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Abstract—The adaptation of ethologically inspired behaviour
models for human-machine interaction e.g. in Ethorobotics has
become a challenging research topic in recent years. This pa-
per presents a Fuzzy Behaviour Description Language (FBDL)
approach for analyzing animal aggression behaviour. Fuzzy
logic and fuzzy set theory approaches are used to analyze and
classify the subjective impression of aggressive behaviour in a
particular situation. This research aims to perform a meta-
analysis of aggression behaviour based on the fundamental
values of animals and the possible ways of implementing animal
aggressive behaviour in robots. Ultimately aiming to enhance the
adaptability and effectiveness of human-robot interaction and
performance in various real-world scenarios, e.g., by expressing
disagreement in the direction of the human operator in case of
unclear, or unsafe cooperative situations. In both industrial and
everyday settings, mobile robots and robotic vehicles are becom-
ing increasingly prevalent. Integrating aggressive behaviour into
robotics is essential for boosting interactions between humans
and robots, promoting safety in dynamic contexts, and getting
a deeper understanding of animal behaviour. It aids robots
in asserting their presence, maneuvering around barriers, and
efficiently adjusting to dynamic surroundings. This guarantees
more seamless operations in industrial and daily environments
while also enhancing our comprehension of both robotics and
ethology. We present graphical depictions of various animal
behaviours, as well as trajectories, Gazebo simulations, and RViz
visualizations of the animal robot, demonstrating the animal’s
escape behaviour.

Index Terms—Ethologically Inspired Behavioural Models,
Ethorobotics, Fuzzy Behaviour Modelling, Fuzzy Behaviour De-
scription Language, Robot Operating System, Gazebo, RViz

I. INTRODUCTION

Behaviour is a response to any stimulus from the situation
or, in short, a way of acting in a given situation [1]. In
other words, we can say that a behaviour system attempts
to determine the responsive abilities of humans, animals,
robots, etc., to understand and interact with the environment.
The behaviour-based approach [2] aims to create intelligent
robots that can carry out complex tasks into smaller, simpler
behaviours or actions. These behaviours focus on the execu-
tion of specific tasks, enabling robots to carry out complex
activities with greater flexibility and adaptability. This method
is crucial for building robots that can function efficiently in
dynamic situations characterized by quickly changing condi-
tions. For example, in robotic navigation, one behaviour can
focus on traversing a path from the start to the goal state,

while another focuses on avoiding obstacles. Developing and
executing individual robot behaviours is a straightforward pro-
cess, which enables them to construct intricate and adaptable
behaviours when paired with one another and the environment.
Robots can adapt to changes in their environment and deal
with uncertainty without the need for complex planning or
simulations. Robots possess the ability to modify their be-
haviour according to various tasks and environments. This
technique has a significant impact in sectors like autonomous
cars, automated guided vehicles, and swarm robotics, as basic
actions can result in complex collective behaviours.

Ethological modeling involves the analysis of animal be-
haviour based on external observations and the development
of models and explanations. The behaviour-based method,
when applied to ethology, aims to develop intelligent robots
by emulating the innate and adaptable behaviours observed
in animals. This ethological paradigm guarantees that robots
can promptly and adaptively react to their environment. Niko-
laas Tinbergen provides a model [3] for analyzing animal
behaviour in its natural environment. The model consists of
four interconnected categories of questions that provide a
full framework for understanding the behaviour: The first
question, “What is the function of the behaviour?” relates to
the significance of the conduct in terms of adaptation. The
Ethologically inspired view focuses on the selective forces
that have shaped behaviour and how they impact an animal’s
capacity for survival and reproduction. This phase considers
the physiological, genetic, and environmental factors that lead
to particular behaviours. For instance, the hormonal changes
that occur during bird mating behaviour or the visual cues that
induce fish courtship displays. The second question, “What
is the mechanism behind the behaviour?” is concerned with
the physiological and neurological processes that permit the
activity to occur. The animal’s neurological system and how
it generates, and controls behaviour are the main topics of
this study. At this level, we examine the interactions between
experience, environment, and genes to determine behaviour.
The evolution of social behaviour in monkeys may have
been influenced by early experiences. The third question,
“What is the evolutionary history of behaviour?” discusses the
phylogenetic origins and historical progression of behaviours.
It involves the evolution of behaviours by tracing them back
through the ancestors of animals across several generations.
The fourth question, “What is the ontogeny of the behaviour?”
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Department of Informatics

