rates vary across algorithms with different numbers of
IoT devices. The HOQoS approach consistently maintains low
failure rates, even as device numbers increase, highlighting
its robustness in high-density IoT environments. For 300
devices, HOQoS and Only MEC have low failure rates of 1%,
while LCDA* has the highest at 10%. At 900 devices, Only

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

10

20

30

40

50

60

70

80

90

100

Number of Iot Devices

Fa
ile

d
Ta

sk
s (

%
)

y MECOnl
y CloudOnl
domRan
A−STODC
A*LCD

HOQoS

Fig. 4: Task failure rate as a function of the number of IoT
devices.

Cloud shows a concerning 74% failure rate, whereas HOQoS
maintains a reasonable 1.5%. With 1500 devices, Only Cloud’s

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

while the bandwidth of the wide area network (WAN) is 15
Mbps. The propagation delay on the WAN is 0.1 seconds.
These parameters also influence system performance and
should be taken into account when evaluating the results of
the simulation.

B. Simulation Results

This section presents the results of simulations conducted
to evaluate the performance of different resource management
approaches and computation offloading strategies in a high-
density IoT environment. The studied approaches are:

• Only MEC: All tasks are executed on the MEC server.
This approach is straightforward but may be limited in
terms of resources and processing capacity.

• Only Cloud: All tasks are executed on the Cloud server.
This approach offers high processing capacity but can
lead to significant latency due to the distance between
IoT devices and the cloud.

• Random: Tasks are randomly distributed between the
MEC and Cloud servers. This implementation is simple
but may not be optimal in terms of performance.

• DCOA-ST: A dynamic computation Offloading approach
based on the service time [11]. This approach considers
the current system state to decide where to execute
tasks, potentially improving performance. It provides a
systematic approach to task assignment but may lack
flexibility in dynamic environments.

• LCDA*: The LCDA approach [12], which aims to min-
imize the execution time of delay-sensitive tasks while
ensuring no deadline violations. Their algorithm selects
servers and schedules tasks to optimize service time in
a dynamic environment. While LCDA effectively adapts
to changing workloads, it may not fully account for task
sensitivity or latency constraints.

We can evaluate their relative advantages and limitations by
comparing these methodologies with our HOQoS algorithm.
HOQoS integrates factors such as execution time, task sensi-
tivity to delays, latency requirements, resource utilization, and
server processing capabilities. Through rigorous evaluations
and performance comparisons, we illustrate the enhanced
effectiveness of HOQoS in optimizing computation offloading
and resource allocation within MEC environments, ultimately
improving the quality of service for IoT applications.

1) Simulation Based on Average Service Time: We evaluate
the average service time, a critical factor influencing service
quality and user experience. Figure 3 illustrates the impact
of the number of IoT devices on service times for different
resource management approaches. For 100 devices, HOQoS
and LCDA* show shallow service times of 0.8 seconds, while
Only MEC and DCOA-ST display times of 0.9 seconds. At
900 devices, HOQoS maintains a service time of 1 second,
while Only Cloud shows an alarming increase to 5.1 seconds,
confirming its inadequacy in high-load scenarios. Other ap-
proaches, such as Random and DCOA-ST, exhibit times of
2.1 seconds and 1.15 seconds, respectively. For 1500 devices,
HOQoS slightly increases to 1.2 seconds, while Only Cloud
reaches 7.1 seconds. Finally, at 2300 devices, HOQoS reports

a service time of 1.5 seconds, whereas Only Cloud remains
high at 7.2 seconds.

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

1

2

3

4

5

6

7

8

Number of Iot Devices

Se
rv

ic
e

Ti
m

e
(s

ec
)

y MECOnl
y CloudOnl
domRan
OA−STDC

A*LCD
HOQoS

Fig. 3: Service time as a function of the number of IoT devices.

2) Simulation Based on Task Failure Rates: In assessing
task execution success, task failure rates are key indicators
influenced by factors such as excessive virtual machine usage
and insufficient network bandwidth. Figure 4 illustrates how
failure rates vary across algorithms with different numbers of
IoT devices. The HOQoS approach consistently maintains low
failure rates, even as device numbers increase, highlighting
its robustness in high-density IoT environments. For 300
devices, HOQoS and Only MEC have low failure rates of 1%,
while LCDA* has the highest at 10%. At 900 devices, Only

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

10

20

30

40

50

60

70

80

90

100

Number of Iot Devices

Fa
ile

d
Ta

sk
s (

%
)

y MECOnl
y CloudOnl
domRan
A−STODC
A*LCD

HOQoS

Fig. 4: Task failure rate as a function of the number of IoT
devices.

Cloud shows a concerning 74% failure rate, whereas HOQoS
maintains a reasonable 1.5%. With 1500 devices, Only Cloud’s

Fig. 3: Service time as a function of the number of IoT devices.

Fig. 4: Task failure rate as a function of the number of IoT devices.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

failure rate rises to 91%, confirming its inadequacy in high-
load scenarios, while HOQoS remains at 2%. Finally, at 2300
devices, all failure rates increase, with Only Cloud reaching a
critical 95% and HOQoS at 4%.

3) Simulation Based on VM Utilization Rates: Figure 5
highlights the impact of the number of IoT devices on the
utilization of VMs at the MEC level. For 300 devices, HOQoS
shows a utilization rate of 1%, while Only MEC reaches 3%.
Other approaches, such as Random and DCOA-ST, exhibit
utilization rates of 2% and 4.5%, respectively, while LCDA*
reaches 5%. At 1100 devices, HOQoS maintains a rate of
2.5%, while Only MEC climbs to 12%. The Random and
DCOA-ST approaches also show increases, reaching 5% and
13%, respectively. When the number of devices reaches 1700,
HOQoS increases to 5%, while Only MEC rises to 23%,
with LCDA* at 19% and DCOA-ST at 23%. Finally, at
2300 devices, HOQoS presents a utilization rate of 9.8%,
contrasting sharply with Only MEC, which reaches 58%.
Other approaches show increased utilization, with Random at
12% and DCOA-ST at 27%.

