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1 Abstract—Code smells are specific patterns or characteristics in
software code that indicate potential design or implementation
problems. Identifying code smells has gained significant attention
in software engineering. It is essential to address code smells to
maintain high-quality software systems. Machine learning (ML)
models, such as Long Short-Term Memory (LSTM), have been to
detect code smells automatically based on source code features.
However, the imbalanced distribution of code smells within
software projects poses a challenge to the accuracy of these
models. This study explores the role of data balancing methods in
optimizing the accuracy of the LSTM model for code smell
detection. We investigate different techniques for addressing the
class imbalance problem, including random oversampling and
synthetic minority oversampling techniques (SMOTE). We
evaluate the performance of the LSTM model with and without
data balancing methods using accuracy, precision, recall,
f-measure, Matthew’s correlation coefficient (MCC), and the area
under a receiver operating characteristic curve (AUC). Our
experimental results, conducted on four code smell datasets (God
class, data class, feature envy, and long method) extracted from
74 open-source systems, demonstrate the effectiveness of data
balancing methods in improving the accuracy of the LSTM
model for code smell detection. The results indicate that the use
of data balancing methods had a positive effect on the predictive
accuracy of the LSTM model. In addition, we compared our
proposed method with state-of-the-art code smell detection
approaches. The findings from the comparison indicate that our
proposed method performs notably better than existing
state-of-the-art approaches across the majority of datasets.

Index Terms— Software engineering, artificial intelligence, code
smells, LSTM, software metrics, class imbalance, data balancing
methods.

I. INTRODUCTION
In software development, code smells are indicators of

potential problems or design flaws that can degrade the quality
of software systems [1, 2, 3]. Identifying and rectifying code
smells ensures maintainable, efficient, and robust software
applications [4, 5, 6]. In Table 1, we outline the four types of
code smells examined in our study. Detection methods for
code smells vary, including manual, automatic, and
metrics-based approaches [7, 8, 9]. Nonetheless, the majority
of these techniques adopt a heuristic two-step method.
Initially, they compute metrics and subsequently utilize
threshold values to distinguish between smelly and non-smelly
classes. Differences among these approaches stem from the
algorithms used, subjective interpretations, absence of
consensus among detectors, and reliance on thresholds [1, 10].

1

Recently, researchers have embraced ML techniques to
overcome the constraints in code smell detection. Their goal is
to bypass the use of thresholds and decrease the occurrence of
false positives in detection tools [6, 10]. Among these ML
techniques, LSTM models have gained significant attention.
LSTM is a type of recurrent neural network architecture that is
designed to capture long-term dependencies and relationships
in sequential data [11]. By leveraging software metrics as
input features, LSTM models can learn patterns and
relationships to identify code smells effectively [12].
However, one critical challenge in building accurate ML

models for code smell detection lies in the imbalance of data.
Data imbalance in classification models represents those
situations where the number of examples of one class is much
smaller than another [6, 8, 12, 13]. This imbalance can
negatively impact the performance of ML models, leading to
biased predictions and lower accuracy [1, 9].
Consequently, addressing the data imbalance problem

becomes crucial for achieving reliable and robust code smell
detection [10]. The dataset utilized for code smell detection in
this research exhibits a significant imbalance. Consequently,
the goal of this study is to employ data balancing methods like
random oversampling and SMOTE to tackle the class
imbalance issue and assess their effect on the performance of
the LSTM model in code smell detection. In brief, our study
aims to achieve the following objectives and make the
following key contributions:
(i) This study identifies the data imbalance problem as a major
challenge for machine learning techniques in detecting code
smells.
(ii) To address the data imbalance problem and investigate the
impact of data balancing methods in improving code smell
detection, we propose a new method that combines the LSTM
network with two data balancing methods (Random
Oversampling and SMOTE).
(iii) We demonstrate that balancing the dataset can greatly
enhance the performance of the LSTM model in code smell
detection. Additionally, our approach surpasses existing
state-of-the-art approaches for code smell detection.
The paper follows this structure: Section 2 introduces the

LSTM network. Section 3 details the research method. Section
4 presents the results and discussions. The conclusion is
provided in the final section, Section 5.

II. RELATED WORK

Recently, there has been an increased focus on researching
code smell detection, with numerous scientific studies
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Pecorelli et al. [6] investigated five data balancing methods
that were able to mitigate data unbalancing issues to
understand their impact on ML algorithms for code smell
detection. The experiment was performed based on five code
smell datasets extracted from 13 open-source systems. The
experimental results showed that the ML models relying on
SOMTE realize the best performance. Hadj-Kacem and Nadia.
[7] proposed a hybrid approach based on deep Autoencoder
and artificial neural network algorithms to detect code smells.
The approach was evaluated based on four code smells
extracted from 74 open-source systems. The experiment
results showed that the values of recall and precision
measurements have demonstrated high accuracy results.
Francesca Arcelli Fontana et al. [8] presented a method using
different ML algorithms to detect four code smells based on
74 software systems. The results showed that all algorithms
performed well, but unbalanced data caused some models'
performances. Chhabr and Nanda. [9] proposed a new
approach called the SMOTE-Stacked hybrid model (SSHM)
for the severity classification of four code smells (God class,
Data class, Feature envy, and Long method). The SMOTE
method was used to address the problem of class imbalance.
The Experimental results demonstrated that the proposed
approach surpassed other literature studies with peak accuracy
improvement to 97–99% from 76 to 92% for various code
smells. Khleel and Nehéz. [1, 10, 12] presented various
classical and advanced machine learning algorithms with data
balancing methods to detect code smells based on a set of Java
projects. The authors examined four datasets related to code
smells (God class, data class, feature envy, and long method)
and compared the results using various performance metrics.
The experiments demonstrated that the models proposed,
along with data balancing methods, exhibited improved
performance in detecting code smells. Tushar.Sharma et al.
[11] proposed a new method for code smell detection using
convolution neural networks and recurrent neural networks.
The experiments were conducted based on C# sample codes.
The experiment results showed that it is feasible to detect
smells using deep learning methods, and transfer-learning is
possible to detect code smells with a performance like that of
direct learning. Mohammad Y. Mhawish and Manjari Gupta
[15] presented a method using different ML algorithms and
software metrics to detect code smells based on 74 software
systems. The experimental results showed that ML techniques
have high potential in predicting the code smells, but
imbalanced data caused varying performances that need to be
addressed in future studies.
After reviewing previous studies in code smell detection, we

noticed that the studies that dealt with and addressed the issue
of class imbalance point out that the data balancing methods
have an essential role in improving the accuracy of code smell
detection [1, 6, 9, 10, 12]. So, the primary point from the
recent studies is that ML combined with data balancing
methods can improve and increase prediction accuracy.
Therefore, our study focuses on addressing the class
imbalance problem using random oversampling and SMOTE

TABLE I
LISTS THE FOUR SPECIFIC CODE SMELLS THAT WE HAVE

INVESTIGATED [8]
Code smells Description Affected entity
God _Class A god class refers to classes that

have numerous members and
execute various behaviors.

Class

Data _Class A data Class is a class that has
only data without functions or
any behaviors and does not

process this data.

Class

Long _Method The long method refers to the
method that is too long and
increases the system’s

compatibility.

Method

Feature _Envy Feature envy describes a method
that shows more interest in the
properties of other classes than

its own.

Method

III. LSTM NETWORK
Long Short-Term Memory (LSTM) networks, a specialized

variant of recurrent neural network architecture, are
engineered to detect intricate patterns within sequential data.
The purpose of introducing LSTM networks was to resolve or
avoid the problem of long-term dependencies, which regular
recurrent neural networks are susceptible to due to an unstable
gradient when connecting previous information to new
information [11]. A standard LSTM unit comprises a cell, an
input gate, an output gate, and a forget gate. The cell
remembers values over arbitrary time intervals, and the three
gates regulate the flow of information into and out of the cell.
Due to the ability of the LSTM network to recognize longer
sequences of time-series data, LSTM models can provide high
predictive performance in code smell detection[14]. The
interacting layers of the repeating module in an LSTM
Network are depicted in Figure 1.

Fig. 1. Shows the interacting layers of the repeating module in an
LSTM network.

utilizing ML models for this purpose. For example, Fabiano

methods.

TABLE I
Lists the four specific code smells that we have

investigated [8]
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systems. The experimental results showed that ML techniques
have high potential in predicting the code smells, but
imbalanced data caused varying performances that need to be
addressed in future studies.
After reviewing previous studies in code smell detection, we

noticed that the studies that dealt with and addressed the issue
of class imbalance point out that the data balancing methods
have an essential role in improving the accuracy of code smell
detection [1, 6, 9, 10, 12]. So, the primary point from the
recent studies is that ML combined with data balancing
methods can improve and increase prediction accuracy.
Therefore, our study focuses on addressing the class
imbalance problem using random oversampling and SMOTE

TABLE I
LISTS THE FOUR SPECIFIC CODE SMELLS THAT WE HAVE

INVESTIGATED [8]
Code smells Description Affected entity
God _Class A god class refers to classes that

have numerous members and
execute various behaviors.

Class

Data _Class A data Class is a class that has
only data without functions or
any behaviors and does not

process this data.

Class

Long _Method The long method refers to the
method that is too long and
increases the system’s

compatibility.

Method

Feature _Envy Feature envy describes a method
that shows more interest in the
properties of other classes than

its own.

Method

III. LSTM NETWORK
Long Short-Term Memory (LSTM) networks, a specialized

variant of recurrent neural network architecture, are
engineered to detect intricate patterns within sequential data.
The purpose of introducing LSTM networks was to resolve or
avoid the problem of long-term dependencies, which regular
recurrent neural networks are susceptible to due to an unstable
gradient when connecting previous information to new
information [11]. A standard LSTM unit comprises a cell, an
input gate, an output gate, and a forget gate. The cell
remembers values over arbitrary time intervals, and the three
gates regulate the flow of information into and out of the cell.
Due to the ability of the LSTM network to recognize longer
sequences of time-series data, LSTM models can provide high
predictive performance in code smell detection[14]. The
interacting layers of the repeating module in an LSTM
Network are depicted in Figure 1.

Fig. 1. Shows the interacting layers of the repeating module in an
LSTM network.
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Optimizing LSTM for Code Smell Detection: The
Role of Data Balancing
Nasraldeen Alnor Adam Khleel, and Károly Nehéz

1 Abstract—Code smells are specific patterns or characteristics in
software code that indicate potential design or implementation
problems. Identifying code smells has gained significant attention
in software engineering. It is essential to address code smells to
maintain high-quality software systems. Machine learning (ML)
models, such as Long Short-Term Memory (LSTM), have been to
detect code smells automatically based on source code features.
However, the imbalanced distribution of code smells within
software projects poses a challenge to the accuracy of these
models. This study explores the role of data balancing methods in
optimizing the accuracy of the LSTM model for code smell
detection. We investigate different techniques for addressing the
class imbalance problem, including random oversampling and
synthetic minority oversampling techniques (SMOTE). We
evaluate the performance of the LSTM model with and without
data balancing methods using accuracy, precision, recall,
f-measure, Matthew’s correlation coefficient (MCC), and the area
under a receiver operating characteristic curve (AUC). Our
experimental results, conducted on four code smell datasets (God
class, data class, feature envy, and long method) extracted from
74 open-source systems, demonstrate the effectiveness of data
balancing methods in improving the accuracy of the LSTM
model for code smell detection. The results indicate that the use
of data balancing methods had a positive effect on the predictive
accuracy of the LSTM model. In addition, we compared our
proposed method with state-of-the-art code smell detection
approaches. The findings from the comparison indicate that our
proposed method performs notably better than existing
state-of-the-art approaches across the majority of datasets.

Index Terms— Software engineering, artificial intelligence, code
smells, LSTM, software metrics, class imbalance, data balancing
methods.

I. INTRODUCTION
In software development, code smells are indicators of

potential problems or design flaws that can degrade the quality
of software systems [1, 2, 3]. Identifying and rectifying code
smells ensures maintainable, efficient, and robust software
applications [4, 5, 6]. In Table 1, we outline the four types of
code smells examined in our study. Detection methods for
code smells vary, including manual, automatic, and
metrics-based approaches [7, 8, 9]. Nonetheless, the majority
of these techniques adopt a heuristic two-step method.
Initially, they compute metrics and subsequently utilize
threshold values to distinguish between smelly and non-smelly
classes. Differences among these approaches stem from the
algorithms used, subjective interpretations, absence of
consensus among detectors, and reliance on thresholds [1, 10].

1

Recently, researchers have embraced ML techniques to
overcome the constraints in code smell detection. Their goal is
to bypass the use of thresholds and decrease the occurrence of
false positives in detection tools [6, 10]. Among these ML
techniques, LSTM models have gained significant attention.
LSTM is a type of recurrent neural network architecture that is
designed to capture long-term dependencies and relationships
in sequential data [11]. By leveraging software metrics as
input features, LSTM models can learn patterns and
relationships to identify code smells effectively [12].
However, one critical challenge in building accurate ML

models for code smell detection lies in the imbalance of data.
Data imbalance in classification models represents those
situations where the number of examples of one class is much
smaller than another [6, 8, 12, 13]. This imbalance can
negatively impact the performance of ML models, leading to
biased predictions and lower accuracy [1, 9].
Consequently, addressing the data imbalance problem

becomes crucial for achieving reliable and robust code smell
detection [10]. The dataset utilized for code smell detection in
this research exhibits a significant imbalance. Consequently,
the goal of this study is to employ data balancing methods like
random oversampling and SMOTE to tackle the class
imbalance issue and assess their effect on the performance of
the LSTM model in code smell detection. In brief, our study
aims to achieve the following objectives and make the
following key contributions:
(i) This study identifies the data imbalance problem as a major
challenge for machine learning techniques in detecting code
smells.
(ii) To address the data imbalance problem and investigate the
impact of data balancing methods in improving code smell
detection, we propose a new method that combines the LSTM
network with two data balancing methods (Random
Oversampling and SMOTE).
(iii) We demonstrate that balancing the dataset can greatly
enhance the performance of the LSTM model in code smell
detection. Additionally, our approach surpasses existing
state-of-the-art approaches for code smell detection.
The paper follows this structure: Section 2 introduces the

LSTM network. Section 3 details the research method. Section
4 presents the results and discussions. The conclusion is
provided in the final section, Section 5.