University of Miskolc
szilveszter.kovacs@uni-miskolc.hu

Owais Mujtaba Khanday
Department of Informatics

University of Miskolc
aitowais@uni-miskolc.hu

Abstract—The adaptation of ethologically inspired behaviour
models for human-machine interaction e.g. in Ethorobotics has
become a challenging research topic in recent years. This pa-
per presents a Fuzzy Behaviour Description Language (FBDL)
approach for analyzing animal aggression behaviour. Fuzzy
logic and fuzzy set theory approaches are used to analyze and
classify the subjective impression of aggressive behaviour in a
particular situation. This research aims to perform a meta-
analysis of aggression behaviour based on the fundamental
values of animals and the possible ways of implementing animal
aggressive behaviour in robots. Ultimately aiming to enhance the
adaptability and effectiveness of human-robot interaction and
performance in various real-world scenarios, e.g., by expressing
disagreement in the direction of the human operator in case of
unclear, or unsafe cooperative situations. In both industrial and
everyday settings, mobile robots and robotic vehicles are becom-
ing increasingly prevalent. Integrating aggressive behaviour into
robotics is essential for boosting interactions between humans
and robots, promoting safety in dynamic contexts, and getting
a deeper understanding of animal behaviour. It aids robots
in asserting their presence, maneuvering around barriers, and
efficiently adjusting to dynamic surroundings. This guarantees
more seamless operations in industrial and daily environments
while also enhancing our comprehension of both robotics and
ethology. We present graphical depictions of various animal
behaviours, as well as trajectories, Gazebo simulations, and RViz
visualizations of the animal robot, demonstrating the animal’s
escape behaviour.

Index Terms—Ethologically Inspired Behavioural Models,
Ethorobotics, Fuzzy Behaviour Modelling, Fuzzy Behaviour De-
scription Language, Robot Operating System, Gazebo, RViz

I. INTRODUCTION

Behaviour is a response to any stimulus from the situation
or, in short, a way of acting in a given situation [1]. In
other words, we can say that a behaviour system attempts
to determine the responsive abilities of humans, animals,
robots, etc., to understand and interact with the environment.
The behaviour-based approach [2] aims to create intelligent
robots that can carry out complex tasks into smaller, simpler
behaviours or actions. These behaviours focus on the execu-
tion of specific tasks, enabling robots to carry out complex
activities with greater flexibility and adaptability. This method
is crucial for building robots that can function efficiently in
dynamic situations characterized by quickly changing condi-
tions. For example, in robotic navigation, one behaviour can
focus on traversing a path from the start to the goal state,

while another focuses on avoiding obstacles. Developing and
executing individual robot behaviours is a straightforward pro-
cess, which enables them to construct intricate and adaptable
behaviours when paired with one another and the environment.
Robots can adapt to changes in their environment and deal
with uncertainty without the need for complex planning or
simulations. Robots possess the ability to modify their be-
haviour according to various tasks and environments. This
technique has a significant impact in sectors like autonomous
cars, automated guided vehicles, and swarm robotics, as basic
actions can result in complex collective behaviours.

Ethological modeling involves the analysis of animal be-
haviour based on external observations and the development
of models and explanations. The behaviour-based method,
when applied to ethology, aims to develop intelligent robots
by emulating the innate and adaptable behaviours observed
in animals. This ethological paradigm guarantees that robots
can promptly and adaptively react to their environment. Niko-
laas Tinbergen provides a model [3] for analyzing animal
behaviour in its natural environment. The model consists of
four interconnected categories of questions that provide a
full framework for understanding the behaviour: The first
question, “What is the function of the behaviour?” relates to
the significance of the conduct in terms of adaptation. The
Ethologically inspired view focuses on the selective forces
that have shaped behaviour and how they impact an animal’s
capacity for survival and reproduction. This phase considers
the physiological, genetic, and environmental factors that lead
to particular behaviours. For instance, the hormonal changes
that occur during bird mating behaviour or the visual cues that
induce fish courtship displays. The second question, “What
is the mechanism behind the behaviour?” is concerned with
the physiological and neurological processes that permit the
activity to occur. The animal’s neurological system and how
it generates, and controls behaviour are the main topics of
this study. At this level, we examine the interactions between
experience, environment, and genes to determine behaviour.
The evolution of social behaviour in monkeys may have
been influenced by early experiences. The third question,
“What is the evolutionary history of behaviour?” discusses the
phylogenetic origins and historical progression of behaviours.
It involves the evolution of behaviours by tracing them back
through the ancestors of animals across several generations.
The fourth question, “What is the ontogeny of the behaviour?”