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

10

20

30

40

50

60

Number of Iot Devices

A
ve

ra
ge

 V
M

 U
til

iz
at

io
n

of
 M

EC
 se

rv
er

 (%
)

Only MEC
Only Cloud

mRando
−STDCOA
*LCDA

HOQoS

Fig. 5: MEC server utilization as a function of the number of
IoT devices.

The utilization of VM at the Cloud level is presented in
Figure 6, exhibiting slightly lower rates compared to MEC
servers. For 500 devices, HOQoS shows a VM utilization
rate of only 0.1%, while Only Cloud reaches 1.2%. Other
approaches, such as Random and DCOA-ST, exhibit utilization
rates of 0.8% and 1.2%, respectively, while LCDA* reaches
0.4%. At 1300 devices, HOQoS maintains a utilization rate
of 0.1%, while Only Cloud climbs to 1.1%. The Random
and DCOA-ST approaches also show increases, reaching 1%
and 3.7%, respectively. When the number of devices reaches
1900, HOQoS increases to 0.2%, while Only Cloud rises to
1.1%, with LCDA* at 2.7% and DCOA-ST at 5.8%. Finally,
at 2300 devices, HOQoS presents a utilization rate of 0.3%,
contrasting sharply with Only Cloud, which reaches 1.4%.
Other approaches show increasing utilization, with Random

at 1% and DCOA-ST at 11.9%.

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

2

4

6

8

10

12

Number of Iot Devices

A
ve

ra
ge

 V
M

 U
til

iz
at

io
n

of
 C

lo
ud

 (%
)

Only MEC
Only Cloud

mRando
−STDCOA
*LCDA

HOQoS

Fig. 6: Cloud server utilization as a function of the number of
IoT devices.

The results demonstrate that HOQoS effectively manages
both MEC and cloud server resources under increasing load.
In contrast, other approaches, particularly Only MEC and
Only Cloud, exhibit a significant rise in VM utilization, which
could lead to challenges concerning performance and energy
consumption. It is important to note that Only Cloud does not
utilize MEC servers, while Only MEC does not utilize cloud
servers; therefore, their VM usage is not considered in this
analysis.

VI. CONCLUSION AND FUTURE PERSPECTIVES

This study aimed to improve service quality in Multi-access
Edge Computing by offloading computational loads and allo-
cating resources near IoT devices. The findings emphasize the
importance of offloading tasks from IoT devices with limited
computing capabilities to locations with adequate resources,
thereby reducing latency. The proposed heuristic algorithms
for task offloading and resource allocation consider task char-
acteristics and resource availability, resulting in decreased ser-
vice times and task failure rates. Future research will focus on
developing an autonomous system that utilizes reinforcement
learning and machine learning techniques to optimize task
execution locations in complex MEC environments. Enhancing
the algorithms’ adaptive capabilities to respond dynamically to
changes in network conditions and device capabilities will be a
priority. Additionally, integrating advanced predictive analytics
could enable proactive optimization of resource allocation and
offloading strategies by forecasting future resource needs and
user demands. These advancements aim to further enhance the
performance and efficiency of MEC systems.

REFERENCES

[1] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, ”Middle-
ware for Internet of Things: A Survey,” IEEE Internet of Things Journal,
vol. 3, no. 1, pp. 70–95, Feb. 2016. doi: 10.1109/JIOT.2015.2498900.

Enhancing QoS for IoT Devices through Heuristics-based
Computation Offloading in Multi-access Edge Computing

DECEMBER 2024 • VOLUME XVI • NUMBER 416

INFOCOMMUNICATIONS JOURNAL

 [1] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke,”
Middle-ware for Internet of Things: A Survey,” IEEE Internet of
Things Journal, vol. 3, no. 1, pp. 70–95, Feb. 2016.

 doi: 10.1109/JIOT.2015.2498900.

References

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

failure rate rises to 91%, confirming its inadequacy in high-
load scenarios, while HOQoS remains at 2%. Finally, at 2300
devices, all failure rates increase, with Only Cloud reaching a
critical 95% and HOQoS at 4%.

3) Simulation Based on VM Utilization Rates: Figure 5
highlights the impact of the number of IoT devices on the
utilization of VMs at the MEC level. For 300 devices, HOQoS
shows a utilization rate of 1%, while Only MEC reaches 3%.
Other approaches, such as Random and DCOA-ST, exhibit
utilization rates of 2% and 4.5%, respectively, while LCDA*
reaches 5%. At 1100 devices, HOQoS maintains a rate of
2.5%, while Only MEC climbs to 12%. The Random and
DCOA-ST approaches also show increases, reaching 5% and
13%, respectively. When the number of devices reaches 1700,
HOQoS increases to 5%, while Only MEC rises to 23%,
with LCDA* at 19% and DCOA-ST at 23%. Finally, at
2300 devices, HOQoS presents a utilization rate of 9.8%,
contrasting sharply with Only MEC, which reaches 58%.
Other approaches show increased utilization, with Random at
12% and DCOA-ST at 27%.

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

10

20

30

40

50

60

Number of Iot Devices

A
ve

ra
ge

 V
M

 U
til

iz
at

io
n

of
 M

EC
 se

rv
er

 (%
)

Only MEC
Only Cloud

mRando
−STDCOA
*LCDA

HOQoS

Fig. 5: MEC server utilization as a function of the number of
IoT devices.