II. RELATED WORK

Recently, there has been an increased focus on researching
code smell detection, with numerous scientific studies

II. Related work

III. LSTM Network

Fig. 1. Shows the interacting layers of the repeating module in  
an LSTM network.
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IV. METHOD
Our study proposes a method for training and testing the

code smell detection model, which utilizes the LSTM model
with data balancing methods. Figure 2 illustrates an overview
of the proposed method. The following sections describe the
steps taken in this study, which encompass dataset description,
data pre-processing and feature selection, class imbalance and
data balancing methods, and model building and evaluation.

Fig. 2. Overview of the proposed method for code smell detection.

A. Dataset Description
For conducting the analysis and experiments, we

implemented our method using datasets introduced by Arcelli
Fontana et al. [8]. These datasets comprise 74 open-source
systems of different sizes and domains gathered from the
Qualitas Corpus (QC), encompassing 6,785,568 lines of code,
3,420 packages, and 51,826 classes [4]. These datasets were
chosen because the systems must accurately compute metric
values. Additionally, they are freely accessible, allowing
researchers to iterate, compare, and evaluate their studies.
Software metrics serve as widely utilized indicators of
software quality, and numerous studies have demonstrated
their effectiveness in estimating the presence of vulnerabilities
or defects in code [13]. Software metrics help identify patterns
and indicators associated with software code smells [14].
These metrics fall into two categories: static code metrics,
which are directly derived from source code, and process
metrics, which are obtained from the source code management
system by analyzing historical changes in the codebase. The
selected metrics in QC systems are at class and method levels;
the set of metrics is standard metrics covering different aspects
of the code, i.e., size, complexity, cohesion, size, coupling,
encapsulation, and Inheritance [8].

B. Data Pre-processing and Features Selection
Pre-processing the gathered data is a crucial step before

building the model. Ensuring high data quality is essential for
creating an effective model. Not all data collected is suitable
for training and model building. The inputs will significantly
impact the model's performance and later affect the output [10,
13, 14]. Data pre-processing involves employing a range of
methods to improve data quality before building a model.
These methods include tasks like removing noise and

undesirable outliers from the dataset, addressing missing
values, converting feature types, and more [10, 11, 15].
Feature Selection (FS) is a crucial step in selecting the most
discriminative features from the list of features using
appropriate FS methods [10, 13, 16]. FS endeavors to select
the most relevant features for the target class from
high-dimensional features while eliminating redundant and
uncorrelated ones. Feature extraction facilitates the conversion
of pre-processed data into a form that the classification engine
can use [3, 11, 17].

C. Class imbalance and data balancing methods
Class imbalance is one of the big challenges facing machine

learning models [10, 13]. In classification models, class
imbalance occurs when one class has significantly fewer
examples than another. Hence, the class imbalance problem
makes classification models not effectively predict minority
modules [1, 18]. Numerous methods have been created to
tackle the challenge of class imbalance, encompassing
approaches like cost-sensitive learning, algorithmic
adjustments, ensemble techniques, feature selection strategies,
data sampling methodologies, and more. The most common
among these methods are data sampling methods. These
methods typically modify the initial distribution of both the
majority and minority classes in the training dataset to achieve
a more balanced class distribution.
Random oversampling and SMOTE are widely used data

sampling techniques aimed at addressing class imbalance by
augmenting the representation of the minority class [9, 14,
18]. Random oversampling involves duplicating instances
from the minority class until a desired balance between classes
is achieved [1]. Unlike random oversampling, which
duplicates existing instances, SMOTE generates synthetic
samples for the minority class based on the characteristics of
its existing instances [10, 14]. The original datasets were
composed of 561 smelly instances and 1119 non-smelly
instances; the two first datasets concern the code smells at the
class level, for God Class (the number of smelly instances is
140, and the number of non-smelly instances is 280), for Data
Class (the number of smelly instances is 140 and the number
of non-smelly instances is 280). The two-second datasets
concern the code smells at the method level, for Feature Envy
(the number of smelly instances is 140 and the number of
non-smelly instances is 280), for Long Method (the number of
smelly instances is 141 and the number of non-smelly
instances is 279).To address the problem of class imbalance
and increase the realism of the data, we changed the
distribution of instances using two algorithms: Random
Oversampling and SMOTE. After balancing the datasets using
these algorithms, each type of code smell had an equal number
of instances. So, for God Class, there were 280 smelly
instances and 280 non-smelly instances. The same goes for
Data Class and Feature Envy. For the Long Method, there
were 279 smelly instances and 279 non-smelly instances.
Figure 3 shows the distribution of learning instances over
original and balanced datasets.
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1 Abstract—Code smells are specific patterns or characteristics in
software code that indicate potential design or implementation
problems. Identifying code smells has gained significant attention
in software engineering. It is essential to address code smells to
maintain high-quality software systems. Machine learning (ML)
models, such as Long Short-Term Memory (LSTM), have been to
detect code smells automatically based on source code features.
However, the imbalanced distribution of code smells within
software projects poses a challenge to the accuracy of these
models. This study explores the role of data balancing methods in
optimizing the accuracy of the LSTM model for code smell
detection. We investigate different techniques for addressing the
class imbalance problem, including random oversampling and
synthetic minority oversampling techniques (SMOTE). We
evaluate the performance of the LSTM model with and without
data balancing methods using accuracy, precision, recall,
f-measure, Matthew’s correlation coefficient (MCC), and the area
under a receiver operating characteristic curve (AUC). Our
experimental results, conducted on four code smell datasets (God
class, data class, feature envy, and long method) extracted from
74 open-source systems, demonstrate the effectiveness of data
balancing methods in improving the accuracy of the LSTM
model for code smell detection. The results indicate that the use
of data balancing methods had a positive effect on the predictive
accuracy of the LSTM model. In addition, we compared our
proposed method with state-of-the-art code smell detection
approaches. The findings from the comparison indicate that our
proposed method performs notably better than existing
state-of-the-art approaches across the majority of datasets.

Index Terms— Software engineering, artificial intelligence, code
smells, LSTM, software metrics, class imbalance, data balancing
methods.

I. INTRODUCTION
In software development, code smells are indicators of

potential problems or design flaws that can degrade the quality
of software systems [1, 2, 3]. Identifying and rectifying code
smells ensures maintainable, efficient, and robust software
applications [4, 5, 6]. In Table 1, we outline the four types of
code smells examined in our study. Detection methods for
code smells vary, including manual, automatic, and
metrics-based approaches [7, 8, 9]. Nonetheless, the majority
of these techniques adopt a heuristic two-step method.
Initially, they compute metrics and subsequently utilize
threshold values to distinguish between smelly and non-smelly
classes. Differences among these approaches stem from the

1

algorithms used, subjective interpretations, absence of
consensus among detectors, and reliance on thresholds [1, 10].
Recently, researchers have embraced ML techniques to
overcome the constraints in code smell detection. Their goal is
to bypass the use of thresholds and decrease the occurrence of
false positives in detection tools [6, 10]. Among these ML
techniques, LSTM models have gained significant attention.
LSTM is a type of recurrent neural network architecture that is
designed to capture long-term dependencies and relationships
in sequential data [11]. By leveraging software metrics as
input features, LSTM models can learn patterns and
relationships to identify code smells effectively [12].
However, one critical challenge in building accurate ML

models for code smell detection lies in the imbalance of data.
Data imbalance in classification models represents those
situations where the number of examples of one class is much
smaller than another [6, 8, 12, 13]. This imbalance can
negatively impact the performance of ML models, leading to
biased predictions and lower accuracy [1, 9].
Consequently, addressing the data imbalance problem

becomes crucial for achieving reliable and robust code smell
detection [10]. The dataset utilized for code smell detection in
this research exhibits a significant imbalance. Consequently,
the goal of this study is to employ data balancing methods like
random oversampling and SMOTE to tackle the class
imbalance issue and assess their effect on the performance of
the LSTM model in code smell detection. In brief, our study
aims to achieve the following objectives and make the
following key contributions:
(i) This study identifies the data imbalance problem as a major
challenge for machine learning techniques in detecting code
smells.
(ii) To address the data imbalance problem and investigate the
impact of data balancing methods in improving code smell
detection, we propose a new method that combines the LSTM
network with two data balancing methods (Random
Oversampling and SMOTE).
(iii) We demonstrate that balancing the dataset can greatly
enhance the performance of the LSTM model in code smell
detection. Additionally, our approach surpasses existing
state-of-the-art approaches for code smell detection.
The paper follows this structure: Section 2 introduces the

LSTM network. Section 3 details the research method. Section
4 presents the results and discussions. The conclusion is
provided in the final section, Section 5.
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Fig. 3. Distribution of learning instances over original and balanced
datasets.

D. Model Building and Evaluation
The model proposed in this study was built using Python

programming language based on Keras, a high-level API that
is based on TensorFlow. The training datasets constituted 80%
of the datasets with randomly selected features, while the
validation and test datasets constituted 20%. The model was
developed using several parameters such as ReLU and
sigmoid as activation functions, Adam as an optimizer,
learning rate(0.01), mean squared error as loss function, batch
size (64), and number of epochs (100).
The performance of the proposed model is assessed by

utilizing a range of performance measures derived from the
confusion matrix, MCC, and AUC. MCC is a performance
metric that quantifies the difference between a model's
predicted and actual values [13, 14]. AUC is a graph that
shows how well a classification model performs at different
threshold levels, plotting the true positive rate (TPR) against
the false-positive rate (FPR) [10, 13, 14]. A confusion matrix
is a tabular representation that summarizes the results of the
testing algorithm, and it is commonly used to evaluate the
performance of a model. Accuracy, precision, recall, and
f-measure are the commonly used performance measurement
parameters based on the confusion matrix. These parameters
report the number of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) predictions, which
are presented in Table 2 [5, 10, 20].

TABLE II
CONFUSION MATRIX

Predicted
Actual

Class X Class Y
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Class Y FN TP
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all positive samples, and M and N are the numbers of positive
and negative samples, respectively.

V. RESULTS AND DISCUSSION
The experimental setup utilized the Python programming

language, and the training and validation datasets were
sourced from the same project. To ensure the credibility of the
performance assessment, the proposed model underwent
training and testing on extensive datasets containing over
6,785,568 lines of source code. Tables 3 and 4 and Figures 4
to 7 below show the results.
Table 3 presents the results of the LSTM model based on the

original datasets in terms of accuracy, precision, recall,
f-measure, MCC, and AUC. We notice that the highest
accuracy was achieved on Feature Envy, which is 95%, and
the lowest accuracy was achieved on Long Method, which is
86%. The highest precision was achieved on Feature Envy,
which is 90%, and the lowest precision was achieved on Long
Method, which is 79%. The highest recall was achieved on
Data Class, which is 100%, and the lowest recall was achieved
on Long Method, which is 79%. The highest f-measure was
achieved on Feature Envy, which is 93%, and the lowest
f-measure was achieved on Long Method, which is 79%. The
highest MCC was achieved on Feature Envy, which is 89%,
and the lowest MCC was achieved on Long Method, which is
68%. The highest AUC was achieved on Feature Envy, which
is 99%, and the lowest AUC was achieved on Long Method,
which was 90%.
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Fig. 3. Distribution of learning instances over original and balanced
datasets.
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programming language based on Keras, a high-level API that
is based on TensorFlow. The training datasets constituted 80%
of the datasets with randomly selected features, while the
validation and test datasets constituted 20%. The model was
developed using several parameters such as ReLU and
sigmoid as activation functions, Adam as an optimizer,
learning rate(0.01), mean squared error as loss function, batch
size (64), and number of epochs (100).
The performance of the proposed model is assessed by

utilizing a range of performance measures derived from the
confusion matrix, MCC, and AUC. MCC is a performance
metric that quantifies the difference between a model's
predicted and actual values [13, 14]. AUC is a graph that
shows how well a classification model performs at different
threshold levels, plotting the true positive rate (TPR) against
the false-positive rate (FPR) [10, 13, 14]. A confusion matrix
is a tabular representation that summarizes the results of the
testing algorithm, and it is commonly used to evaluate the
performance of a model. Accuracy, precision, recall, and
f-measure are the commonly used performance measurement
parameters based on the confusion matrix. These parameters
report the number of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) predictions, which
are presented in Table 2 [5, 10, 20].
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The model proposed in this study was built using Python

programming language based on Keras, a high-level API that
is based on TensorFlow. The training datasets constituted 80%
of the datasets with randomly selected features, while the
validation and test datasets constituted 20%. The model was
developed using several parameters such as ReLU and
sigmoid as activation functions, Adam as an optimizer,
learning rate(0.01), mean squared error as loss function, batch
size (64), and number of epochs (100).
The performance of the proposed model is assessed by

utilizing a range of performance measures derived from the
confusion matrix, MCC, and AUC. MCC is a performance
metric that quantifies the difference between a model's
predicted and actual values [13, 14]. AUC is a graph that
shows how well a classification model performs at different
threshold levels, plotting the true positive rate (TPR) against
the false-positive rate (FPR) [10, 13, 14]. A confusion matrix
is a tabular representation that summarizes the results of the
testing algorithm, and it is commonly used to evaluate the
performance of a model. Accuracy, precision, recall, and
f-measure are the commonly used performance measurement
parameters based on the confusion matrix. These parameters
report the number of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) predictions, which
are presented in Table 2 [5, 10, 20].
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all positive samples, and M and N are the numbers of positive
and negative samples, respectively.