Mohd Aaqib Lone, Prof Dr Szilveszter Kovács, and Owais Mujtaba 
Khanday are with the Department of Informatics University of Miskolc, 
Miskolc, Hungary 

(E-mail: iitaaqib@uni-miskolc.hu, szilveszter.kovacs@uni-miskolc.hu, 
aitowais@uni-miskolc.hu)

DOI: 10.36244/ICJ.2024.3.4

https://doi.org/10.36244/ICJ.2024.3.4


Implementation Guidelines for Ethologically  
Inspired Fuzzy Behaviour-Based Systems

SEPTEMBER 2024 • VOLUME XVI • NUMBER 344

INFOCOMMUNICATIONS JOURNAL

focuses on how the behaviour developed inside a particular
creature. The development, acquisition, and evolution of be-
haviour across an animal’s lifetime are the main topics of this
study. Ethology provides a valuable framework for creating
behaviour models in robotics (Ethorobotics [4]) that can repli-
cate the successful and efficient actions of animals. This field
encompasses a broad range of research, including studies on
animal aggression, defense mechanisms, and communication,
all of which can inform the development of robotic behaviours.

In this paper, we will be discussing how we can apply
fuzzy logic to simulate aggressive behaviour in animals. Fuzzy
logic is a type of computing that deals with uncertain or
imprecise information and relies on the degree of truth in the
input to produce a specific output. It is commonly used to
control actions and processes in fields such as automotive and
environmental applications. An example of a state machine
that employs fuzzy logic to deal with uncertainties and im-
precisions in the decision-making process is the Fuzzy State
Machine (FSM). Robotics extensively uses FSMs because
real-time decisions must be made in an environment that is
frequently dynamic and uncertain. The conventional state ma-
chine operates by switching between states in accordance with
predetermined criteria. However, robotics frequently operates
in uncertain environments, which means that not all precepts
and conditions may apply. This is where fuzzy logic comes
into play. Fuzzy logic provides a mathematical framework for
managing uncertainty by assigning varying degrees of truth to
propositions. In a FSM, fuzzy logic is used to express state
transition rules. Fuzzy sets analyze the inputs to the FSM,
allowing for gradual changes in state rather than abrupt ones.
By making transitions gradual, the robot’s behaviour is less
likely to change suddenly, which in some situations could be
risky. Robotics can benefit from the resilience, adaptability,
and scalability of FSMs, among other advantages [5].

Fuzzy signatures are an advanced method for fusing fuzzy
information, enabling the systematic incorporation of hetero-
geneous data sources into a cohesive framework [6]. In scenar-
ios where the fused information is intricate and multifaceted,
they are particularly effective. Fuzzy signatures decompose
information into a hierarchical structure of characteristics, each
with its own layer of fuzzy values, representing distinct aspects
or components of the system under analysis. The hierarchical
structure enables the aggregation of these characteristics at
many levels, illustrating their interrelationships [7].

In behaviour modeling, fuzzy signatures can be particularly
advantageous when the behaviours of components can be
expressed using fuzzy sets. In robotic systems, actions like
locomotion, manipulation, or navigation can be expressed as
fuzzy signatures, effectively capturing the inherent uncertainty
and unpredictability associated with such actions [8]. Once
combined, these distinct fuzzy fingerprints form a unified
entity that accurately reflects the robot’s full behaviour, en-
abling more versatile and adaptable decision-making. Fuzzy
signatures are suitable for applications involving intricate
behaviours and the many interacting components. In human-
robot interaction, they can integrate diverse elements into a

cohesive representation.
In the specific behaviour example outlined in this paper,

fuzzy information fusion could be suitable for behaviour
fusion if the behavioural components are precisely defined
using fuzzy signatures. However, the bahavioural components
in our example are different activities that have no fuzzy
signatures, so conventional approaches are used to manage
these operations. To sum up, the FSM is a powerful tool for
robotics decision-making. There are several ways to describe
robot behaviour, including deliberative, reactive, hybrid, and
behaviour-based control [9]. Fuzzy logic is a useful method
for machine control and provides a high level of accuracy in
reasoning. In the following sections of this paper, we will delve
further into the implementation of fuzzy logic in simulating
aggressive behaviour in animals.