The utilization of VM at the Cloud level is presented in
Figure 6, exhibiting slightly lower rates compared to MEC
servers. For 500 devices, HOQoS shows a VM utilization
rate of only 0.1%, while Only Cloud reaches 1.2%. Other
approaches, such as Random and DCOA-ST, exhibit utilization
rates of 0.8% and 1.2%, respectively, while LCDA* reaches
0.4%. At 1300 devices, HOQoS maintains a utilization rate
of 0.1%, while Only Cloud climbs to 1.1%. The Random
and DCOA-ST approaches also show increases, reaching 1%
and 3.7%, respectively. When the number of devices reaches
1900, HOQoS increases to 0.2%, while Only Cloud rises to
1.1%, with LCDA* at 2.7% and DCOA-ST at 5.8%. Finally,
at 2300 devices, HOQoS presents a utilization rate of 0.3%,
contrasting sharply with Only Cloud, which reaches 1.4%.
Other approaches show increasing utilization, with Random

at 1% and DCOA-ST at 11.9%.

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

2

4

6

8

10

12

Number of Iot Devices

A
ve

ra
ge

 V
M

 U
til

iz
at

io
n

of
 C

lo
ud

 (%
)

Only MEC
Only Cloud

mRando
−STDCOA
*LCDA

HOQoS

Fig. 6: Cloud server utilization as a function of the number of
IoT devices.

The results demonstrate that HOQoS effectively manages
both MEC and cloud server resources under increasing load.
In contrast, other approaches, particularly Only MEC and
Only Cloud, exhibit a significant rise in VM utilization, which
could lead to challenges concerning performance and energy
consumption. It is important to note that Only Cloud does not
utilize MEC servers, while Only MEC does not utilize cloud
servers; therefore, their VM usage is not considered in this
analysis.

VI. CONCLUSION AND FUTURE PERSPECTIVES

This study aimed to improve service quality in Multi-access
Edge Computing by offloading computational loads and allo-
cating resources near IoT devices. The findings emphasize the
importance of offloading tasks from IoT devices with limited
computing capabilities to locations with adequate resources,
thereby reducing latency. The proposed heuristic algorithms
for task offloading and resource allocation consider task char-
acteristics and resource availability, resulting in decreased ser-
vice times and task failure rates. Future research will focus on
developing an autonomous system that utilizes reinforcement
learning and machine learning techniques to optimize task
execution locations in complex MEC environments. Enhancing
the algorithms’ adaptive capabilities to respond dynamically to
changes in network conditions and device capabilities will be a
priority. Additionally, integrating advanced predictive analytics
could enable proactive optimization of resource allocation and
offloading strategies by forecasting future resource needs and
user demands. These advancements aim to further enhance the
performance and efficiency of MEC systems.

REFERENCES

[1] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, ”Middle-
ware for Internet of Things: A Survey,” IEEE Internet of Things Journal,
vol. 3, no. 1, pp. 70–95, Feb. 2016. doi: 10.1109/JIOT.2015.2498900.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

failure rate rises to 91%, confirming its inadequacy in high-
load scenarios, while HOQoS remains at 2%. Finally, at 2300
devices, all failure rates increase, with Only Cloud reaching a
critical 95% and HOQoS at 4%.

3) Simulation Based on VM Utilization Rates: Figure 5
highlights the impact of the number of IoT devices on the
utilization of VMs at the MEC level. For 300 devices, HOQoS
shows a utilization rate of 1%, while Only MEC reaches 3%.
Other approaches, such as Random and DCOA-ST, exhibit
utilization rates of 2% and 4.5%, respectively, while LCDA*
reaches 5%. At 1100 devices, HOQoS maintains a rate of
2.5%, while Only MEC climbs to 12%. The Random and
DCOA-ST approaches also show increases, reaching 5% and
13%, respectively. When the number of devices reaches 1700,
HOQoS increases to 5%, while Only MEC rises to 23%,
with LCDA* at 19% and DCOA-ST at 23%. Finally, at
2300 devices, HOQoS presents a utilization rate of 9.8%,
contrasting sharply with Only MEC, which reaches 58%.
Other approaches show increased utilization, with Random at
12% and DCOA-ST at 27%.

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

10

20

30

40

50

60

Number of Iot Devices

A
ve

ra
ge

 V
M

 U
til

iz
at

io
n

of
 M

EC
 se

rv
er

 (%
)

Only MEC
Only Cloud

mRando
−STDCOA
*LCDA

HOQoS

Fig. 5: MEC server utilization as a function of the number of
IoT devices.

The utilization of VM at the Cloud level is presented in
Figure 6, exhibiting slightly lower rates compared to MEC
servers. For 500 devices, HOQoS shows a VM utilization
rate of only 0.1%, while Only Cloud reaches 1.2%. Other
approaches, such as Random and DCOA-ST, exhibit utilization
rates of 0.8% and 1.2%, respectively, while LCDA* reaches
0.4%. At 1300 devices, HOQoS maintains a utilization rate
of 0.1%, while Only Cloud climbs to 1.1%. The Random
and DCOA-ST approaches also show increases, reaching 1%
and 3.7%, respectively. When the number of devices reaches
1900, HOQoS increases to 0.2%, while Only Cloud rises to
1.1%, with LCDA* at 2.7% and DCOA-ST at 5.8%. Finally,
at 2300 devices, HOQoS presents a utilization rate of 0.3%,
contrasting sharply with Only Cloud, which reaches 1.4%.
Other approaches show increasing utilization, with Random

at 1% and DCOA-ST at 11.9%.

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

2

4

6

8

10

12

Number of Iot Devices

A
ve

ra
ge

 V
M

 U
til

iz
at

io
n

of
 C

lo
ud

 (%
)

Only MEC
Only Cloud

mRando
−STDCOA
*LCDA

HOQoS

Fig. 6: Cloud server utilization as a function of the number of
IoT devices.

The results demonstrate that HOQoS effectively manages
both MEC and cloud server resources under increasing load.
In contrast, other approaches, particularly Only MEC and
Only Cloud, exhibit a significant rise in VM utilization, which
could lead to challenges concerning performance and energy
consumption. It is important to note that Only Cloud does not
utilize MEC servers, while Only MEC does not utilize cloud
servers; therefore, their VM usage is not considered in this
analysis.