V. RESULTS AND DISCUSSION
The experimental setup utilized the Python programming

language, and the training and validation datasets were
sourced from the same project. To ensure the credibility of the
performance assessment, the proposed model underwent
training and testing on extensive datasets containing over
6,785,568 lines of source code. Tables 3 and 4 and Figures 4
to 7 below show the results.
Table 3 presents the results of the LSTM model based on the

original datasets in terms of accuracy, precision, recall,
f-measure, MCC, and AUC. We notice that the highest
accuracy was achieved on Feature Envy, which is 95%, and
the lowest accuracy was achieved on Long Method, which is
86%. The highest precision was achieved on Feature Envy,
which is 90%, and the lowest precision was achieved on Long
Method, which is 79%. The highest recall was achieved on
Data Class, which is 100%, and the lowest recall was achieved
on Long Method, which is 79%. The highest f-measure was
achieved on Feature Envy, which is 93%, and the lowest
f-measure was achieved on Long Method, which is 79%. The
highest MCC was achieved on Feature Envy, which is 89%,
and the lowest MCC was achieved on Long Method, which is
68%. The highest AUC was achieved on Feature Envy, which
is 99%, and the lowest AUC was achieved on Long Method,
which was 90%.
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Fig. 3. Distribution of learning instances over original and balanced
datasets.

D. Model Building and Evaluation
The model proposed in this study was built using Python

programming language based on Keras, a high-level API that
is based on TensorFlow. The training datasets constituted 80%
of the datasets with randomly selected features, while the
validation and test datasets constituted 20%. The model was
developed using several parameters such as ReLU and
sigmoid as activation functions, Adam as an optimizer,
learning rate(0.01), mean squared error as loss function, batch
size (64), and number of epochs (100).
The performance of the proposed model is assessed by

utilizing a range of performance measures derived from the
confusion matrix, MCC, and AUC. MCC is a performance
metric that quantifies the difference between a model's
predicted and actual values [13, 14]. AUC is a graph that
shows how well a classification model performs at different
threshold levels, plotting the true positive rate (TPR) against
the false-positive rate (FPR) [10, 13, 14]. A confusion matrix
is a tabular representation that summarizes the results of the
testing algorithm, and it is commonly used to evaluate the
performance of a model. Accuracy, precision, recall, and
f-measure are the commonly used performance measurement
parameters based on the confusion matrix. These parameters
report the number of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) predictions, which
are presented in Table 2 [5, 10, 20].
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all positive samples, and M and N are the numbers of positive
and negative samples, respectively.

V. RESULTS AND DISCUSSION
The experimental setup utilized the Python programming

language, and the training and validation datasets were
sourced from the same project. To ensure the credibility of the
performance assessment, the proposed model underwent
training and testing on extensive datasets containing over
6,785,568 lines of source code. Tables 3 and 4 and Figures 4
to 7 below show the results.
Table 3 presents the results of the LSTM model based on the

original datasets in terms of accuracy, precision, recall,
f-measure, MCC, and AUC. We notice that the highest
accuracy was achieved on Feature Envy, which is 95%, and
the lowest accuracy was achieved on Long Method, which is
86%. The highest precision was achieved on Feature Envy,
which is 90%, and the lowest precision was achieved on Long
Method, which is 79%. The highest recall was achieved on
Data Class, which is 100%, and the lowest recall was achieved
on Long Method, which is 79%. The highest f-measure was
achieved on Feature Envy, which is 93%, and the lowest
f-measure was achieved on Long Method, which is 79%. The
highest MCC was achieved on Feature Envy, which is 89%,
and the lowest MCC was achieved on Long Method, which is
68%. The highest AUC was achieved on Feature Envy, which
is 99%, and the lowest AUC was achieved on Long Method,
which was 90%.
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Fig. 3. Distribution of learning instances over original and balanced
datasets.

D. Model Building and Evaluation
The model proposed in this study was built using Python

programming language based on Keras, a high-level API that
is based on TensorFlow. The training datasets constituted 80%
of the datasets with randomly selected features, while the
validation and test datasets constituted 20%. The model was
developed using several parameters such as ReLU and
sigmoid as activation functions, Adam as an optimizer,
learning rate(0.01), mean squared error as loss function, batch
size (64), and number of epochs (100).
The performance of the proposed model is assessed by

utilizing a range of performance measures derived from the
confusion matrix, MCC, and AUC. MCC is a performance
metric that quantifies the difference between a model's
predicted and actual values [13, 14]. AUC is a graph that
shows how well a classification model performs at different
threshold levels, plotting the true positive rate (TPR) against
the false-positive rate (FPR) [10, 13, 14]. A confusion matrix
is a tabular representation that summarizes the results of the
testing algorithm, and it is commonly used to evaluate the
performance of a model. Accuracy, precision, recall, and
f-measure are the commonly used performance measurement
parameters based on the confusion matrix. These parameters
report the number of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) predictions, which
are presented in Table 2 [5, 10, 20].
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all positive samples, and M and N are the numbers of positive
and negative samples, respectively.

V. RESULTS AND DISCUSSION
The experimental setup utilized the Python programming

language, and the training and validation datasets were
sourced from the same project. To ensure the credibility of the
performance assessment, the proposed model underwent
training and testing on extensive datasets containing over
6,785,568 lines of source code. Tables 3 and 4 and Figures 4
to 7 below show the results.
Table 3 presents the results of the LSTM model based on the

original datasets in terms of accuracy, precision, recall,
f-measure, MCC, and AUC. We notice that the highest
accuracy was achieved on Feature Envy, which is 95%, and
the lowest accuracy was achieved on Long Method, which is
86%. The highest precision was achieved on Feature Envy,
which is 90%, and the lowest precision was achieved on Long
Method, which is 79%. The highest recall was achieved on
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Fig. 3. Distribution of learning instances over original and balanced
datasets.

D. Model Building and Evaluation
The model proposed in this study was built using Python

programming language based on Keras, a high-level API that
is based on TensorFlow. The training datasets constituted 80%
of the datasets with randomly selected features, while the
validation and test datasets constituted 20%. The model was
developed using several parameters such as ReLU and
sigmoid as activation functions, Adam as an optimizer,
learning rate(0.01), mean squared error as loss function, batch
size (64), and number of epochs (100).
The performance of the proposed model is assessed by

utilizing a range of performance measures derived from the
confusion matrix, MCC, and AUC. MCC is a performance
metric that quantifies the difference between a model's
predicted and actual values [13, 14]. AUC is a graph that
shows how well a classification model performs at different
threshold levels, plotting the true positive rate (TPR) against
the false-positive rate (FPR) [10, 13, 14]. A confusion matrix
is a tabular representation that summarizes the results of the
testing algorithm, and it is commonly used to evaluate the
performance of a model. Accuracy, precision, recall, and
f-measure are the commonly used performance measurement
parameters based on the confusion matrix. These parameters
report the number of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) predictions, which
are presented in Table 2 [5, 10, 20].
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all positive samples, and M and N are the numbers of positive
and negative samples, respectively.

V. RESULTS AND DISCUSSION
The experimental setup utilized the Python programming

language, and the training and validation datasets were
sourced from the same project. To ensure the credibility of the
performance assessment, the proposed model underwent
training and testing on extensive datasets containing over
6,785,568 lines of source code. Tables 3 and 4 and Figures 4
to 7 below show the results.
Table 3 presents the results of the LSTM model based on the

original datasets in terms of accuracy, precision, recall,
f-measure, MCC, and AUC. We notice that the highest
accuracy was achieved on Feature Envy, which is 95%, and
the lowest accuracy was achieved on Long Method, which is
86%. The highest precision was achieved on Feature Envy,
which is 90%, and the lowest precision was achieved on Long
Method, which is 79%. The highest recall was achieved on
Data Class, which is 100%, and the lowest recall was achieved
on Long Method, which is 79%. The highest f-measure was
achieved on Feature Envy, which is 93%, and the lowest
f-measure was achieved on Long Method, which is 79%. The
highest MCC was achieved on Feature Envy, which is 89%,
and the lowest MCC was achieved on Long Method, which is
68%. The highest AUC was achieved on Feature Envy, which
is 99%, and the lowest AUC was achieved on Long Method,
which was 90%.
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Fig. 3. Distribution of learning instances over original and balanced
datasets.

D. Model Building and Evaluation
The model proposed in this study was built using Python

programming language based on Keras, a high-level API that
is based on TensorFlow. The training datasets constituted 80%
of the datasets with randomly selected features, while the
validation and test datasets constituted 20%. The model was
developed using several parameters such as ReLU and
sigmoid as activation functions, Adam as an optimizer,
learning rate(0.01), mean squared error as loss function, batch
size (64), and number of epochs (100).
The performance of the proposed model is assessed by

utilizing a range of performance measures derived from the
confusion matrix, MCC, and AUC. MCC is a performance
metric that quantifies the difference between a model's
predicted and actual values [13, 14]. AUC is a graph that
shows how well a classification model performs at different
threshold levels, plotting the true positive rate (TPR) against
the false-positive rate (FPR) [10, 13, 14]. A confusion matrix
is a tabular representation that summarizes the results of the
testing algorithm, and it is commonly used to evaluate the
performance of a model. Accuracy, precision, recall, and
f-measure are the commonly used performance measurement
parameters based on the confusion matrix. These parameters
report the number of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) predictions, which
are presented in Table 2 [5, 10, 20].
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all positive samples, and M and N are the numbers of positive
and negative samples, respectively.

V. RESULTS AND DISCUSSION
The experimental setup utilized the Python programming

language, and the training and validation datasets were
sourced from the same project. To ensure the credibility of the
performance assessment, the proposed model underwent
training and testing on extensive datasets containing over
6,785,568 lines of source code. Tables 3 and 4 and Figures 4
to 7 below show the results.
Table 3 presents the results of the LSTM model based on the

original datasets in terms of accuracy, precision, recall,
f-measure, MCC, and AUC. We notice that the highest
accuracy was achieved on Feature Envy, which is 95%, and
the lowest accuracy was achieved on Long Method, which is
86%. The highest precision was achieved on Feature Envy,
which is 90%, and the lowest precision was achieved on Long
Method, which is 79%. The highest recall was achieved on
Data Class, which is 100%, and the lowest recall was achieved
on Long Method, which is 79%. The highest f-measure was
achieved on Feature Envy, which is 93%, and the lowest
f-measure was achieved on Long Method, which is 79%. The
highest MCC was achieved on Feature Envy, which is 89%,
and the lowest MCC was achieved on Long Method, which is
68%. The highest AUC was achieved on Feature Envy, which
is 99%, and the lowest AUC was achieved on Long Method,
which was 90%.
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Fig. 3. Distribution of learning instances over original and balanced
datasets.

D. Model Building and Evaluation
The model proposed in this study was built using Python

programming language based on Keras, a high-level API that
is based on TensorFlow. The training datasets constituted 80%
of the datasets with randomly selected features, while the
validation and test datasets constituted 20%. The model was
developed using several parameters such as ReLU and
sigmoid as activation functions, Adam as an optimizer,
learning rate(0.01), mean squared error as loss function, batch
size (64), and number of epochs (100).
The performance of the proposed model is assessed by

utilizing a range of performance measures derived from the
confusion matrix, MCC, and AUC. MCC is a performance
metric that quantifies the difference between a model's
predicted and actual values [13, 14]. AUC is a graph that
shows how well a classification model performs at different
threshold levels, plotting the true positive rate (TPR) against
the false-positive rate (FPR) [10, 13, 14]. A confusion matrix
is a tabular representation that summarizes the results of the
testing algorithm, and it is commonly used to evaluate the
performance of a model. Accuracy, precision, recall, and
f-measure are the commonly used performance measurement
parameters based on the confusion matrix. These parameters
report the number of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) predictions, which
are presented in Table 2 [5, 10, 20].
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all positive samples, and M and N are the numbers of positive
and negative samples, respectively.

V. RESULTS AND DISCUSSION
The experimental setup utilized the Python programming

language, and the training and validation datasets were
sourced from the same project. To ensure the credibility of the
performance assessment, the proposed model underwent
training and testing on extensive datasets containing over
6,785,568 lines of source code. Tables 3 and 4 and Figures 4
to 7 below show the results.
Table 3 presents the results of the LSTM model based on the

original datasets in terms of accuracy, precision, recall,
f-measure, MCC, and AUC. We notice that the highest
accuracy was achieved on Feature Envy, which is 95%, and
the lowest accuracy was achieved on Long Method, which is
86%. The highest precision was achieved on Feature Envy,
which is 90%, and the lowest precision was achieved on Long
Method, which is 79%. The highest recall was achieved on
Data Class, which is 100%, and the lowest recall was achieved
on Long Method, which is 79%. The highest f-measure was
achieved on Feature Envy, which is 93%, and the lowest
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which was 90%.
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Fig. 3. Distribution of learning instances over original and balanced
datasets.

D. Model Building and Evaluation
The model proposed in this study was built using Python

programming language based on Keras, a high-level API that
is based on TensorFlow. The training datasets constituted 80%
of the datasets with randomly selected features, while the
validation and test datasets constituted 20%. The model was
developed using several parameters such as ReLU and
sigmoid as activation functions, Adam as an optimizer,
learning rate(0.01), mean squared error as loss function, batch
size (64), and number of epochs (100).
The performance of the proposed model is assessed by

utilizing a range of performance measures derived from the
confusion matrix, MCC, and AUC. MCC is a performance
metric that quantifies the difference between a model's
predicted and actual values [13, 14]. AUC is a graph that
shows how well a classification model performs at different
threshold levels, plotting the true positive rate (TPR) against
the false-positive rate (FPR) [10, 13, 14]. A confusion matrix
is a tabular representation that summarizes the results of the
testing algorithm, and it is commonly used to evaluate the
performance of a model. Accuracy, precision, recall, and
f-measure are the commonly used performance measurement
parameters based on the confusion matrix. These parameters
report the number of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) predictions, which
are presented in Table 2 [5, 10, 20].
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all positive samples, and M and N are the numbers of positive
and negative samples, respectively.