In the deliberative control method, the robot uses its past
experiences and current sensory information to determine the
next steps it should take. This approach is also known as
“Think Then Act.” Decision-making for the robot involves
gathering information about the environment through its sen-
sors and using this information to determine how to act and in-
teract with the environment. The deliberative process includes
reasoning about potential actions and their consequences, as
well as developing a symbolic representation of the world
to anticipate the outcomes of those actions and create plans
for various scenarios. Essentially, the robot uses its internal
processing to carefully consider its options before making a
decision and taking action.

In the reactive control method, sensory inputs and outputs
are tightly coupled, enabling the robot to respond quickly
to changing and unstructured environments. This approach is
known as “Don’t Think, Just Act.” Reactive control operates
on the principle of stimulus-response, requiring neither learn-
ing nor the maintenance of a world model. Instead, it relies
on a set of pre-programmed rules that minimize computational
effort. These rules are mapped to the robot’s controller, using
minimal internal states to create a reactive control system
capable of handling complex and unstructured environments
while delivering fast, real-time responses. Reactive systems
can quickly adapt to rapidly changing environments with
minimal processing power [10].

Hybrid control combines the benefits of both reactive and
deliberative control, allowing the robot to react in real time
while also employing rational and optimal decision-making
[11]. This approach is known as “Simultaneously Think and
Act.” The hybrid control system integrates reactive elements,
such as simultaneous condition-action rules, with deliberative
decision-making, which must be coordinated to produce coher-
ent outcomes. This coordination can be challenging because
the reactive component must respond quickly to the robot’s
immediate needs, such as avoiding obstacles while moving
toward a target using direct sensory data and signals. Mean-
while, the deliberative component uses abstract, symbolic
representations of the environment and operates on a slower
time scale to guide the robot toward more efficient and optimal
goals and trajectories. If an unexpected challenge arises, the
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reactive system may need to override the deliberative system,
but the deliberative system should still inform the reactive
system to ensure the most effective response.

A behaviour-based control system is a type of control sys-
tem for robots that is composed of a collection of distributed
modules known as behaviours [12]. These modules interact
with one another to accomplish a desired action, with the
ultimate goal of achieving a specific objective. The approach
underlying this system is based on the concept of “Think the
Way You Act,” where the robot’s behaviours are developed
through trial-and-error interactions with its environment. These
behaviours are typically defined by the programmer and orga-
nized into control modules that group together constraints to
achieve and maintain a goal. This approach offers a flexible
and adaptable means of controlling robots in complex and
dynamic environments, enabling them to make decisions based
on current conditions and adjust their actions accordingly.
By utilizing behaviours grounded in the robot’s environment
and experience, the behaviour-based control system provides
a more intuitive and effective method for controlling robotic
systems [13]. Each behaviour receives inputs from sensors or
other behaviours and provides outputs to other behaviours or
the robot’s actuators [14].

Implementing animal aggression behaviour in robotics in-
volves creating robotic behaviour models that accurately
mimic the aggression patterns observed in animals. This
includes behaviours associated with Fear, Escape, Attack, and
Immobility states, as well as animals familiarity with other
animals and their surroundings. To achieve this, it is crucial to
study and analyze animal behaviour in various situations and
contexts, such as their familiarity with other animals, prox-
imity to them, and past experiences. This understanding can
then be translated into the design of robotic behaviour models
that reflect similar behavioural patterns. For example, animals
may exhibit a strong fear response when unfamiliar with
another animal, prompting them to escape from the area. These
physiological and behavioural responses can be incorporated
into the design of robotic systems, enabling them to respond
appropriately to perceived threats or dangerous situations.
Similarly, an animals attack behaviour may involve aggressive
posturing, vocalizations, and physical attacks. By observing
and analyzing such behaviours in animals, robotic behaviour
models can be developed to replicate these aggression patterns.
Incorporating animal familiarity with other animals and their
surroundings is also essential in developing effective robotic
behaviour models. This may involve implementing recognition
algorithms that allow robots to identify and respond to specific
animals, as well as integrating mapping and navigation tools
to enable robots to navigate their surroundings and avoid
obstacles.

II. ETHOLOGICAL BEHAVIOURAL MODELS

Ethology, the scientific study of animal behaviour, focuses
on how animals interact with their environment and with each
other [15]. Ethological models, essential for understanding
and predicting animal behaviour, have become foundational

in the development of behaviour-based control systems for
robots. These models are based on the principle that natu-
ral selection shapes behaviour, with those behaviours most
adapted to specific environments more likely to be passed
on to future generations. This approach is crucial in ecology
and animal behaviour studies, where models like predator-prey
interactions help explain the dynamics of species populations
in natural habitats.