VI. CONCLUSION AND FUTURE PERSPECTIVES

This study aimed to improve service quality in Multi-access
Edge Computing by offloading computational loads and allo-
cating resources near IoT devices. The findings emphasize the
importance of offloading tasks from IoT devices with limited
computing capabilities to locations with adequate resources,
thereby reducing latency. The proposed heuristic algorithms
for task offloading and resource allocation consider task char-
acteristics and resource availability, resulting in decreased ser-
vice times and task failure rates. Future research will focus on
developing an autonomous system that utilizes reinforcement
learning and machine learning techniques to optimize task
execution locations in complex MEC environments. Enhancing
the algorithms’ adaptive capabilities to respond dynamically to
changes in network conditions and device capabilities will be a
priority. Additionally, integrating advanced predictive analytics
could enable proactive optimization of resource allocation and
offloading strategies by forecasting future resource needs and
user demands. These advancements aim to further enhance the
performance and efficiency of MEC systems.

REFERENCES

[1] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, ”Middle-
ware for Internet of Things: A Survey,” IEEE Internet of Things Journal,
vol. 3, no. 1, pp. 70–95, Feb. 2016. doi: 10.1109/JIOT.2015.2498900.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

failure rate rises to 91%, confirming its inadequacy in high-
load scenarios, while HOQoS remains at 2%. Finally, at 2300
devices, all failure rates increase, with Only Cloud reaching a
critical 95% and HOQoS at 4%.

3) Simulation Based on VM Utilization Rates: Figure 5
highlights the impact of the number of IoT devices on the
utilization of VMs at the MEC level. For 300 devices, HOQoS
shows a utilization rate of 1%, while Only MEC reaches 3%.
Other approaches, such as Random and DCOA-ST, exhibit
utilization rates of 2% and 4.5%, respectively, while LCDA*
reaches 5%. At 1100 devices, HOQoS maintains a rate of
2.5%, while Only MEC climbs to 12%. The Random and
DCOA-ST approaches also show increases, reaching 5% and
13%, respectively. When the number of devices reaches 1700,
HOQoS increases to 5%, while Only MEC rises to 23%,
with LCDA* at 19% and DCOA-ST at 23%. Finally, at
2300 devices, HOQoS presents a utilization rate of 9.8%,
contrasting sharply with Only MEC, which reaches 58%.
Other approaches show increased utilization, with Random at
12% and DCOA-ST at 27%.

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

10

20

30

40

50

60

Number of Iot Devices

A
ve

ra
ge

 V
M

 U
til

iz
at

io
n

of
 M

EC
 se

rv
er

 (%
)

Only MEC
Only Cloud

mRando
−STDCOA
*LCDA

HOQoS

Fig. 5: MEC server utilization as a function of the number of
IoT devices.

The utilization of VM at the Cloud level is presented in
Figure 6, exhibiting slightly lower rates compared to MEC
servers. For 500 devices, HOQoS shows a VM utilization
rate of only 0.1%, while Only Cloud reaches 1.2%. Other
approaches, such as Random and DCOA-ST, exhibit utilization
rates of 0.8% and 1.2%, respectively, while LCDA* reaches
0.4%. At 1300 devices, HOQoS maintains a utilization rate
of 0.1%, while Only Cloud climbs to 1.1%. The Random
and DCOA-ST approaches also show increases, reaching 1%
and 3.7%, respectively. When the number of devices reaches
1900, HOQoS increases to 0.2%, while Only Cloud rises to
1.1%, with LCDA* at 2.7% and DCOA-ST at 5.8%. Finally,
at 2300 devices, HOQoS presents a utilization rate of 0.3%,
contrasting sharply with Only Cloud, which reaches 1.4%.
Other approaches show increasing utilization, with Random

at 1% and DCOA-ST at 11.9%.

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

2

4

6

8

10

12

Number of Iot Devices

A
ve

ra
ge

 V
M

 U
til

iz
at

io
n

of
 C

lo
ud

 (%
)

Only MEC
Only Cloud

mRando
−STDCOA
*LCDA

HOQoS

Fig. 6: Cloud server utilization as a function of the number of
IoT devices.

The results demonstrate that HOQoS effectively manages
both MEC and cloud server resources under increasing load.
In contrast, other approaches, particularly Only MEC and
Only Cloud, exhibit a significant rise in VM utilization, which
could lead to challenges concerning performance and energy
consumption. It is important to note that Only Cloud does not
utilize MEC servers, while Only MEC does not utilize cloud
servers; therefore, their VM usage is not considered in this
analysis.

VI. CONCLUSION AND FUTURE PERSPECTIVES

This study aimed to improve service quality in Multi-access
Edge Computing by offloading computational loads and allo-
cating resources near IoT devices. The findings emphasize the
importance of offloading tasks from IoT devices with limited
computing capabilities to locations with adequate resources,
thereby reducing latency. The proposed heuristic algorithms
for task offloading and resource allocation consider task char-
acteristics and resource availability, resulting in decreased ser-
vice times and task failure rates. Future research will focus on
developing an autonomous system that utilizes reinforcement
learning and machine learning techniques to optimize task
execution locations in complex MEC environments. Enhancing
the algorithms’ adaptive capabilities to respond dynamically to
changes in network conditions and device capabilities will be a
priority. Additionally, integrating advanced predictive analytics
could enable proactive optimization of resource allocation and
offloading strategies by forecasting future resource needs and
user demands. These advancements aim to further enhance the
performance and efficiency of MEC systems.

REFERENCES

[1] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, ”Middle-
ware for Internet of Things: A Survey,” IEEE Internet of Things Journal,
vol. 3, no. 1, pp. 70–95, Feb. 2016. doi: 10.1109/JIOT.2015.2498900.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

failure rate rises to 91%, confirming its inadequacy in high-
load scenarios, while HOQoS remains at 2%. Finally, at 2300
devices, all failure rates increase, with Only Cloud reaching a
critical 95% and HOQoS at 4%.