V. RESULTS AND DISCUSSION
The experimental setup utilized the Python programming

language, and the training and validation datasets were
sourced from the same project. To ensure the credibility of the
performance assessment, the proposed model underwent
training and testing on extensive datasets containing over
6,785,568 lines of source code. Tables 3 and 4 and Figures 4
to 7 below show the results.
Table 3 presents the results of the LSTM model based on the

original datasets in terms of accuracy, precision, recall,
f-measure, MCC, and AUC. We notice that the highest
accuracy was achieved on Feature Envy, which is 95%, and
the lowest accuracy was achieved on Long Method, which is
86%. The highest precision was achieved on Feature Envy,
which is 90%, and the lowest precision was achieved on Long
Method, which is 79%. The highest recall was achieved on
Data Class, which is 100%, and the lowest recall was achieved
on Long Method, which is 79%. The highest f-measure was
achieved on Feature Envy, which is 93%, and the lowest
f-measure was achieved on Long Method, which is 79%. The
highest MCC was achieved on Feature Envy, which is 89%,
and the lowest MCC was achieved on Long Method, which is
68%. The highest AUC was achieved on Feature Envy, which
is 99%, and the lowest AUC was achieved on Long Method,
which was 90%.
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Fig. 3. Distribution of learning instances over original and balanced
datasets.

D. Model Building and Evaluation
The model proposed in this study was built using Python

programming language based on Keras, a high-level API that
is based on TensorFlow. The training datasets constituted 80%
of the datasets with randomly selected features, while the
validation and test datasets constituted 20%. The model was
developed using several parameters such as ReLU and
sigmoid as activation functions, Adam as an optimizer,
learning rate(0.01), mean squared error as loss function, batch
size (64), and number of epochs (100).
The performance of the proposed model is assessed by

utilizing a range of performance measures derived from the
confusion matrix, MCC, and AUC. MCC is a performance
metric that quantifies the difference between a model's
predicted and actual values [13, 14]. AUC is a graph that
shows how well a classification model performs at different
threshold levels, plotting the true positive rate (TPR) against
the false-positive rate (FPR) [10, 13, 14]. A confusion matrix
is a tabular representation that summarizes the results of the
testing algorithm, and it is commonly used to evaluate the
performance of a model. Accuracy, precision, recall, and
f-measure are the commonly used performance measurement
parameters based on the confusion matrix. These parameters
report the number of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) predictions, which
are presented in Table 2 [5, 10, 20].
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all positive samples, and M and N are the numbers of positive
and negative samples, respectively.

V. RESULTS AND DISCUSSION
The experimental setup utilized the Python programming

language, and the training and validation datasets were
sourced from the same project. To ensure the credibility of the
performance assessment, the proposed model underwent
training and testing on extensive datasets containing over
6,785,568 lines of source code. Tables 3 and 4 and Figures 4
to 7 below show the results.
Table 3 presents the results of the LSTM model based on the

original datasets in terms of accuracy, precision, recall,
f-measure, MCC, and AUC. We notice that the highest
accuracy was achieved on Feature Envy, which is 95%, and
the lowest accuracy was achieved on Long Method, which is
86%. The highest precision was achieved on Feature Envy,
which is 90%, and the lowest precision was achieved on Long
Method, which is 79%. The highest recall was achieved on
Data Class, which is 100%, and the lowest recall was achieved
on Long Method, which is 79%. The highest f-measure was
achieved on Feature Envy, which is 93%, and the lowest
f-measure was achieved on Long Method, which is 79%. The
highest MCC was achieved on Feature Envy, which is 89%,
and the lowest MCC was achieved on Long Method, which is
68%. The highest AUC was achieved on Feature Envy, which
is 99%, and the lowest AUC was achieved on Long Method,
which was 90%.
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Fig. 3. Distribution of learning instances over original and balanced
datasets.

D. Model Building and Evaluation
The model proposed in this study was built using Python

programming language based on Keras, a high-level API that
is based on TensorFlow. The training datasets constituted 80%
of the datasets with randomly selected features, while the
validation and test datasets constituted 20%. The model was
developed using several parameters such as ReLU and
sigmoid as activation functions, Adam as an optimizer,
learning rate(0.01), mean squared error as loss function, batch
size (64), and number of epochs (100).
The performance of the proposed model is assessed by

utilizing a range of performance measures derived from the
confusion matrix, MCC, and AUC. MCC is a performance
metric that quantifies the difference between a model's
predicted and actual values [13, 14]. AUC is a graph that
shows how well a classification model performs at different
threshold levels, plotting the true positive rate (TPR) against
the false-positive rate (FPR) [10, 13, 14]. A confusion matrix
is a tabular representation that summarizes the results of the
testing algorithm, and it is commonly used to evaluate the
performance of a model. Accuracy, precision, recall, and
f-measure are the commonly used performance measurement
parameters based on the confusion matrix. These parameters
report the number of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) predictions, which
are presented in Table 2 [5, 10, 20].
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐴
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴

(1)

𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴 𝐴 𝐴𝐴 𝑇𝑇𝑇𝑇𝐴𝐴
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴

(2)

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝐴 𝐴 𝐴𝐴 𝑇𝑇𝑇𝑇𝐴
(𝑇𝑇𝑇𝑇𝐴𝑇𝐴𝑇𝑇𝑇𝑇𝑇𝐴 𝐴𝐴

(3)

𝑇𝑇 𝐹 𝐹𝐹𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝐴 𝐴 𝐴𝐴 (2𝐴*𝐴𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝐴*𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇(𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝑇𝐴𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝐴 𝐴𝐴

(4)

𝐹𝐹𝑀𝑀𝑀𝑀 𝐴 𝐴 𝑇𝑇𝑇𝑇 * 𝑇𝑇𝑇𝑇 𝐹 𝐴𝑇𝑇𝑇𝑇 * 𝑇𝑇𝑇𝑇( 𝑇𝐴𝐴/𝐴 𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇( 𝑇 * 𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇( 𝑇 * 𝑇𝑇𝑇𝑇𝐴 𝑇(

(5)

(6)𝐴𝐴𝐴𝐴𝐴𝑀𝑀 𝐴 𝐴
𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃
𝐴∈𝐴𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝑀𝑀𝑅𝑅𝐴𝐴𝑃𝑃𝑃𝑃

𝐴𝐴

∑ 𝐴𝐴𝐴𝐴𝑃𝑃𝑟𝑟 𝑃𝑃𝑃𝑃𝑃𝑃
𝑃𝑃( 𝑇𝐹𝐴 𝐹𝐹(𝐹𝐹𝑇𝑀𝑇

2 𝐴

𝐹𝐹𝐴𝑀𝐴𝐴𝑇𝑇 𝐴𝐴

Where Is the sum of the ranks of
𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃
𝐴∈𝐴𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝑀𝑀𝑅𝑅𝐴𝐴𝑃𝑃𝑃𝑃

𝐴

∑ 𝐴𝐴𝐴𝐴𝑃𝑃𝑟𝑟 𝑃𝑃𝑃𝑃𝑃𝑃
𝑃𝑃( 𝑇𝐴𝐴

all positive samples, and M and N are the numbers of positive
and negative samples, respectively.

V. RESULTS AND DISCUSSION
The experimental setup utilized the Python programming

language, and the training and validation datasets were
sourced from the same project. To ensure the credibility of the
performance assessment, the proposed model underwent
training and testing on extensive datasets containing over
6,785,568 lines of source code. Tables 3 and 4 and Figures 4
to 7 below show the results.
Table 3 presents the results of the LSTM model based on the

original datasets in terms of accuracy, precision, recall,
f-measure, MCC, and AUC. We notice that the highest
accuracy was achieved on Feature Envy, which is 95%, and
the lowest accuracy was achieved on Long Method, which is
86%. The highest precision was achieved on Feature Envy,
which is 90%, and the lowest precision was achieved on Long
Method, which is 79%. The highest recall was achieved on
Data Class, which is 100%, and the lowest recall was achieved
on Long Method, which is 79%. The highest f-measure was
achieved on Feature Envy, which is 93%, and the lowest
f-measure was achieved on Long Method, which is 79%. The
highest MCC was achieved on Feature Envy, which is 89%,
and the lowest MCC was achieved on Long Method, which is
68%. The highest AUC was achieved on Feature Envy, which
is 99%, and the lowest AUC was achieved on Long Method,
which was 90%.
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1 Abstract—Code smells are specific patterns or characteristics in
software code that indicate potential design or implementation
problems. Identifying code smells has gained significant attention
in software engineering. It is essential to address code smells to
maintain high-quality software systems. Machine learning (ML)
models, such as Long Short-Term Memory (LSTM), have been to
detect code smells automatically based on source code features.
However, the imbalanced distribution of code smells within
software projects poses a challenge to the accuracy of these
models. This study explores the role of data balancing methods in
optimizing the accuracy of the LSTM model for code smell
detection. We investigate different techniques for addressing the
class imbalance problem, including random oversampling and
synthetic minority oversampling techniques (SMOTE). We
evaluate the performance of the LSTM model with and without
data balancing methods using accuracy, precision, recall,
f-measure, Matthew’s correlation coefficient (MCC), and the area
under a receiver operating characteristic curve (AUC). Our
experimental results, conducted on four code smell datasets (God
class, data class, feature envy, and long method) extracted from
74 open-source systems, demonstrate the effectiveness of data
balancing methods in improving the accuracy of the LSTM
model for code smell detection. The results indicate that the use
of data balancing methods had a positive effect on the predictive
accuracy of the LSTM model. In addition, we compared our
proposed method with state-of-the-art code smell detection
approaches. The findings from the comparison indicate that our
proposed method performs notably better than existing
state-of-the-art approaches across the majority of datasets.

Index Terms— Software engineering, artificial intelligence, code
smells, LSTM, software metrics, class imbalance, data balancing
methods.

I. INTRODUCTION
In software development, code smells are indicators of

potential problems or design flaws that can degrade the quality
of software systems [1, 2, 3]. Identifying and rectifying code
smells ensures maintainable, efficient, and robust software
applications [4, 5, 6]. In Table 1, we outline the four types of
code smells examined in our study. Detection methods for
code smells vary, including manual, automatic, and
metrics-based approaches [7, 8, 9]. Nonetheless, the majority
of these techniques adopt a heuristic two-step method.
Initially, they compute metrics and subsequently utilize
threshold values to distinguish between smelly and non-smelly
classes. Differences among these approaches stem from the

1

algorithms used, subjective interpretations, absence of
consensus among detectors, and reliance on thresholds [1, 10].
Recently, researchers have embraced ML techniques to
overcome the constraints in code smell detection. Their goal is
to bypass the use of thresholds and decrease the occurrence of
false positives in detection tools [6, 10]. Among these ML
techniques, LSTM models have gained significant attention.
LSTM is a type of recurrent neural network architecture that is
designed to capture long-term dependencies and relationships
in sequential data [11]. By leveraging software metrics as
input features, LSTM models can learn patterns and
relationships to identify code smells effectively [12].
However, one critical challenge in building accurate ML

models for code smell detection lies in the imbalance of data.
Data imbalance in classification models represents those
situations where the number of examples of one class is much
smaller than another [6, 8, 12, 13]. This imbalance can
negatively impact the performance of ML models, leading to
biased predictions and lower accuracy [1, 9].
Consequently, addressing the data imbalance problem

becomes crucial for achieving reliable and robust code smell
detection [10]. The dataset utilized for code smell detection in
this research exhibits a significant imbalance. Consequently,
the goal of this study is to employ data balancing methods like
random oversampling and SMOTE to tackle the class
imbalance issue and assess their effect on the performance of
the LSTM model in code smell detection. In brief, our study
aims to achieve the following objectives and make the
following key contributions:
(i) This study identifies the data imbalance problem as a major
challenge for machine learning techniques in detecting code
smells.
(ii) To address the data imbalance problem and investigate the
impact of data balancing methods in improving code smell
detection, we propose a new method that combines the LSTM
network with two data balancing methods (Random
Oversampling and SMOTE).
(iii) We demonstrate that balancing the dataset can greatly
enhance the performance of the LSTM model in code smell
detection. Additionally, our approach surpasses existing
state-of-the-art approaches for code smell detection.
The paper follows this structure: Section 2 introduces the

LSTM network. Section 3 details the research method. Section
4 presents the results and discussions. The conclusion is
provided in the final section, Section 5.
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Fig. 3. Distribution of learning instances over original and balanced
datasets.

D. Model Building and Evaluation
The model proposed in this study was built using Python

programming language based on Keras, a high-level API that
is based on TensorFlow. The training datasets constituted 80%
of the datasets with randomly selected features, while the
validation and test datasets constituted 20%. The model was
developed using several parameters such as ReLU and
sigmoid as activation functions, Adam as an optimizer,
learning rate(0.01), mean squared error as loss function, batch
size (64), and number of epochs (100).
The performance of the proposed model is assessed by

utilizing a range of performance measures derived from the
confusion matrix, MCC, and AUC. MCC is a performance
metric that quantifies the difference between a model's
predicted and actual values [13, 14]. AUC is a graph that
shows how well a classification model performs at different
threshold levels, plotting the true positive rate (TPR) against
the false-positive rate (FPR) [10, 13, 14]. A confusion matrix
is a tabular representation that summarizes the results of the
testing algorithm, and it is commonly used to evaluate the
performance of a model. Accuracy, precision, recall, and
f-measure are the commonly used performance measurement
parameters based on the confusion matrix. These parameters
report the number of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) predictions, which
are presented in Table 2 [5, 10, 20].
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all positive samples, and M and N are the numbers of positive
and negative samples, respectively.