In robotics, there is growing interest in leveraging etholog-
ical models to overcome the limitations of traditional robotic
behaviour systems. Ethologists such as Baerends, Tinbergen,
and Lorenz have developed models that describe animal be-
haviour and the processes behind it, which are now being ex-
plored in robotics. This interdisciplinary collaboration enables
roboticists to create more adaptive systems by incorporating
biologically inspired behaviour models. Conversely, robots
offer ethologists a unique platform to test and refine their
behavioural hypotheses.

This synergy between ethology and robotics, as discussed
in [16] and [17], highlights shared concepts such as sensors,
actuators, targets, and navigation, albeit studied differently
in each field. Ethology employs a systematic, scientific ap-
proach to observing and understanding natural behaviours,
while robotics takes a synthetic approach, integrating these
behaviours into robots through artificial sensors and actuators.
Despite their differing methodologies, both fields contribute to
a deeper understanding of behaviour and its applications.

III. FUZZY BEHAVIOUR-BASED SYSTEM

One possible way for implementing ethologically inspired
behavioural models is the adaptation of Fuzzy Behaviour-
based Systems [18]. A Fuzzy Behaviour-based System is a
high-tech computer system that uses fuzzy logic to control
how robots and other agents act in complex, changing settings.
It handles degrees of truth or membership values, allow-
ing for more complex decisions. This adaptability is crucial
for creating adaptive behaviours like those seen in animals.
Different behaviour units control actions, such as avoiding,
aggressive, or exploring, and fuzzy rules join their outputs to
make the system behave logically. The Fuzzy Behaviour-based
System is a structure built upon a network of fuzzy rule-based
systems. Fuzzy rule bases are useful in the research of animal
behaviour, allowing for complex interactions and self-driving
systems to adapt to changing environments [19], [20]. A
fuzzy rule-based system is an expert system where knowledge
representation is in the structure of production fuzzy rules,
such as If [conditions] and Then [actions] statements. For
example, the level of “Fear” in a behaviour model can be
described in terms of IF Then statements. E.g.:

If AFTP=Low And AFTA=Low And ADTA=Low
Then FEAR=High

where antecedent variable AFTP is the Animal Familiarity
Towards Place, AFTA is the Animal Familiarity Towards
Another, and ADTA is the Animal Distance Towards Another
Animal.
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The structure of a Fuzzy Behaviour-based System [21]
consists of main modules, such as the Behaviour Coordination
or Arbitration, the Behaviour Fusion, and the Component
Behaviours themselves. Figure 1 illustrates a possible Fuzzy
Behaviour-based System structure. In the case of the Fuzzy
Behaviour-based System, each of the main components and the
behaviour components is defined as fuzzy rule-based systems
(Fuzzy Logic Controller – FLC on the figure).

Fig. 1. The applied Fuzzy Behaviour-based System. [21]

Behaviour Coordination (Arbitration): This component is
crucial in determining which behaviour should control the
robot’s operation at any given time, selecting tasks based
on the current objectives and external conditions. Behaviour
coordination, often referred to as arbitration, is a technique em-
ployed in autonomous systems design, particularly in robotics,
to resolve conflicts between competing behaviours. In such
systems, multiple behaviours can be active simultaneously,
leading to conflicts when they compete for the same re-
sources or interfere with one another. Behaviour coordination
mechanisms are implemented to resolve these conflicts, en-
suring smooth and efficient system operation by prioritizing
behaviours and allocating resources to ensure successful task
execution.

Various methods for behaviour coordination exist, each
with its advantages and limitations. The one common ap-
proach which is often used is the hierarchical method, where
behaviours are structured in a hierarchy, with higher-level
behaviours taking precedence over lower-level ones. In this
method, if lower-level behaviours conflict with higher-priority
ones, the system will override the lower-level behaviours. In
some instances, multiple behaviours may be activated concur-
rently, as seen in figure 2 fuzzy behaviour coordination. This
approach involves context-dependent blending, a mechanism
that allows for various patterns of behaviour combinations,
such as following a target while avoiding obstacles. Decisions
between behaviours are made based on the current situation