3) Simulation Based on VM Utilization Rates: Figure 5
highlights the impact of the number of IoT devices on the
utilization of VMs at the MEC level. For 300 devices, HOQoS
shows a utilization rate of 1%, while Only MEC reaches 3%.
Other approaches, such as Random and DCOA-ST, exhibit
utilization rates of 2% and 4.5%, respectively, while LCDA*
reaches 5%. At 1100 devices, HOQoS maintains a rate of
2.5%, while Only MEC climbs to 12%. The Random and
DCOA-ST approaches also show increases, reaching 5% and
13%, respectively. When the number of devices reaches 1700,
HOQoS increases to 5%, while Only MEC rises to 23%,
with LCDA* at 19% and DCOA-ST at 23%. Finally, at
2300 devices, HOQoS presents a utilization rate of 9.8%,
contrasting sharply with Only MEC, which reaches 58%.
Other approaches show increased utilization, with Random at
12% and DCOA-ST at 27%.

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

10

20

30

40

50

60

Number of Iot Devices

A
ve

ra
ge

 V
M

 U
til

iz
at

io
n

of
 M

EC
 se

rv
er

 (%
)

Only MEC
Only Cloud

mRando
−STDCOA
*LCDA

HOQoS

Fig. 5: MEC server utilization as a function of the number of
IoT devices.

The utilization of VM at the Cloud level is presented in
Figure 6, exhibiting slightly lower rates compared to MEC
servers. For 500 devices, HOQoS shows a VM utilization
rate of only 0.1%, while Only Cloud reaches 1.2%. Other
approaches, such as Random and DCOA-ST, exhibit utilization
rates of 0.8% and 1.2%, respectively, while LCDA* reaches
0.4%. At 1300 devices, HOQoS maintains a utilization rate
of 0.1%, while Only Cloud climbs to 1.1%. The Random
and DCOA-ST approaches also show increases, reaching 1%
and 3.7%, respectively. When the number of devices reaches
1900, HOQoS increases to 0.2%, while Only Cloud rises to
1.1%, with LCDA* at 2.7% and DCOA-ST at 5.8%. Finally,
at 2300 devices, HOQoS presents a utilization rate of 0.3%,
contrasting sharply with Only Cloud, which reaches 1.4%.
Other approaches show increasing utilization, with Random

at 1% and DCOA-ST at 11.9%.

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

2

4

6

8

10

12

Number of Iot Devices

A
ve

ra
ge

 V
M

 U
til

iz
at

io
n

of
 C

lo
ud

 (%
)

Only MEC
Only Cloud

mRando
−STDCOA
*LCDA

HOQoS

Fig. 6: Cloud server utilization as a function of the number of
IoT devices.

The results demonstrate that HOQoS effectively manages
both MEC and cloud server resources under increasing load.
In contrast, other approaches, particularly Only MEC and
Only Cloud, exhibit a significant rise in VM utilization, which
could lead to challenges concerning performance and energy
consumption. It is important to note that Only Cloud does not
utilize MEC servers, while Only MEC does not utilize cloud
servers; therefore, their VM usage is not considered in this
analysis.

VI. CONCLUSION AND FUTURE PERSPECTIVES

This study aimed to improve service quality in Multi-access
Edge Computing by offloading computational loads and allo-
cating resources near IoT devices. The findings emphasize the
importance of offloading tasks from IoT devices with limited
computing capabilities to locations with adequate resources,
thereby reducing latency. The proposed heuristic algorithms
for task offloading and resource allocation consider task char-
acteristics and resource availability, resulting in decreased ser-
vice times and task failure rates. Future research will focus on
developing an autonomous system that utilizes reinforcement
learning and machine learning techniques to optimize task
execution locations in complex MEC environments. Enhancing
the algorithms’ adaptive capabilities to respond dynamically to
changes in network conditions and device capabilities will be a
priority. Additionally, integrating advanced predictive analytics
could enable proactive optimization of resource allocation and
offloading strategies by forecasting future resource needs and
user demands. These advancements aim to further enhance the
performance and efficiency of MEC systems.

REFERENCES

[1] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, ”Middle-
ware for Internet of Things: A Survey,” IEEE Internet of Things Journal,
vol. 3, no. 1, pp. 70–95, Feb. 2016. doi: 10.1109/JIOT.2015.2498900.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

failure rate rises to 91%, confirming its inadequacy in high-
load scenarios, while HOQoS remains at 2%. Finally, at 2300
devices, all failure rates increase, with Only Cloud reaching a
critical 95% and HOQoS at 4%.

3) Simulation Based on VM Utilization Rates: Figure 5
highlights the impact of the number of IoT devices on the
utilization of VMs at the MEC level. For 300 devices, HOQoS
shows a utilization rate of 1%, while Only MEC reaches 3%.
Other approaches, such as Random and DCOA-ST, exhibit
utilization rates of 2% and 4.5%, respectively, while LCDA*
reaches 5%. At 1100 devices, HOQoS maintains a rate of
2.5%, while Only MEC climbs to 12%. The Random and
DCOA-ST approaches also show increases, reaching 5% and
13%, respectively. When the number of devices reaches 1700,
HOQoS increases to 5%, while Only MEC rises to 23%,
with LCDA* at 19% and DCOA-ST at 23%. Finally, at
2300 devices, HOQoS presents a utilization rate of 9.8%,
contrasting sharply with Only MEC, which reaches 58%.
Other approaches show increased utilization, with Random at
12% and DCOA-ST at 27%.

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

10

20

30

40

50

60

Number of Iot Devices

A
ve

ra
ge

 V
M

 U
til

iz
at

io
n

of
 M

EC
 se

rv
er

 (%
)

Only MEC
Only Cloud

mRando
−STDCOA
*LCDA

HOQoS

Fig. 5: MEC server utilization as a function of the number of
IoT devices.