V. RESULTS AND DISCUSSION
The experimental setup utilized the Python programming

language, and the training and validation datasets were
sourced from the same project. To ensure the credibility of the
performance assessment, the proposed model underwent
training and testing on extensive datasets containing over
6,785,568 lines of source code. Tables 3 and 4 and Figures 4
to 7 below show the results.
Table 3 presents the results of the LSTM model based on the

original datasets in terms of accuracy, precision, recall,
f-measure, MCC, and AUC. We notice that the highest
accuracy was achieved on Feature Envy, which is 95%, and
the lowest accuracy was achieved on Long Method, which is
86%. The highest precision was achieved on Feature Envy,
which is 90%, and the lowest precision was achieved on Long
Method, which is 79%. The highest recall was achieved on
Data Class, which is 100%, and the lowest recall was achieved
on Long Method, which is 79%. The highest f-measure was
achieved on Feature Envy, which is 93%, and the lowest
f-measure was achieved on Long Method, which is 79%. The
highest MCC was achieved on Feature Envy, which is 89%,
and the lowest MCC was achieved on Long Method, which is
68%. The highest AUC was achieved on Feature Envy, which
is 99%, and the lowest AUC was achieved on Long Method,
which was 90%.

TABLE III
EVALUATION RESULTS OF THE LSTM MODEL ON THE ORIGINAL

  DATASETS

Datasets
Performance Measures

God
Class

0.93 0.89 0.89 0.89 0.83 0.94

Data
Class

0.94 0.85 1.00 0.92 0.87 0.97

Feature
Envy

0.95 0.90 0.96 0.93 0.89 0.99

Long
Method

0.86 0.79 0.79 0.79 0.68 0.90

Average 0.92 0.85 0.91 0.88 0.81 0.95

Table 4 presents the results of the LSTM model based on the
balanced datasets (using Random Oversampling and SMOTE)
in terms of accuracy, precision, recall, f-measure, MCC, and
AUC.
Regarding Random Oversampling: We notice that the

highest accuracy was achieved on Data Class, which is 99%,
and the lowest accuracy was achieved on Feature Envy, which
is 96%. The highest precision was achieved on Data Class and
Long Method, which is 98%, and the lowest precision was
achieved on Feature Envy, which is 92%. The highest recall
was achieved on God Class, Data Class, and Feature Envy,
which is 100%, and the lowest recall was achieved on Long
Method, which is 96%. The highest f-measure was achieved
on Data Class, which is 99%, and the lowest f-measure was
achieved on Feature Envy, which is 96%. The highest MCC
was achieved on Data Class, which is 98%, and the lowest
MCC was achieved on Feature Envy, which is 91%. The
highest AUC was achieved on Data Class and Long Method,
which is 99%, and the lowest AUC was achieved on Feature
Envy, which was 97%.
Regarding SMOTE: We notice that the highest accuracy was

achieved on Data Class, which is 99%, and the lowest
accuracy was achieved on Feature Envy, which is 96%. The
highest precision was achieved on Data Class, which is 100%,
and the lowest precision was achieved on God Class and
Feature Envy, which is 95%. The highest recall was achieved
on God Class and Long Method, which is 100%, and the
lowest recall was achieved on Feature Envy, which is 97%.
The highest f-measure was achieved on Data Class, which is
99%, and the lowest f-measure was achieved on Feature Envy,
which is 96%. The highest MCC was achieved on Data Class,
which is 98%, and the lowest MCC was achieved on Feature
Envy, which is 90%. The highest AUC was achieved on Data
Class and Long Method, which is 100%, and the lowest AUC
was achieved on God Class, which was 98%.

TABLE IV
EVALUATION RESULTS OF THE LSTM MODEL ON THE BALANCED

   DATASETS

Random Oversampling

Datasets
Accuracy Precision Recall MCC AUC

God
Class

0.97 0.95 1.00 0.98 0.94 0.98

Data
Class

0.99 0.98 1.00 0.99 0.98 0.99

Feature
Envy

0.96 0.92 1.00 0.96 0.91 0.97

Long
Method

0.97 0.98 0.96 0.97 0.94 0.99

Average 0.97 0.95 0.99 0.97 0.94 0.98
SMOTE

Datasets
Performance Measures

Precision Recall MCC AUC
God
Class

0.97 0.95 1.00 0.98 0.94 0.98

Data
Class

0.99 1.00 0.98 0.99 0.98 1.00

Feature
Envy

0.96 0.95 0.97 0.96 0.90 0.99

Long
Method

0.98 0.96 1.00 0.98 0.96 1.00

Average 0.97 0.96 0.98 0.97 0.94 0.99

Figures 4 and 5 show the training and validation accuracy of
the model on the balanced datasets. The vertical axis presents
the model's accuracy, and the horizontal axis illustrates the
number of epochs. Accuracy is the fraction of predictions that
our model predicted right.
Figure 4 shows the accuracy values of the LSTM model on

the balanced datasets (using Random Oversampling). From
the Figure, the model learned 97% accuracy for God Class,
99% for Data Class, 96% for Feature Envy, and 97% for the
Long method at the 100th epoch.

Fig. 4. Training and validation accuracy of LSTM model on the
balanced datasets-random oversampling.

Performance Measures

F-measure

F-measureAccuracy

Precision Recall MCC AUCF-measureAccuracy
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Fig. 3. Distribution of learning instances over original and balanced
datasets.

D. Model Building and Evaluation
The model proposed in this study was built using Python

programming language based on Keras, a high-level API that
is based on TensorFlow. The training datasets constituted 80%
of the datasets with randomly selected features, while the
validation and test datasets constituted 20%. The model was
developed using several parameters such as ReLU and
sigmoid as activation functions, Adam as an optimizer,
learning rate(0.01), mean squared error as loss function, batch
size (64), and number of epochs (100).
The performance of the proposed model is assessed by

utilizing a range of performance measures derived from the
confusion matrix, MCC, and AUC. MCC is a performance
metric that quantifies the difference between a model's
predicted and actual values [13, 14]. AUC is a graph that
shows how well a classification model performs at different
threshold levels, plotting the true positive rate (TPR) against
the false-positive rate (FPR) [10, 13, 14]. A confusion matrix
is a tabular representation that summarizes the results of the
testing algorithm, and it is commonly used to evaluate the
performance of a model. Accuracy, precision, recall, and
f-measure are the commonly used performance measurement
parameters based on the confusion matrix. These parameters
report the number of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) predictions, which
are presented in Table 2 [5, 10, 20].

TABLE II
CONFUSION MATRIX

Predicted
Actual

Class X Class Y

Class X TN FP
Class Y FN TP

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐴
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴

(1)

𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴 𝐴 𝐴𝐴 𝑇𝑇𝑇𝑇𝐴𝐴
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴

(2)

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝐴 𝐴 𝐴𝐴 𝑇𝑇𝑇𝑇𝐴
(𝑇𝑇𝑇𝑇𝐴𝑇𝐴𝑇𝑇𝑇𝑇𝑇𝐴 𝐴𝐴

(3)

𝑇𝑇 𝐹 𝐹𝐹𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝐴 𝐴 𝐴𝐴 (2𝐴*𝐴𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝐴*𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇(𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝑇𝐴𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝐴 𝐴𝐴

(4)

𝐹𝐹𝑀𝑀𝑀𝑀 𝐴 𝐴 𝑇𝑇𝑇𝑇 * 𝑇𝑇𝑇𝑇 𝐹 𝐴𝑇𝑇𝑇𝑇 * 𝑇𝑇𝑇𝑇( 𝑇𝐴𝐴/𝐴 𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇( 𝑇 * 𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇( 𝑇 * 𝑇𝑇𝑇𝑇𝐴 𝑇(

(5)

(6)𝐴𝐴𝐴𝐴𝐴𝑀𝑀 𝐴 𝐴
𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃
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all positive samples, and M and N are the numbers of positive
and negative samples, respectively.

V. RESULTS AND DISCUSSION
The experimental setup utilized the Python programming

language, and the training and validation datasets were
sourced from the same project. To ensure the credibility of the
performance assessment, the proposed model underwent
training and testing on extensive datasets containing over
6,785,568 lines of source code. Tables 3 and 4 and Figures 4
to 7 below show the results.
Table 3 presents the results of the LSTM model based on the

original datasets in terms of accuracy, precision, recall,
f-measure, MCC, and AUC. We notice that the highest
accuracy was achieved on Feature Envy, which is 95%, and
the lowest accuracy was achieved on Long Method, which is
86%. The highest precision was achieved on Feature Envy,
which is 90%, and the lowest precision was achieved on Long
Method, which is 79%. The highest recall was achieved on
Data Class, which is 100%, and the lowest recall was achieved
on Long Method, which is 79%. The highest f-measure was
achieved on Feature Envy, which is 93%, and the lowest
f-measure was achieved on Long Method, which is 79%. The
highest MCC was achieved on Feature Envy, which is 89%,
and the lowest MCC was achieved on Long Method, which is
68%. The highest AUC was achieved on Feature Envy, which
is 99%, and the lowest AUC was achieved on Long Method,
which was 90%.
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IV. METHOD
Our study proposes a method for training and testing the

code smell detection model, which utilizes the LSTM model
with data balancing methods. Figure 2 illustrates an overview
of the proposed method. The following sections describe the
steps taken in this study, which encompass dataset description,
data pre-processing and feature selection, class imbalance and
data balancing methods, and model building and evaluation.

Fig. 2. Overview of the proposed method for code smell detection.

A. Dataset Description
For conducting the analysis and experiments, we

implemented our method using datasets introduced by Arcelli
Fontana et al. [8]. These datasets comprise 74 open-source
systems of different sizes and domains gathered from the
Qualitas Corpus (QC), encompassing 6,785,568 lines of code,
3,420 packages, and 51,826 classes [4]. These datasets were
chosen because the systems must accurately compute metric
values. Additionally, they are freely accessible, allowing
researchers to iterate, compare, and evaluate their studies.
Software metrics serve as widely utilized indicators of
software quality, and numerous studies have demonstrated
their effectiveness in estimating the presence of vulnerabilities
or defects in code [13]. Software metrics help identify patterns
and indicators associated with software code smells [14].
These metrics fall into two categories: static code metrics,
which are directly derived from source code, and process
metrics, which are obtained from the source code management
system by analyzing historical changes in the codebase. The
selected metrics in QC systems are at class and method levels;
the set of metrics is standard metrics covering different aspects
of the code, i.e., size, complexity, cohesion, size, coupling,
encapsulation, and Inheritance [8].

B. Data Pre-processing and Features Selection
Pre-processing the gathered data is a crucial step before

building the model. Ensuring high data quality is essential for
creating an effective model. Not all data collected is suitable
for training and model building. The inputs will significantly
impact the model's performance and later affect the output [10,
13, 14]. Data pre-processing involves employing a range of
methods to improve data quality before building a model.
These methods include tasks like removing noise and

undesirable outliers from the dataset, addressing missing
values, converting feature types, and more [10, 11, 15].
Feature Selection (FS) is a crucial step in selecting the most
discriminative features from the list of features using
appropriate FS methods [10, 13, 16]. FS endeavors to select
the most relevant features for the target class from
high-dimensional features while eliminating redundant and
uncorrelated ones. Feature extraction facilitates the conversion
of pre-processed data into a form that the classification engine
can use [3, 11, 17].

C. Class imbalance and data balancing methods
Class imbalance is one of the big challenges facing machine

learning models [10, 13]. In classification models, class
imbalance occurs when one class has significantly fewer
examples than another. Hence, the class imbalance problem
makes classification models not effectively predict minority
modules [1, 18]. Numerous methods have been created to
tackle the challenge of class imbalance, encompassing
approaches like cost-sensitive learning, algorithmic
adjustments, ensemble techniques, feature selection strategies,
data sampling methodologies, and more. The most common
among these methods are data sampling methods. These
methods typically modify the initial distribution of both the
majority and minority classes in the training dataset to achieve
a more balanced class distribution.
Random oversampling and SMOTE are widely used data

sampling techniques aimed at addressing class imbalance by
augmenting the representation of the minority class [9, 14,
18]. Random oversampling involves duplicating instances
from the minority class until a desired balance between classes
is achieved [1]. Unlike random oversampling, which
duplicates existing instances, SMOTE generates synthetic
samples for the minority class based on the characteristics of
its existing instances [10, 14]. The original datasets were
composed of 561 smelly instances and 1119 non-smelly
instances; the two first datasets concern the code smells at the
class level, for God Class (the number of smelly instances is
140, and the number of non-smelly instances is 280), for Data
Class (the number of smelly instances is 140 and the number
of non-smelly instances is 280). The two-second datasets
concern the code smells at the method level, for Feature Envy
(the number of smelly instances is 140 and the number of
non-smelly instances is 280), for Long Method (the number of
smelly instances is 141 and the number of non-smelly
instances is 279).To address the problem of class imbalance
and increase the realism of the data, we changed the
distribution of instances using two algorithms: Random
Oversampling and SMOTE. After balancing the datasets using
these algorithms, each type of code smell had an equal number
of instances. So, for God Class, there were 280 smelly
instances and 280 non-smelly instances. The same goes for
Data Class and Feature Envy. For the Long Method, there
were 279 smelly instances and 279 non-smelly instances.
Figure 3 shows the distribution of learning instances over
original and balanced datasets.

TABLE II
Confusion matrix

TABLE III
Evaluation results of the LSTM model on the original

datasets

Fig. 3. Distribution of learning instances over original and  
balanced datasets.
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Fig. 3. Distribution of learning instances over original and balanced
datasets.