Fig. 2. The architecture of behaviour arbitration. [22]

by applying fuzzy logic [22].
Behaviour fusion refers to the process of combining the

outcomes of behaviour coordination. For example, if a robot
navigating a path encounters an obstacle, the arbitration
mechanism will prioritize the obstacle avoidance behaviour.
However, in some scenarios, behaviour fusion alone may not
suffice to resolve conflicting behaviours. In such cases, a
fuzzy rule-based system can be employed to assess conflicting
conditions and determine which behaviour to prioritize [23].
Fuzzy behaviour fusion has been successfully applied across
various domains, including robotics, autonomous vehicles, and
healthcare [24], [25]. For instance, in autonomous vehicles,
fuzzy behaviour fusion integrates data from multiple sensors,
such as cameras and lidar, to estimate the vehicle’s path and
speed. Generally, fuzzy behaviour fusion is a powerful com-
putational technique that enables the synthesis and integration
of complex information from diverse sources, facilitating more
nuanced and accurate predictions and decision-making.

IV. IMPLEMENTATION GUIDELINES

A behaviour-based system is built upon a series of interact-
ing shared modules, known as behaviours, which collectively
form the desired system-level behaviour. These behaviours are
models of the robot’s operation in specific situations, describ-
ing its interactions with the environment [26]. Social robots
are designed to interact comfortably with humans and adapt
to human social environments. Human-dog interactions can
serve as the basis for behavioural models that create interactive
capabilities for social robots. For example, just as dogs interact
with humans in various situations and environments, social
robots can be programmed to exhibit similar behaviours. A
dog’s behaviour and reactions can be recorded and described
by humans [27], and if humans can comprehend these actions,
they can also infer the corresponding conditions.

Developing Ethologically Inspired Fuzzy behaviour-based
Systems for replicating animal aggressive behaviours in
robotics requires a systematic approach that integrates ethol-
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models of the robot’s operation in specific situations, describ-
ing its interactions with the environment [26]. Social robots
are designed to interact comfortably with humans and adapt
to human social environments. Human-dog interactions can
serve as the basis for behavioural models that create interactive
capabilities for social robots. For example, just as dogs interact
with humans in various situations and environments, social
robots can be programmed to exhibit similar behaviours. A
dog’s behaviour and reactions can be recorded and described
by humans [27], and if humans can comprehend these actions,
they can also infer the corresponding conditions.
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robotics requires a systematic approach that integrates ethol-
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theoretical foundation, with a particular emphasis on Archer’s
ethological model of aggression and fear in vertebrates, the
principles of fuzzy logic, and their application in behaviour-
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logic framework, linking significant behavioural components
to fuzzy rules that effectively manage the imprecise and
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inputs and produces appropriate behavioural outputs. Inte-
grating the Fuzzy behaviour Description Language (FBDL)
facilitates smooth and efficient interaction between the robot’s
control system and its environment. The accuracy of the
model in replicating animal-like aggressive behaviours is visu-
alized using the Robot Operating System (ROS), Gazebo, and
RViz. This research aims to create a durable and adaptable
robotic system capable of accurately imitating and managing
aggressive behaviours by leveraging the complex dynamics
observed in animal environments. Ultimately, the system can
be applied in real-life scenarios to evaluate its effectiveness
and adaptability.

A. Implementing “Aggression”
The goal is to create a fuzzy behaviour-based model of

aggression based on the ethological model described in [28].
This model, developed by Archer in his paper “The Organi-
zation of Aggression and Fear in Vertebrates: Perspectives in
Ethology,” is a control theory-based ethological model, see
figure 3. This model can help to provide insight into the
underlying motivations for aggressive and fear behaviours. It
provides a structured decision-making framework for animal
behaviour, particularly in contexts involving aggression, fear,
and responses to stimuli. The model comprises the following
components:

Expectation Copy: The animal forms an expectation re-
garding the actions of the other animal. This anticipation is
grounded in the animal’s prior experiences with others, its
understanding of animal behaviour, and its present internal
state, such as its level of arousal.

Input: The animal receives sensory input from the other
animal, including details like its size, posture, and movements.

Orientation Response: Upon receiving sensory input, the
animal repositions towards the other animal and evaluates the
situation.

Discrepancy: The animal compares the input it receives with
its expectation. If an inconsistency arises between the two, the
animal experiences heightened stimulation and may transition
into a fight-or-flee state.

Decision Process 1 - Fear or Attack?: The animal weighs
the options of responding with fear or launching an attack.
This decision is influenced by several factors, such as the size
of the discrepancy, the animal’s hormone levels, past fighting
experiences, and current internal state.

Attack: If the animal chooses to attack, it will initiate
aggressive behaviour.