The utilization of VM at the Cloud level is presented in
Figure 6, exhibiting slightly lower rates compared to MEC
servers. For 500 devices, HOQoS shows a VM utilization
rate of only 0.1%, while Only Cloud reaches 1.2%. Other
approaches, such as Random and DCOA-ST, exhibit utilization
rates of 0.8% and 1.2%, respectively, while LCDA* reaches
0.4%. At 1300 devices, HOQoS maintains a utilization rate
of 0.1%, while Only Cloud climbs to 1.1%. The Random
and DCOA-ST approaches also show increases, reaching 1%
and 3.7%, respectively. When the number of devices reaches
1900, HOQoS increases to 0.2%, while Only Cloud rises to
1.1%, with LCDA* at 2.7% and DCOA-ST at 5.8%. Finally,
at 2300 devices, HOQoS presents a utilization rate of 0.3%,
contrasting sharply with Only Cloud, which reaches 1.4%.
Other approaches show increasing utilization, with Random

at 1% and DCOA-ST at 11.9%.

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

2

4

6

8

10

12

Number of Iot Devices

A
ve

ra
ge

 V
M

 U
til

iz
at

io
n

of
 C

lo
ud

 (%
)

Only MEC
Only Cloud

mRando
−STDCOA
*LCDA

HOQoS

Fig. 6: Cloud server utilization as a function of the number of
IoT devices.

The results demonstrate that HOQoS effectively manages
both MEC and cloud server resources under increasing load.
In contrast, other approaches, particularly Only MEC and
Only Cloud, exhibit a significant rise in VM utilization, which
could lead to challenges concerning performance and energy
consumption. It is important to note that Only Cloud does not
utilize MEC servers, while Only MEC does not utilize cloud
servers; therefore, their VM usage is not considered in this
analysis.

VI. CONCLUSION AND FUTURE PERSPECTIVES

This study aimed to improve service quality in Multi-access
Edge Computing by offloading computational loads and allo-
cating resources near IoT devices. The findings emphasize the
importance of offloading tasks from IoT devices with limited
computing capabilities to locations with adequate resources,
thereby reducing latency. The proposed heuristic algorithms
for task offloading and resource allocation consider task char-
acteristics and resource availability, resulting in decreased ser-
vice times and task failure rates. Future research will focus on
developing an autonomous system that utilizes reinforcement
learning and machine learning techniques to optimize task
execution locations in complex MEC environments. Enhancing
the algorithms’ adaptive capabilities to respond dynamically to
changes in network conditions and device capabilities will be a
priority. Additionally, integrating advanced predictive analytics
could enable proactive optimization of resource allocation and
offloading strategies by forecasting future resource needs and
user demands. These advancements aim to further enhance the
performance and efficiency of MEC systems.

REFERENCES

[1] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, ”Middle-
ware for Internet of Things: A Survey,” IEEE Internet of Things Journal,
vol. 3, no. 1, pp. 70–95, Feb. 2016. doi: 10.1109/JIOT.2015.2498900.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

failure rate rises to 91%, confirming its inadequacy in high-
load scenarios, while HOQoS remains at 2%. Finally, at 2300
devices, all failure rates increase, with Only Cloud reaching a
critical 95% and HOQoS at 4%.

3) Simulation Based on VM Utilization Rates: Figure 5
highlights the impact of the number of IoT devices on the
utilization of VMs at the MEC level. For 300 devices, HOQoS
shows a utilization rate of 1%, while Only MEC reaches 3%.
Other approaches, such as Random and DCOA-ST, exhibit
utilization rates of 2% and 4.5%, respectively, while LCDA*
reaches 5%. At 1100 devices, HOQoS maintains a rate of
2.5%, while Only MEC climbs to 12%. The Random and
DCOA-ST approaches also show increases, reaching 5% and
13%, respectively. When the number of devices reaches 1700,
HOQoS increases to 5%, while Only MEC rises to 23%,
with LCDA* at 19% and DCOA-ST at 23%. Finally, at
2300 devices, HOQoS presents a utilization rate of 9.8%,
contrasting sharply with Only MEC, which reaches 58%.
Other approaches show increased utilization, with Random at
12% and DCOA-ST at 27%.

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

10

20

30

40

50

60

Number of Iot Devices

A
ve

ra
ge

 V
M

 U
til

iz
at

io
n

of
 M

EC
 se

rv
er

 (%
)

Only MEC
Only Cloud

mRando
−STDCOA
*LCDA

HOQoS

Fig. 5: MEC server utilization as a function of the number of
IoT devices.

The utilization of VM at the Cloud level is presented in
Figure 6, exhibiting slightly lower rates compared to MEC
servers. For 500 devices, HOQoS shows a VM utilization
rate of only 0.1%, while Only Cloud reaches 1.2%. Other
approaches, such as Random and DCOA-ST, exhibit utilization
rates of 0.8% and 1.2%, respectively, while LCDA* reaches
0.4%. At 1300 devices, HOQoS maintains a utilization rate
of 0.1%, while Only Cloud climbs to 1.1%. The Random
and DCOA-ST approaches also show increases, reaching 1%
and 3.7%, respectively. When the number of devices reaches
1900, HOQoS increases to 0.2%, while Only Cloud rises to
1.1%, with LCDA* at 2.7% and DCOA-ST at 5.8%. Finally,
at 2300 devices, HOQoS presents a utilization rate of 0.3%,
contrasting sharply with Only Cloud, which reaches 1.4%.
Other approaches show increasing utilization, with Random

at 1% and DCOA-ST at 11.9%.

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300
0

2

4

6

8

10

12

Number of Iot Devices

A
ve

ra
ge

 V
M

 U
til

iz
at

io
n

of
 C

lo
ud

 (%
)

Only MEC
Only Cloud

mRando
−STDCOA
*LCDA

HOQoS

Fig. 6: Cloud server utilization as a function of the number of
IoT devices.

The results demonstrate that HOQoS effectively manages
both MEC and cloud server resources under increasing load.
In contrast, other approaches, particularly Only MEC and
Only Cloud, exhibit a significant rise in VM utilization, which
could lead to challenges concerning performance and energy
consumption. It is important to note that Only Cloud does not
utilize MEC servers, while Only MEC does not utilize cloud
servers; therefore, their VM usage is not considered in this
analysis.