D. Model Building and Evaluation
The model proposed in this study was built using Python

programming language based on Keras, a high-level API that
is based on TensorFlow. The training datasets constituted 80%
of the datasets with randomly selected features, while the
validation and test datasets constituted 20%. The model was
developed using several parameters such as ReLU and
sigmoid as activation functions, Adam as an optimizer,
learning rate(0.01), mean squared error as loss function, batch
size (64), and number of epochs (100).
The performance of the proposed model is assessed by

utilizing a range of performance measures derived from the
confusion matrix, MCC, and AUC. MCC is a performance
metric that quantifies the difference between a model's
predicted and actual values [13, 14]. AUC is a graph that
shows how well a classification model performs at different
threshold levels, plotting the true positive rate (TPR) against
the false-positive rate (FPR) [10, 13, 14]. A confusion matrix
is a tabular representation that summarizes the results of the
testing algorithm, and it is commonly used to evaluate the
performance of a model. Accuracy, precision, recall, and
f-measure are the commonly used performance measurement
parameters based on the confusion matrix. These parameters
report the number of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) predictions, which
are presented in Table 2 [5, 10, 20].

TABLE II
CONFUSION MATRIX

Predicted
Actual

Class X Class Y

Class X TN FP
Class Y FN TP
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all positive samples, and M and N are the numbers of positive
and negative samples, respectively.

V. RESULTS AND DISCUSSION
The experimental setup utilized the Python programming

language, and the training and validation datasets were
sourced from the same project. To ensure the credibility of the
performance assessment, the proposed model underwent
training and testing on extensive datasets containing over
6,785,568 lines of source code. Tables 3 and 4 and Figures 4
to 7 below show the results.
Table 3 presents the results of the LSTM model based on the

original datasets in terms of accuracy, precision, recall,
f-measure, MCC, and AUC. We notice that the highest
accuracy was achieved on Feature Envy, which is 95%, and
the lowest accuracy was achieved on Long Method, which is
86%. The highest precision was achieved on Feature Envy,
which is 90%, and the lowest precision was achieved on Long
Method, which is 79%. The highest recall was achieved on
Data Class, which is 100%, and the lowest recall was achieved
on Long Method, which is 79%. The highest f-measure was
achieved on Feature Envy, which is 93%, and the lowest
f-measure was achieved on Long Method, which is 79%. The
highest MCC was achieved on Feature Envy, which is 89%,
and the lowest MCC was achieved on Long Method, which is
68%. The highest AUC was achieved on Feature Envy, which
is 99%, and the lowest AUC was achieved on Long Method,
which was 90%.
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Fig. 3. Distribution of learning instances over original and balanced
datasets.

D. Model Building and Evaluation
The model proposed in this study was built using Python

programming language based on Keras, a high-level API that
is based on TensorFlow. The training datasets constituted 80%
of the datasets with randomly selected features, while the
validation and test datasets constituted 20%. The model was
developed using several parameters such as ReLU and
sigmoid as activation functions, Adam as an optimizer,
learning rate(0.01), mean squared error as loss function, batch
size (64), and number of epochs (100).
The performance of the proposed model is assessed by

utilizing a range of performance measures derived from the
confusion matrix, MCC, and AUC. MCC is a performance
metric that quantifies the difference between a model's
predicted and actual values [13, 14]. AUC is a graph that
shows how well a classification model performs at different
threshold levels, plotting the true positive rate (TPR) against
the false-positive rate (FPR) [10, 13, 14]. A confusion matrix
is a tabular representation that summarizes the results of the
testing algorithm, and it is commonly used to evaluate the
performance of a model. Accuracy, precision, recall, and
f-measure are the commonly used performance measurement
parameters based on the confusion matrix. These parameters
report the number of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) predictions, which
are presented in Table 2 [5, 10, 20].
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all positive samples, and M and N are the numbers of positive
and negative samples, respectively.

V. RESULTS AND DISCUSSION
The experimental setup utilized the Python programming

language, and the training and validation datasets were
sourced from the same project. To ensure the credibility of the
performance assessment, the proposed model underwent
training and testing on extensive datasets containing over
6,785,568 lines of source code. Tables 3 and 4 and Figures 4
to 7 below show the results.
Table 3 presents the results of the LSTM model based on the

original datasets in terms of accuracy, precision, recall,
f-measure, MCC, and AUC. We notice that the highest
accuracy was achieved on Feature Envy, which is 95%, and
the lowest accuracy was achieved on Long Method, which is
86%. The highest precision was achieved on Feature Envy,
which is 90%, and the lowest precision was achieved on Long
Method, which is 79%. The highest recall was achieved on
Data Class, which is 100%, and the lowest recall was achieved
on Long Method, which is 79%. The highest f-measure was
achieved on Feature Envy, which is 93%, and the lowest
f-measure was achieved on Long Method, which is 79%. The
highest MCC was achieved on Feature Envy, which is 89%,
and the lowest MCC was achieved on Long Method, which is
68%. The highest AUC was achieved on Feature Envy, which
is 99%, and the lowest AUC was achieved on Long Method,
which was 90%.
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Fig. 3. Distribution of learning instances over original and balanced
datasets.

D. Model Building and Evaluation
The model proposed in this study was built using Python

programming language based on Keras, a high-level API that
is based on TensorFlow. The training datasets constituted 80%
of the datasets with randomly selected features, while the
validation and test datasets constituted 20%. The model was
developed using several parameters such as ReLU and
sigmoid as activation functions, Adam as an optimizer,
learning rate(0.01), mean squared error as loss function, batch
size (64), and number of epochs (100).
The performance of the proposed model is assessed by

utilizing a range of performance measures derived from the
confusion matrix, MCC, and AUC. MCC is a performance
metric that quantifies the difference between a model's
predicted and actual values [13, 14]. AUC is a graph that
shows how well a classification model performs at different
threshold levels, plotting the true positive rate (TPR) against
the false-positive rate (FPR) [10, 13, 14]. A confusion matrix
is a tabular representation that summarizes the results of the
testing algorithm, and it is commonly used to evaluate the
performance of a model. Accuracy, precision, recall, and
f-measure are the commonly used performance measurement
parameters based on the confusion matrix. These parameters
report the number of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) predictions, which
are presented in Table 2 [5, 10, 20].
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all positive samples, and M and N are the numbers of positive
and negative samples, respectively.

V. RESULTS AND DISCUSSION
The experimental setup utilized the Python programming

language, and the training and validation datasets were
sourced from the same project. To ensure the credibility of the
performance assessment, the proposed model underwent
training and testing on extensive datasets containing over
6,785,568 lines of source code. Tables 3 and 4 and Figures 4
to 7 below show the results.
Table 3 presents the results of the LSTM model based on the

original datasets in terms of accuracy, precision, recall,
f-measure, MCC, and AUC. We notice that the highest
accuracy was achieved on Feature Envy, which is 95%, and
the lowest accuracy was achieved on Long Method, which is
86%. The highest precision was achieved on Feature Envy,
which is 90%, and the lowest precision was achieved on Long
Method, which is 79%. The highest recall was achieved on
Data Class, which is 100%, and the lowest recall was achieved
on Long Method, which is 79%. The highest f-measure was
achieved on Feature Envy, which is 93%, and the lowest
f-measure was achieved on Long Method, which is 79%. The
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and the lowest MCC was achieved on Long Method, which is
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Fig. 3. Distribution of learning instances over original and balanced
datasets.

D. Model Building and Evaluation
The model proposed in this study was built using Python

programming language based on Keras, a high-level API that
is based on TensorFlow. The training datasets constituted 80%
of the datasets with randomly selected features, while the
validation and test datasets constituted 20%. The model was
developed using several parameters such as ReLU and
sigmoid as activation functions, Adam as an optimizer,
learning rate(0.01), mean squared error as loss function, batch
size (64), and number of epochs (100).
The performance of the proposed model is assessed by

utilizing a range of performance measures derived from the
confusion matrix, MCC, and AUC. MCC is a performance
metric that quantifies the difference between a model's
predicted and actual values [13, 14]. AUC is a graph that
shows how well a classification model performs at different
threshold levels, plotting the true positive rate (TPR) against
the false-positive rate (FPR) [10, 13, 14]. A confusion matrix
is a tabular representation that summarizes the results of the
testing algorithm, and it is commonly used to evaluate the
performance of a model. Accuracy, precision, recall, and
f-measure are the commonly used performance measurement
parameters based on the confusion matrix. These parameters
report the number of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) predictions, which
are presented in Table 2 [5, 10, 20].
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𝐹𝐹𝑀𝑀𝑀𝑀 𝐴 𝐴 𝑇𝑇𝑇𝑇 * 𝑇𝑇𝑇𝑇 𝐹 𝐴𝑇𝑇𝑇𝑇 * 𝑇𝑇𝑇𝑇( 𝑇𝐴𝐴/𝐴 𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇( 𝑇 * 𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇( 𝑇 * 𝑇𝑇𝑇𝑇𝐴 𝑇(

(5)

(6)𝐴𝐴𝐴𝐴𝐴𝑀𝑀 𝐴 𝐴
𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃
𝐴∈𝐴𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝑀𝑀𝑅𝑅𝐴𝐴𝑃𝑃𝑃𝑃

𝐴𝐴

∑ 𝐴𝐴𝐴𝐴𝑃𝑃𝑟𝑟 𝑃𝑃𝑃𝑃𝑃𝑃
𝑃𝑃( 𝑇𝐹𝐴 𝐹𝐹(𝐹𝐹𝑇𝑀𝑇

2 𝐴

𝐹𝐹𝐴𝑀𝐴𝐴𝑇𝑇 𝐴𝐴

Where Is the sum of the ranks of
𝑃𝑃𝑃𝑃𝑃𝑃

𝑃𝑃
𝐴∈𝐴𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝑀𝑀𝑅𝑅𝐴𝐴𝑃𝑃𝑃𝑃

𝐴

∑ 𝐴𝐴𝐴𝐴𝑃𝑃𝑟𝑟 𝑃𝑃𝑃𝑃𝑃𝑃
𝑃𝑃( 𝑇𝐴𝐴

all positive samples, and M and N are the numbers of positive
and negative samples, respectively.

V. RESULTS AND DISCUSSION
The experimental setup utilized the Python programming

language, and the training and validation datasets were
sourced from the same project. To ensure the credibility of the
performance assessment, the proposed model underwent
training and testing on extensive datasets containing over
6,785,568 lines of source code. Tables 3 and 4 and Figures 4
to 7 below show the results.
Table 3 presents the results of the LSTM model based on the

original datasets in terms of accuracy, precision, recall,
f-measure, MCC, and AUC. We notice that the highest
accuracy was achieved on Feature Envy, which is 95%, and
the lowest accuracy was achieved on Long Method, which is
86%. The highest precision was achieved on Feature Envy,
which is 90%, and the lowest precision was achieved on Long
Method, which is 79%. The highest recall was achieved on
Data Class, which is 100%, and the lowest recall was achieved
on Long Method, which is 79%. The highest f-measure was
achieved on Feature Envy, which is 93%, and the lowest
f-measure was achieved on Long Method, which is 79%. The
highest MCC was achieved on Feature Envy, which is 89%,
and the lowest MCC was achieved on Long Method, which is
68%. The highest AUC was achieved on Feature Envy, which
is 99%, and the lowest AUC was achieved on Long Method,
which was 90%.

V. Results and Discussion
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TABLE III
EVALUATION RESULTS OF THE LSTM MODEL ON THE ORIGINAL

  DATASETS

Datasets
Performance Measures

God
Class

0.93 0.89 0.89 0.89 0.83 0.94

Data
Class

0.94 0.85 1.00 0.92 0.87 0.97

Feature
Envy

0.95 0.90 0.96 0.93 0.89 0.99

Long
Method

0.86 0.79 0.79 0.79 0.68 0.90

Average 0.92 0.85 0.91 0.88 0.81 0.95

Table 4 presents the results of the LSTM model based on the
balanced datasets (using Random Oversampling and SMOTE)
in terms of accuracy, precision, recall, f-measure, MCC, and
AUC.
Regarding Random Oversampling: We notice that the

highest accuracy was achieved on Data Class, which is 99%,
and the lowest accuracy was achieved on Feature Envy, which
is 96%. The highest precision was achieved on Data Class and
Long Method, which is 98%, and the lowest precision was
achieved on Feature Envy, which is 92%. The highest recall
was achieved on God Class, Data Class, and Feature Envy,
which is 100%, and the lowest recall was achieved on Long
Method, which is 96%. The highest f-measure was achieved
on Data Class, which is 99%, and the lowest f-measure was
achieved on Feature Envy, which is 96%. The highest MCC
was achieved on Data Class, which is 98%, and the lowest
MCC was achieved on Feature Envy, which is 91%. The
highest AUC was achieved on Data Class and Long Method,
which is 99%, and the lowest AUC was achieved on Feature
Envy, which was 97%.
Regarding SMOTE: We notice that the highest accuracy was

achieved on Data Class, which is 99%, and the lowest
accuracy was achieved on Feature Envy, which is 96%. The
highest precision was achieved on Data Class, which is 100%,
and the lowest precision was achieved on God Class and
Feature Envy, which is 95%. The highest recall was achieved
on God Class and Long Method, which is 100%, and the
lowest recall was achieved on Feature Envy, which is 97%.
The highest f-measure was achieved on Data Class, which is
99%, and the lowest f-measure was achieved on Feature Envy,
which is 96%. The highest MCC was achieved on Data Class,
which is 98%, and the lowest MCC was achieved on Feature
Envy, which is 90%. The highest AUC was achieved on Data
Class and Long Method, which is 100%, and the lowest AUC
was achieved on God Class, which was 98%.