Environmental Consequences of Behaviour: The animal’s
actions will result in environmental outcomes. For instance, if
the animal launches an attack on another, the other may flee.

Decision Process 2 - Escape or Immobility?: If the animal
decides not to attack during Decision Process 1, it must decide
whether to escape or immobility. This determination considers
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factors like the animal’s hormonal state, the location of the
other animal, and the animal’s perceived ability to flee.

Escape: If the animal decides to escape, it will try to get
away from the other animal.

Sensory Input No Longer Impinges on the Animal: If the
animal chooses to escape, then the sensory input from the
other animal no longer affects the animal’s senses.

If Escape is Blocked: If no escaping path exists, it will
become aggressive and decide to attack.

Immobility: When the animal chooses not to attack and
escape, it enters a state of immobility, which subsequently
leads to the Sensory Input Switched Off:

Sensory Input Switched Off: The animal disengages from
reacting to the sensory input provided by the other creature.
In short, it means animals will not do anything at all.

The Archer Control Theory model provides a framework
for understanding how systems function and how they can be
controlled to achieve specific goals. According to this model,
animals regulate their behaviour in response to various internal
and external influences within the context of motivation. A
simplified version of the control theory model of aggression
and fear in vertebrates suggests that these behaviours are
governed by two conflicting control systems: the aggression
system and the fear/anxiety system. These two systems are
thought to be in dynamic equilibrium, with the balance be-
tween them determining an animal’s behavioural response.
This model indicates that a complex interplay between internal
and external factors influences these behaviours. The balance
between the aggression and fear/anxiety systems can shift
depending on the animal’s current needs and environment.

Animal aggression is complex, involving elements such
as Attack, Escape, and Immobility. FSMs offer a powerful
method for simulating this behaviour because they can model
the ambiguity and imprecision inherent in animal behaviour.
Implementing animal aggression using a fuzzy state system
requires several stages. First, we must define the animal states.
In this context, the states can be categorized as Attack, Escape,
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leading to conflicts when they compete for the same re-
sources or interfere with one another. Behaviour coordination
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behaviours and allocating resources to ensure successful task
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Various methods for behaviour coordination exist, each
with its advantages and limitations. The one common ap-
proach which is often used is the hierarchical method, where
behaviours are structured in a hierarchy, with higher-level
behaviours taking precedence over lower-level ones. In this
method, if lower-level behaviours conflict with higher-priority
ones, the system will override the lower-level behaviours. In
some instances, multiple behaviours may be activated concur-
rently, as seen in figure 2 fuzzy behaviour coordination. This
approach involves context-dependent blending, a mechanism
that allows for various patterns of behaviour combinations,
such as following a target while avoiding obstacles. Decisions
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capabilities for social robots. For example, just as dogs interact
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capabilities for social robots. For example, just as dogs interact
with humans in various situations and environments, social
robots can be programmed to exhibit similar behaviours. A
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by humans [27], and if humans can comprehend these actions,
they can also infer the corresponding conditions.
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robotics requires a systematic approach that integrates ethol-
ogy, fuzzy logic, and robotics knowledge. Initially, we con-
duct a comprehensive literature review to establish a robust
theoretical foundation, with a particular emphasis on Archer’s
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logic framework, linking significant behavioural components
to fuzzy rules that effectively manage the imprecise and
variable nature of aggression. The development phase involves
constructing a fuzzy inference system that processes sensory
inputs and produces appropriate behavioural outputs. Inte-
grating the Fuzzy behaviour Description Language (FBDL)
facilitates smooth and efficient interaction between the robot’s
control system and its environment. The accuracy of the
model in replicating animal-like aggressive behaviours is visu-
alized using the Robot Operating System (ROS), Gazebo, and
RViz. This research aims to create a durable and adaptable
robotic system capable of accurately imitating and managing
aggressive behaviours by leveraging the complex dynamics
observed in animal environments. Ultimately, the system can
be applied in real-life scenarios to evaluate its effectiveness
and adaptability.

A. Implementing “Aggression”
The goal is to create a fuzzy behaviour-based model of

aggression based on the ethological model described in [28].
This model, developed by Archer in his paper “The Organi-
zation of Aggression and Fear in Vertebrates: Perspectives in
Ethology,” is a control theory-based ethological model, see
figure 3. This model can help to provide insight into the
underlying motivations for aggressive and fear behaviours. It
provides a structured decision-making framework for animal
behaviour, particularly in contexts involving aggression, fear,
and responses to stimuli. The model comprises the following
components:

Expectation Copy: The animal forms an expectation re-
garding the actions of the other animal. This anticipation is
grounded in the animal’s prior experiences with others, its
understanding of animal behaviour, and its present internal
state, such as its level of arousal.