VI. CONCLUSION AND FUTURE PERSPECTIVES

This study aimed to improve service quality in Multi-access
Edge Computing by offloading computational loads and allo-
cating resources near IoT devices. The findings emphasize the
importance of offloading tasks from IoT devices with limited
computing capabilities to locations with adequate resources,
thereby reducing latency. The proposed heuristic algorithms
for task offloading and resource allocation consider task char-
acteristics and resource availability, resulting in decreased ser-
vice times and task failure rates. Future research will focus on
developing an autonomous system that utilizes reinforcement
learning and machine learning techniques to optimize task
execution locations in complex MEC environments. Enhancing
the algorithms’ adaptive capabilities to respond dynamically to
changes in network conditions and device capabilities will be a
priority. Additionally, integrating advanced predictive analytics
could enable proactive optimization of resource allocation and
offloading strategies by forecasting future resource needs and
user demands. These advancements aim to further enhance the
performance and efficiency of MEC systems.

REFERENCES

[1] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, ”Middle-
ware for Internet of Things: A Survey,” IEEE Internet of Things Journal,
vol. 3, no. 1, pp. 70–95, Feb. 2016. doi: 10.1109/JIOT.2015.2498900.

Fig. 6: Cloud server utilization as a function of the number of
IoT devices.

Fig. 5: MEC server utilization as a function of the number of IoT devices.

Enhancing QoS for IoT Devices through Heuristics-based
Computation Offloading in Multi-access Edge Computing

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2024 • VOLUME XVI • NUMBER 4 17

Marouane Myyara received his B.Sc. in Electronic
and Telecommunication Engineering in 2019 and M.Sc.
in Telecommunication Systems and Computer Net-
works in 2021 from Sultan Moulay Slimane University,
Beni Mellal, Morocco. He is currently a Ph.D. candi-
date at the Laboratory of Innovation in Mathematics,
Applications, and Information Technology (LIMATI),
Polydisciplinary Faculty, Sultan Moulay Slimane
University, Morocco. His current research focuses on
improving the performance of Multi-access Edge Com-

puting networks (MEC), Cloud Computing, Computation Offloading, and the
Internet of Things (IoT).

Oussama Lagnfdi received his B.Sc. in Physical Mat-
ter Science in 2020 and M.Sc. in Telecommunications
Systems and Computer Networks in 2022 from Sultan
Moulay Slimane University, Beni Mellal, Morocco.
Currently, he is a Ph.D. candidate at the Laboratoire
d’Innovation en Mathématiques et Applications et
Technologies de l’Information (LIMATI), Polydisci-
plinary Faculty, Sultan Moulay Slimane University,
Morocco. His ongoing research is focused on enhanc-
ing the performance of Internet of Things (IoT) and

Mobile Edge Computing (MEC), Artificial Intelligence, Deep Learning, and
Fuzzy Logic.

Anouar Darif received the bachelor in IEEA (Informa-
tique Électrotechnique, Électronique and Automatique)
from Dhar El Mahraz Faculty of Sciences at Mohamed
Ben Abdellah University Fez, Morocco in 2005. He re-
ceived the Diplôme d’Etudes Supérieures Approfondies
in Computer Sciences and Telecommunications from
the Faculty of Sciences Rabat in 2007. He received the
Ph.D. degree in Computer Sciences and Telecommuni-
cations from the Faculty of Sciences of Rabat in 2015.
He is currently a Research and Teaching Associate in

the Multidisciplinary Faculty at the University of Sultan Moulay Slimane Beni
Mellal, Morocco. His research interests include Wireless Sensor Networks
(WSN), Mobile Edge Computing (MEC), Internet of Things (IoT), Cloud Com-
puting, and Neural Networks.

Abderrazak Farchane received his B.Sc. in Com-
puter Science and Engineering in June 2001 and M.Sc.
in Computer Science and Telecommunication from the
University of Mohammed V Agdal, Rabat, Morocco, in
2003. He obtained his Ph.D. in Computer Science and
Engineering at ENSIAS, Rabat, Morocco. He is cur-
rently an Associate Professor of Computer Science in
the Polydisciplinary Faculty, at Sultan Moulay Slimane
University, Morocco. His areas of interest are Informa-
tion Coding Theory, Cryptography, and Security.

 [2] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb,
”Survey on Multi-Access Edge Computing for Internet of Things Re-
alization,” IEEE Communications Surveys & Tutorials, vol. 20, no. 4,
pp. 2961–2991, 2018. doi: 10.1109/COMST.2018.2849509.

 [3] European Telecommunications Standards Institute (ETSI), ”Mobile-
edge computing (MEC); Framework and reference architecture,”
ETSI GS MEC 003, 2019.

 [4] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal, et al.,
”Mobile-edge computing introductory technical white paper,” White
paper, mobile-edge computing (MEC) industry initiative, vol. 29, pp.
854– 864, 2014.

 [5] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
”On Multi-Access Edge Computing: A Survey of the Emerging
5G Network Edge Cloud Architecture and Orchestration,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1657–1681,
2017. doi: 10.1109/COMST.2017.2705720.

 [6] A. P. Jafari Pozveh and H. S. Shahhoseini, ”IoT Integration with
MEC,” in Mobile Edge Computing, Springer, Cham, 2021, pp. 111–
144. doi: 10.1007/978-3-030-69893-5_6.

 [7] M. Myyara, O. Lagnfdi, A. Darif, and A. Farchane, ”A New
Approach Based on Genetic Algorithm for Computation Offloading
Optimization in Multi-Access Edge Computing Networks,” IAES
International Journal of Artificial Intelligence (IJ-AI), vol. 13, no. 4,
pp. 4186–4194, 2024. doi: 10.11591/ijai.v13.i4.pp4186-4194.