TABLE IV
EVALUATION RESULTS OF THE LSTM MODEL ON THE BALANCED

   DATASETS

Random Oversampling

Datasets
Accuracy Precision Recall MCC AUC

God
Class

0.97 0.95 1.00 0.98 0.94 0.98

Data
Class

0.99 0.98 1.00 0.99 0.98 0.99

Feature
Envy

0.96 0.92 1.00 0.96 0.91 0.97

Long
Method

0.97 0.98 0.96 0.97 0.94 0.99

Average 0.97 0.95 0.99 0.97 0.94 0.98
SMOTE

Datasets
Performance Measures

Precision Recall MCC AUC
God
Class

0.97 0.95 1.00 0.98 0.94 0.98

Data
Class

0.99 1.00 0.98 0.99 0.98 1.00

Feature
Envy

0.96 0.95 0.97 0.96 0.90 0.99

Long
Method

0.98 0.96 1.00 0.98 0.96 1.00

Average 0.97 0.96 0.98 0.97 0.94 0.99

Figures 4 and 5 show the training and validation accuracy of
the model on the balanced datasets. The vertical axis presents
the model's accuracy, and the horizontal axis illustrates the
number of epochs. Accuracy is the fraction of predictions that
our model predicted right.
Figure 4 shows the accuracy values of the LSTM model on

the balanced datasets (using Random Oversampling). From
the Figure, the model learned 97% accuracy for God Class,
99% for Data Class, 96% for Feature Envy, and 97% for the
Long method at the 100th epoch.

Fig. 4. Training and validation accuracy of LSTM model on the
balanced datasets-random oversampling.

Performance Measures

F-measure

F-measureAccuracy

Precision Recall MCC AUCF-measureAccuracy
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Figure 5 shows the accuracy values of the LSTM model on
the balanced datasets (using SMOTE). From the Figure, the
model learned 97% accuracy for God Class, 99% accuracy for
Data Class, 96% accuracy for Feature Envy, and 98%
accuracy for Long method at the 100th epoch.

Fig. 5. Training and validation accuracy of LSTM model on the
balanced datasets-SMOTE.

Figures 6 and 7 show the training and validation loss of the
model on the balanced datasets. The vertical axis presents the
loss of the model, and the horizontal axis illustrates the
number of epochs. The loss indicates how wrong a model
prediction was.
Figure 6 shows the loss values of the LSTM model on the

balanced datasets (using Random Oversampling). From the
Figure, the model loss is 0.028 for God Class, 0.013 for Data
Class, 0.043 for Feature Envy, and 0.025 for the long method
at the 100th epoch.

Fig. 6. Training and validation loss of LSTM model on the balanced
datasets-random oversampling.

Figure 7 shows the loss values of the LSTM model on the
balanced datasets (using SMOTE). From the Figure, the model
loss is 0.034 for God Class, 0.009 for Data Class, 0.040 for
Feature Envy, and 0.017 for the long method at the 100th
epoch.

Fig. 7. Training and validation loss of LSTM model on the balanced
datasets-SMOTE.

As illustrated in the figures, both training and validation
accuracies improve while loss decreases as epochs
progress. The high accuracy and low loss achieved by the
proposed LSTM model indicate effective training and
validation. Furthermore, it's worth mentioning that the

TABLE III
EVALUATION RESULTS OF THE LSTM MODEL ON THE ORIGINAL

  DATASETS

Datasets
Performance Measures

God
Class

0.93 0.89 0.89 0.89 0.83 0.94

Data
Class

0.94 0.85 1.00 0.92 0.87 0.97

Feature
Envy

0.95 0.90 0.96 0.93 0.89 0.99

Long
Method

0.86 0.79 0.79 0.79 0.68 0.90

Average 0.92 0.85 0.91 0.88 0.81 0.95

Table 4 presents the results of the LSTM model based on the
balanced datasets (using Random Oversampling and SMOTE)
in terms of accuracy, precision, recall, f-measure, MCC, and
AUC.
Regarding Random Oversampling: We notice that the

highest accuracy was achieved on Data Class, which is 99%,
and the lowest accuracy was achieved on Feature Envy, which
is 96%. The highest precision was achieved on Data Class and
Long Method, which is 98%, and the lowest precision was
achieved on Feature Envy, which is 92%. The highest recall
was achieved on God Class, Data Class, and Feature Envy,
which is 100%, and the lowest recall was achieved on Long
Method, which is 96%. The highest f-measure was achieved
on Data Class, which is 99%, and the lowest f-measure was
achieved on Feature Envy, which is 96%. The highest MCC
was achieved on Data Class, which is 98%, and the lowest
MCC was achieved on Feature Envy, which is 91%. The
highest AUC was achieved on Data Class and Long Method,
which is 99%, and the lowest AUC was achieved on Feature
Envy, which was 97%.
Regarding SMOTE: We notice that the highest accuracy was

achieved on Data Class, which is 99%, and the lowest
accuracy was achieved on Feature Envy, which is 96%. The
highest precision was achieved on Data Class, which is 100%,
and the lowest precision was achieved on God Class and
Feature Envy, which is 95%. The highest recall was achieved
on God Class and Long Method, which is 100%, and the
lowest recall was achieved on Feature Envy, which is 97%.
The highest f-measure was achieved on Data Class, which is
99%, and the lowest f-measure was achieved on Feature Envy,
which is 96%. The highest MCC was achieved on Data Class,
which is 98%, and the lowest MCC was achieved on Feature
Envy, which is 90%. The highest AUC was achieved on Data
Class and Long Method, which is 100%, and the lowest AUC
was achieved on God Class, which was 98%.

TABLE IV
EVALUATION RESULTS OF THE LSTM MODEL ON THE BALANCED

   DATASETS

Random Oversampling

Datasets
Accuracy Precision Recall MCC AUC

God
Class

0.97 0.95 1.00 0.98 0.94 0.98

Data
Class

0.99 0.98 1.00 0.99 0.98 0.99

Feature
Envy

0.96 0.92 1.00 0.96 0.91 0.97

Long
Method

0.97 0.98 0.96 0.97 0.94 0.99

Average 0.97 0.95 0.99 0.97 0.94 0.98
SMOTE

Datasets
Performance Measures

Precision Recall MCC AUC
God
Class

0.97 0.95 1.00 0.98 0.94 0.98

Data
Class

0.99 1.00 0.98 0.99 0.98 1.00

Feature
Envy

0.96 0.95 0.97 0.96 0.90 0.99

Long
Method

0.98 0.96 1.00 0.98 0.96 1.00

Average 0.97 0.96 0.98 0.97 0.94 0.99

Figures 4 and 5 show the training and validation accuracy of
the model on the balanced datasets. The vertical axis presents
the model's accuracy, and the horizontal axis illustrates the
number of epochs. Accuracy is the fraction of predictions that
our model predicted right.
Figure 4 shows the accuracy values of the LSTM model on

the balanced datasets (using Random Oversampling). From
the Figure, the model learned 97% accuracy for God Class,
99% for Data Class, 96% for Feature Envy, and 97% for the
Long method at the 100th epoch.

Fig. 4. Training and validation accuracy of LSTM model on the
balanced datasets-random oversampling.
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TABLE III
EVALUATION RESULTS OF THE LSTM MODEL ON THE ORIGINAL

  DATASETS

Datasets
Performance Measures

God
Class

0.93 0.89 0.89 0.89 0.83 0.94

Data
Class

0.94 0.85 1.00 0.92 0.87 0.97

Feature
Envy

0.95 0.90 0.96 0.93 0.89 0.99

Long
Method

0.86 0.79 0.79 0.79 0.68 0.90

Average 0.92 0.85 0.91 0.88 0.81 0.95

Table 4 presents the results of the LSTM model based on the
balanced datasets (using Random Oversampling and SMOTE)
in terms of accuracy, precision, recall, f-measure, MCC, and
AUC.
Regarding Random Oversampling: We notice that the

highest accuracy was achieved on Data Class, which is 99%,
and the lowest accuracy was achieved on Feature Envy, which
is 96%. The highest precision was achieved on Data Class and
Long Method, which is 98%, and the lowest precision was
achieved on Feature Envy, which is 92%. The highest recall
was achieved on God Class, Data Class, and Feature Envy,
which is 100%, and the lowest recall was achieved on Long
Method, which is 96%. The highest f-measure was achieved
on Data Class, which is 99%, and the lowest f-measure was
achieved on Feature Envy, which is 96%. The highest MCC
was achieved on Data Class, which is 98%, and the lowest
MCC was achieved on Feature Envy, which is 91%. The
highest AUC was achieved on Data Class and Long Method,
which is 99%, and the lowest AUC was achieved on Feature
Envy, which was 97%.
Regarding SMOTE: We notice that the highest accuracy was

achieved on Data Class, which is 99%, and the lowest
accuracy was achieved on Feature Envy, which is 96%. The
highest precision was achieved on Data Class, which is 100%,
and the lowest precision was achieved on God Class and
Feature Envy, which is 95%. The highest recall was achieved
on God Class and Long Method, which is 100%, and the
lowest recall was achieved on Feature Envy, which is 97%.
The highest f-measure was achieved on Data Class, which is
99%, and the lowest f-measure was achieved on Feature Envy,
which is 96%. The highest MCC was achieved on Data Class,
which is 98%, and the lowest MCC was achieved on Feature
Envy, which is 90%. The highest AUC was achieved on Data
Class and Long Method, which is 100%, and the lowest AUC
was achieved on God Class, which was 98%.

TABLE IV
EVALUATION RESULTS OF THE LSTM MODEL ON THE BALANCED

   DATASETS

Random Oversampling

Datasets
Accuracy Precision Recall MCC AUC

God
Class

0.97 0.95 1.00 0.98 0.94 0.98

Data
Class

0.99 0.98 1.00 0.99 0.98 0.99

Feature
Envy

0.96 0.92 1.00 0.96 0.91 0.97

Long
Method

0.97 0.98 0.96 0.97 0.94 0.99

Average 0.97 0.95 0.99 0.97 0.94 0.98
SMOTE

Datasets
Performance Measures

Precision Recall MCC AUC
God
Class

0.97 0.95 1.00 0.98 0.94 0.98

Data
Class

0.99 1.00 0.98 0.99 0.98 1.00

Feature
Envy

0.96 0.95 0.97 0.96 0.90 0.99

Long
Method

0.98 0.96 1.00 0.98 0.96 1.00

Average 0.97 0.96 0.98 0.97 0.94 0.99

Figures 4 and 5 show the training and validation accuracy of
the model on the balanced datasets. The vertical axis presents
the model's accuracy, and the horizontal axis illustrates the
number of epochs. Accuracy is the fraction of predictions that
our model predicted right.
Figure 4 shows the accuracy values of the LSTM model on

the balanced datasets (using Random Oversampling). From
the Figure, the model learned 97% accuracy for God Class,
99% for Data Class, 96% for Feature Envy, and 97% for the
Long method at the 100th epoch.

Fig. 4. Training and validation accuracy of LSTM model on the
balanced datasets-random oversampling.
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TABLE IV
Evaluation results of the LSTM model on the balanced

datasets

TABLE III
EVALUATION RESULTS OF THE LSTM MODEL ON THE ORIGINAL

  DATASETS

Datasets
Performance Measures

God
Class

0.93 0.89 0.89 0.89 0.83 0.94

Data
Class

0.94 0.85 1.00 0.92 0.87 0.97

Feature
Envy

0.95 0.90 0.96 0.93 0.89 0.99

Long
Method

0.86 0.79 0.79 0.79 0.68 0.90

Average 0.92 0.85 0.91 0.88 0.81 0.95

Table 4 presents the results of the LSTM model based on the
balanced datasets (using Random Oversampling and SMOTE)
in terms of accuracy, precision, recall, f-measure, MCC, and
AUC.
Regarding Random Oversampling: We notice that the

highest accuracy was achieved on Data Class, which is 99%,
and the lowest accuracy was achieved on Feature Envy, which
is 96%. The highest precision was achieved on Data Class and
Long Method, which is 98%, and the lowest precision was
achieved on Feature Envy, which is 92%. The highest recall
was achieved on God Class, Data Class, and Feature Envy,
which is 100%, and the lowest recall was achieved on Long
Method, which is 96%. The highest f-measure was achieved
on Data Class, which is 99%, and the lowest f-measure was
achieved on Feature Envy, which is 96%. The highest MCC
was achieved on Data Class, which is 98%, and the lowest
MCC was achieved on Feature Envy, which is 91%. The
highest AUC was achieved on Data Class and Long Method,
which is 99%, and the lowest AUC was achieved on Feature
Envy, which was 97%.
Regarding SMOTE: We notice that the highest accuracy was

achieved on Data Class, which is 99%, and the lowest
accuracy was achieved on Feature Envy, which is 96%. The
highest precision was achieved on Data Class, which is 100%,
and the lowest precision was achieved on God Class and
Feature Envy, which is 95%. The highest recall was achieved
on God Class and Long Method, which is 100%, and the
lowest recall was achieved on Feature Envy, which is 97%.
The highest f-measure was achieved on Data Class, which is
99%, and the lowest f-measure was achieved on Feature Envy,
which is 96%. The highest MCC was achieved on Data Class,
which is 98%, and the lowest MCC was achieved on Feature
Envy, which is 90%. The highest AUC was achieved on Data
Class and Long Method, which is 100%, and the lowest AUC
was achieved on God Class, which was 98%.

TABLE IV
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Datasets
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Data
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0.99 0.98 1.00 0.99 0.98 0.99

Feature
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Long
Method

0.97 0.98 0.96 0.97 0.94 0.99
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Method
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Figures 4 and 5 show the training and validation accuracy of
the model on the balanced datasets. The vertical axis presents
the model's accuracy, and the horizontal axis illustrates the
number of epochs. Accuracy is the fraction of predictions that
our model predicted right.
Figure 4 shows the accuracy values of the LSTM model on

the balanced datasets (using Random Oversampling). From
the Figure, the model learned 97% accuracy for God Class,
99% for Data Class, 96% for Feature Envy, and 97% for the
Long method at the 100th epoch.

Fig. 4. Training and validation accuracy of LSTM model on the
balanced datasets-random oversampling.
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Fig. 4. Training and validation accuracy of LSTM model on the balanced 
datasets-random oversampling.

Fig. 5. Training and validation accuracy of LSTM model on the balanced 
datasets-SMOTE.
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God
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0.93 0.89 0.89 0.89 0.83 0.94

Data
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0.94 0.85 1.00 0.92 0.87 0.97

Feature
Envy

0.95 0.90 0.96 0.93 0.89 0.99

Long
Method

0.86 0.79 0.79 0.79 0.68 0.90

Average 0.92 0.85 0.91 0.88 0.81 0.95

Table 4 presents the results of the LSTM model based on the
balanced datasets (using Random Oversampling and SMOTE)
in terms of accuracy, precision, recall, f-measure, MCC, and
AUC.
Regarding Random Oversampling: We notice that the

highest accuracy was achieved on Data Class, which is 99%,
and the lowest accuracy was achieved on Feature Envy, which
is 96%. The highest precision was achieved on Data Class and
Long Method, which is 98%, and the lowest precision was
achieved on Feature Envy, which is 92%. The highest recall
was achieved on God Class, Data Class, and Feature Envy,
which is 100%, and the lowest recall was achieved on Long
Method, which is 96%. The highest f-measure was achieved
on Data Class, which is 99%, and the lowest f-measure was
achieved on Feature Envy, which is 96%. The highest MCC
was achieved on Data Class, which is 98%, and the lowest
MCC was achieved on Feature Envy, which is 91%. The
highest AUC was achieved on Data Class and Long Method,
which is 99%, and the lowest AUC was achieved on Feature
Envy, which was 97%.
Regarding SMOTE: We notice that the highest accuracy was

achieved on Data Class, which is 99%, and the lowest
accuracy was achieved on Feature Envy, which is 96%. The
highest precision was achieved on Data Class, which is 100%,
and the lowest precision was achieved on God Class and
Feature Envy, which is 95%. The highest recall was achieved
on God Class and Long Method, which is 100%, and the
lowest recall was achieved on Feature Envy, which is 97%.
The highest f-measure was achieved on Data Class, which is
99%, and the lowest f-measure was achieved on Feature Envy,
which is 96%. The highest MCC was achieved on Data Class,
which is 98%, and the lowest MCC was achieved on Feature
Envy, which is 90%. The highest AUC was achieved on Data
Class and Long Method, which is 100%, and the lowest AUC
was achieved on God Class, which was 98%.
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0.97 0.95 1.00 0.98 0.94 0.98
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0.99 0.98 1.00 0.99 0.98 0.99
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Figures 4 and 5 show the training and validation accuracy of
the model on the balanced datasets. The vertical axis presents
the model's accuracy, and the horizontal axis illustrates the
number of epochs. Accuracy is the fraction of predictions that
our model predicted right.
Figure 4 shows the accuracy values of the LSTM model on

the balanced datasets (using Random Oversampling). From
the Figure, the model learned 97% accuracy for God Class,
99% for Data Class, 96% for Feature Envy, and 97% for the
Long method at the 100th epoch.

Fig. 4. Training and validation accuracy of LSTM model on the
balanced datasets-random oversampling.
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Figure 5 shows the accuracy values of the LSTM model on
the balanced datasets (using SMOTE). From the Figure, the
model learned 97% accuracy for God Class, 99% accuracy for
Data Class, 96% accuracy for Feature Envy, and 98%
accuracy for Long method at the 100th epoch.

Fig. 5. Training and validation accuracy of LSTM model on the
balanced datasets-SMOTE.

Figures 6 and 7 show the training and validation loss of the
model on the balanced datasets. The vertical axis presents the
loss of the model, and the horizontal axis illustrates the
number of epochs. The loss indicates how wrong a model
prediction was.
Figure 6 shows the loss values of the LSTM model on the

balanced datasets (using Random Oversampling). From the
Figure, the model loss is 0.028 for God Class, 0.013 for Data
Class, 0.043 for Feature Envy, and 0.025 for the long method
at the 100th epoch.

Fig. 6. Training and validation loss of LSTM model on the balanced
datasets-random oversampling.

Figure 7 shows the loss values of the LSTM model on the
balanced datasets (using SMOTE). From the Figure, the model
loss is 0.034 for God Class, 0.009 for Data Class, 0.040 for
Feature Envy, and 0.017 for the long method at the 100th
epoch.

Fig. 7. Training and validation loss of LSTM model on the balanced
datasets-SMOTE.

As illustrated in the figures, both training and validation
accuracies improve while loss decreases as epochs
progress. The high accuracy and low loss achieved by the
proposed LSTM model indicate effective training and
validation. Furthermore, it's worth mentioning that the
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Figure 5 shows the accuracy values of the LSTM model on
the balanced datasets (using SMOTE). From the Figure, the
model learned 97% accuracy for God Class, 99% accuracy for
Data Class, 96% accuracy for Feature Envy, and 98%
accuracy for Long method at the 100th epoch.

Fig. 5. Training and validation accuracy of LSTM model on the
balanced datasets-SMOTE.

Figures 6 and 7 show the training and validation loss of the
model on the balanced datasets. The vertical axis presents the
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model demonstrates almost ideal fitting, with no signs of
overfitting or underfitting.

We compared our method results with the results obtained in
previous studies based on the accuracy measure. Table 5
compares the values of accuracy obtained by our models and
those of previous studies. The optimal values are highlighted
in bold within the Table, while "-" indicates approaches that
didn't provide results for a specific dataset. From Table 5,
while certain results from past studies outshine ours, our
method generally surpasses other state-of-the-art approaches,
offering superior predictive performance.

TABLE V
COMPARISON OF THE PROPOSED MODELS WITH OTHER EXISTING

APPROACHES BASED ON THE ACCURACY

Approaches
Datasets

AveragesGod
class

Data
class

Feature
envy

Long
method

Decision Tree [1] 0.98 1.00 1.00 0.98 0.99
K-Nearest
Neighbors [1]

0.97 0.96 0.96 0.91 0.95

Support Vector
Machine [1]

0.96 0.97 1.00 0.96 0.97

XGBoost [1] 0.96 1.00 1.00 0.98 0.98
Multi-Layer
Perceptron [1]

0.97 0.98 0.98 0.96 0.97

Random Forest (3) 0.69 0.70 0.71 0.68 0.69
Naive Bayes (3) 0.82 0.75 0.83 0.81 0.80
Support Vector
Machine (3)

0.74 0.83 0.83 0.81 0.80

K-nearest
neighbours (3)

0.80 0.82 0.82 0.81 0.81

K-nearest
neighbours (5)

0.97 0.97 0.91 0.97 0.95

Naive Bayes (5) 0.96 0.84 0.92 0.95 0.91
Multi-layer
Perceptron (5)

0.97 0.97 0.95 0.96 0.96

Decision Tree (5) 0.97 0.98 0.98 0.98 0.97
Random Forest (5) 0.97 0.98 0.97 0.99 0.97

Logistic
Regression (5)

0.97 0.97 0.97 0.99 0.97

Random Forest (8) 0.96 0.98 0.96 0.99 0.97
Naive Bayes (8) 0.97 0.97 0.91 0.97 0.95
Decision Tree (15) - - 0.97 - 0.97
Random Forest

(15)
- 0.99 - 0.95 0.97

Our LSTM
model_Balanced
Datasets (Random
Oversampling)

0.97 0.99 0.96 0.97 0.97

Our LSTM
model_Balanced
Datasets (SMOTE)

0.97 0.99 0.96 0.98 0.97

VI. CONCLUSION
This study investigated the role and effectiveness of data

balancing methods in optimizing the accuracy of the LSTM
model for code smell detection. We introduced a novel method
that combines the LSTM model with data balancing methods
to improve upon current state-of-the-art methods for code
smell detection. We addressed the challenge posed by
imbalanced distributions of code smells within software
projects and investigated various data balancing methods,

including random oversampling and SMOTE. To assess the
efficiency of our proposed method, we conducted a series of
experiments using four datasets on code smells. The average
accuracy of our proposed LSTM model on both the original
and balanced datasets (utilizing random oversampling and
SMOTE) was 92%, 97%, and 97%, respectively.
The findings indicate that employing balanced datasets with

the proposed model enhances the average accuracy by 5% in
comparison to using the original datasets. Our experimental
evaluation showcased the substantial improvement in the
accuracy of the LSTM model for code smell detection through
the implementation of data balancing methods. Moreover, our
proposed method outperforms existing state-of-the-art
approaches in code smell detection. We observe incorporating
appropriate data balancing methods not only enhances the
model's ability to detect code smells accurately but also
mitigates the bias towards the majority class, resulting in a
more balanced performance across different classes of code
smells. This research has practical implications for software
developers and researchers. It highlights the significance of
considering data balancing methods when applying the LSTM
model for code smell detection. By employing these methods,
developers can enhance their ability to identify and address
code quality issues, improving software maintainability.
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model demonstrates almost ideal fitting, with no signs of
overfitting or underfitting.

We compared our method results with the results obtained in
previous studies based on the accuracy measure. Table 5
compares the values of accuracy obtained by our models and
those of previous studies. The optimal values are highlighted
in bold within the Table, while "-" indicates approaches that
didn't provide results for a specific dataset. From Table 5,
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model demonstrates almost ideal fitting, with no signs of
overfitting or underfitting.

We compared our method results with the results obtained in
previous studies based on the accuracy measure. Table 5
compares the values of accuracy obtained by our models and
those of previous studies. The optimal values are highlighted
in bold within the Table, while "-" indicates approaches that
didn't provide results for a specific dataset. From Table 5,
while certain results from past studies outshine ours, our
method generally surpasses other state-of-the-art approaches,
offering superior predictive performance.
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model for code smell detection. We introduced a novel method
that combines the LSTM model with data balancing methods
to improve upon current state-of-the-art methods for code
smell detection. We addressed the challenge posed by
imbalanced distributions of code smells within software
projects and investigated various data balancing methods,

including random oversampling and SMOTE. To assess the
efficiency of our proposed method, we conducted a series of
experiments using four datasets on code smells. The average
accuracy of our proposed LSTM model on both the original
and balanced datasets (utilizing random oversampling and
SMOTE) was 92%, 97%, and 97%, respectively.
The findings indicate that employing balanced datasets with

the proposed model enhances the average accuracy by 5% in
comparison to using the original datasets. Our experimental
evaluation showcased the substantial improvement in the
accuracy of the LSTM model for code smell detection through
the implementation of data balancing methods. Moreover, our
proposed method outperforms existing state-of-the-art
approaches in code smell detection. We observe incorporating
appropriate data balancing methods not only enhances the
model's ability to detect code smells accurately but also
mitigates the bias towards the majority class, resulting in a
more balanced performance across different classes of code
smells. This research has practical implications for software
developers and researchers. It highlights the significance of
considering data balancing methods when applying the LSTM
model for code smell detection. By employing these methods,
developers can enhance their ability to identify and address
code quality issues, improving software maintainability.
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compares the values of accuracy obtained by our models and
those of previous studies. The optimal values are highlighted
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while certain results from past studies outshine ours, our
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compares the values of accuracy obtained by our models and
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in bold within the Table, while "-" indicates approaches that
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offering superior predictive performance.

TABLE V
COMPARISON OF THE PROPOSED MODELS WITH OTHER EXISTING

APPROACHES BASED ON THE ACCURACY

Approaches
Datasets

AveragesGod
class

Data
class

Feature
envy

Long
method

Decision Tree [1] 0.98 1.00 1.00 0.98 0.99
K-Nearest
Neighbors [1]

0.97 0.96 0.96 0.91 0.95

Support Vector
Machine [1]

0.96 0.97 1.00 0.96 0.97

XGBoost [1] 0.96 1.00 1.00 0.98 0.98
Multi-Layer
Perceptron [1]

0.97 0.98 0.98 0.96 0.97

Random Forest (3) 0.69 0.70 0.71 0.68 0.69
Naive Bayes (3) 0.82 0.75 0.83 0.81 0.80
Support Vector
Machine (3)

0.74 0.83 0.83 0.81 0.80

K-nearest
neighbours (3)

0.80 0.82 0.82 0.81 0.81

K-nearest
neighbours (5)

0.97 0.97 0.91 0.97 0.95

Naive Bayes (5) 0.96 0.84 0.92 0.95 0.91
Multi-layer
Perceptron (5)

0.97 0.97 0.95 0.96 0.96

Decision Tree (5) 0.97 0.98 0.98 0.98 0.97
Random Forest (5) 0.97 0.98 0.97 0.99 0.97

Logistic
Regression (5)

0.97 0.97 0.97 0.99 0.97

Random Forest (8) 0.96 0.98 0.96 0.99 0.97
Naive Bayes (8) 0.97 0.97 0.91 0.97 0.95
Decision Tree (15) - - 0.97 - 0.97
Random Forest

(15)
- 0.99 - 0.95 0.97

Our LSTM
model_Balanced
Datasets (Random
Oversampling)

0.97 0.99 0.96 0.97 0.97

Our LSTM
model_Balanced
Datasets (SMOTE)

0.97 0.99 0.96 0.98 0.97

VI. CONCLUSION
This study investigated the role and effectiveness of data

balancing methods in optimizing the accuracy of the LSTM
model for code smell detection. We introduced a novel method
that combines the LSTM model with data balancing methods
to improve upon current state-of-the-art methods for code
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projects and investigated various data balancing methods,
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efficiency of our proposed method, we conducted a series of
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and balanced datasets (utilizing random oversampling and
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the proposed model enhances the average accuracy by 5% in
comparison to using the original datasets. Our experimental
evaluation showcased the substantial improvement in the
accuracy of the LSTM model for code smell detection through
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