 [8] C. Shu, Z. Zhao, Y. Han, G. Min, and H. Duan, ”Multi-User Offloading
for Edge Computing Networks: A Dependency-Aware and Latency-
Optimal Approach,” IEEE Internet of Things Journal, vol. 7, no. 3,
pp. 1678–1689, Mar. 2020. doi: 10.1109/JIOT.2019.2943373.

 [9] C. Chen, B. Liu, S. Wan, P. Qiao, and Q. Pei, ”An Edge Traffic Flow
Detection Scheme Based on Deep Learning in an Intelligent Trans-
portation System,” IEEE Transactions on Intelligent Transportation
Systems, vol. 22, no. 3, pp. 1840–1852, Mar. 2021.

 doi: 10.1109/TITS.2020.3025687.
[10] A. Naouri, H. Wu, N. A. Nouri, S. Dhelim, and H. Ning, ”A novel

framework for mobile-edge computing by optimizing task offloading,”
IEEE Internet of Things Journal, vol. 8, no. 16, pp. 13 065–13 076,
2021. doi: 10.1109/JIOT.2021.3064225.

[11] M. Myyara, O. Lagnfdi, A. Darif, and A. Farchane, ”Quality of
Expe- rience Improvement and Service Time Optimization through
Dynamic Computation Offloading Algorithms in Multi-access Edge
Computing Networks,” International Journal of Computer Network
and Information Security (IJCNIS), vol. 16, no. 4, pp. 1–16, 2024.
doi: 10.5815/ijcnis.2024.04.01.

 [12] H. Choi, H. Yu, and E. Lee, ”Latency-classification-based deadline-
aware task offloading algorithm in mobile edge computing environ-
ments,” Applied Sciences, vol. 9, no. 21, p. 4696, 2019.

 doi: 10.3390/app9214696.
 [13] C. Eang, S. Ros, S. Kang, I. Song, P. Tam, S. Math, and S. Kim, ”Of-

floading Decision and Resource Allocation in Mobile Edge Computing
for Cost and Latency Efficiencies in Real-Time IoT,” Electronics, vol.
13, no. 7, p. 1218, 2024. doi: 10.3390/electronics13071218.

 [14] C. Kai, H. Zhou, Y. Yi, and W. Huang, ”Collaborative cloud-edge-
end task offloading in mobile-edge computing networks with
limited communication capability,” IEEE Transactions on Cognitive
Communications and Networking, vol. 7, no. 2, pp. 624–634, 2020.
doi: 10.1109/TCCN.2020.3018159.

 [15] S. Wan, R. Gu, T. Umer, K. Salah, and X. Xu, ”Toward Offloading
Internet of Vehicles Applications in 5G Networks,” IEEE Transactions
on Intelligent Transportation Systems, vol. 22, no. 7, pp. 4151–4159,
Jul. 2021. doi: 10.1109/TITS.2020.3017596.

 [16] I. Sarrigiannis, K. Ramantas, E. Kartsakli, P.-V. Mekikis, A. Anto-
nopoulos, and C. Verikoukis, ”Online VNF Lifecycle Management
in an MEC-Enabled 5G IoT Architecture,” IEEE Internet of Things
Journal, vol. 7, no. 5, pp. 4183–4194, May 2020.

 doi: 10.1109/JIOT.2019.2944695.
 [17] M. Myyara, O. Lagnfdi, A. Darif, and A. Farchane, ”A Resource Allo-

cation Strategy to Enhance User Experience for IoT Devices in Multi-
access Edge Computing,” in 2024 Sixth International Conference
on Intelligent Computing in Data Sciences (ICDS), 2024, pp. 1–7.
doi: 10.1109/ICDS62089.2024.10756444.

 [18] Z. Ding, J. Xu, O. A. Dobre, and H. V. Poor, ”Joint Power and Time
Allocation for NOMA–MEC Offloading,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 6, pp. 6207–6211, Jun. 2019.
doi: 10.1109/TVT.2019.2907253.

 [19] Z. Ning, P. Dong, X. Kong, and F. Xia, ”A Cooperative Partial
Computation Offloading Scheme for Mobile Edge Computing
Enabled Internet of Things,” IEEE Internet of Things Journal, vol. 6,
no. 3, pp. 4804–4814, Jun. 2019. doi: 10.1109/JIOT.2018.2868616.

 [20] C. Sonmez, A. Ozgovde, and C. Ersoy, ”Fuzzy workload orchestration
for edge computing,” IEEE Transactions on Network and Service
Management, vol. 16, no. 2, pp. 769–782, 2019.

 doi: 10.1109/TNSM.2019.2901346.
 [21] P. W. Khan, K. Abbas, H. Shaiba, A. Muthanna, A. Abuarqoub, and

M. Khayyat, ”Energy efficient computation offloading mechanism in
multi- server mobile edge computing—An integer linear optimization
approach,” Electronics, vol. 9, no. 6, p. 1010, 2020.

 doi: 10.3390/electronics9061010.

https://doi.org/10.1109/COMST.2018.2849509
https://doi.org/10.1109/COMST.2017.2705720
https://doi.org/10.1007/978-3-030-69893-5_6
https://doi.org/10.11591/ijai.v13.i4.pp4186-4194
https://doi.org/10.1109/JIOT.2019.2943373
https://doi.org/10.1109/TITS.2020.3025687
https://doi.org/10.1109/JIOT.2021.3064225
https://doi.org/10.5815/ijcnis.2024.04.01
https://doi.org/10.3390/app9214696
https://doi.org/10.3390/electronics13071218
https://doi.org/10.1109/TCCN.2020.3018159
https://doi.org/10.1109/TITS.2020.3017596
https://doi.org/10.1109/JIOT.2019.2944695
https://doi.org/10.1109/ICDS62089.2024.10756444
https://doi.org/10.1109/TVT.2019.2907253
https://doi.org/10.1109/JIOT.2018.2868616
https://doi.org/10.1109/TNSM.2019.2901346
https://doi.org/10.3390/electronics9061010