Input: The animal receives sensory input from the other
animal, including details like its size, posture, and movements.

Orientation Response: Upon receiving sensory input, the
animal repositions towards the other animal and evaluates the
situation.

Discrepancy: The animal compares the input it receives with
its expectation. If an inconsistency arises between the two, the
animal experiences heightened stimulation and may transition
into a fight-or-flee state.

Decision Process 1 - Fear or Attack?: The animal weighs
the options of responding with fear or launching an attack.
This decision is influenced by several factors, such as the size
of the discrepancy, the animal’s hormone levels, past fighting
experiences, and current internal state.

Attack: If the animal chooses to attack, it will initiate
aggressive behaviour.

Environmental Consequences of Behaviour: The animal’s
actions will result in environmental outcomes. For instance, if
the animal launches an attack on another, the other may flee.

Decision Process 2 - Escape or Immobility?: If the animal
decides not to attack during Decision Process 1, it must decide
whether to escape or immobility. This determination considers

Fig. 3. Archer organization model [28].

factors like the animal’s hormonal state, the location of the
other animal, and the animal’s perceived ability to flee.

Escape: If the animal decides to escape, it will try to get
away from the other animal.

Sensory Input No Longer Impinges on the Animal: If the
animal chooses to escape, then the sensory input from the
other animal no longer affects the animal’s senses.

If Escape is Blocked: If no escaping path exists, it will
become aggressive and decide to attack.

Immobility: When the animal chooses not to attack and
escape, it enters a state of immobility, which subsequently
leads to the Sensory Input Switched Off:

Sensory Input Switched Off: The animal disengages from
reacting to the sensory input provided by the other creature.
In short, it means animals will not do anything at all.

The Archer Control Theory model provides a framework
for understanding how systems function and how they can be
controlled to achieve specific goals. According to this model,
animals regulate their behaviour in response to various internal
and external influences within the context of motivation. A
simplified version of the control theory model of aggression
and fear in vertebrates suggests that these behaviours are
governed by two conflicting control systems: the aggression
system and the fear/anxiety system. These two systems are
thought to be in dynamic equilibrium, with the balance be-
tween them determining an animal’s behavioural response.
This model indicates that a complex interplay between internal
and external factors influences these behaviours. The balance
between the aggression and fear/anxiety systems can shift
depending on the animal’s current needs and environment.

Animal aggression is complex, involving elements such
as Attack, Escape, and Immobility. FSMs offer a powerful
method for simulating this behaviour because they can model
the ambiguity and imprecision inherent in animal behaviour.
Implementing animal aggression using a fuzzy state system
requires several stages. First, we must define the animal states.
In this context, the states can be categorized as Attack, Escape,
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factors like the animal’s hormonal state, the location of the
other animal, and the animal’s perceived ability to flee.

Escape: If the animal decides to escape, it will try to get
away from the other animal.

Sensory Input No Longer Impinges on the Animal: If the
animal chooses to escape, then the sensory input from the
other animal no longer affects the animal’s senses.

If Escape is Blocked: If no escaping path exists, it will
become aggressive and decide to attack.

Immobility: When the animal chooses not to attack and
escape, it enters a state of immobility, which subsequently
leads to the Sensory Input Switched Off:

Sensory Input Switched Off: The animal disengages from
reacting to the sensory input provided by the other creature.
In short, it means animals will not do anything at all.

The Archer Control Theory model provides a framework
for understanding how systems function and how they can be
controlled to achieve specific goals. According to this model,
animals regulate their behaviour in response to various internal
and external influences within the context of motivation. A
simplified version of the control theory model of aggression
and fear in vertebrates suggests that these behaviours are
governed by two conflicting control systems: the aggression
system and the fear/anxiety system. These two systems are
thought to be in dynamic equilibrium, with the balance be-
tween them determining an animal’s behavioural response.
This model indicates that a complex interplay between internal
and external factors influences these behaviours. The balance
between the aggression and fear/anxiety systems can shift
depending on the animal’s current needs and environment.

Animal aggression is complex, involving elements such
as Attack, Escape, and Immobility. FSMs offer a powerful
method for simulating this behaviour because they can model
the ambiguity and imprecision inherent in animal behaviour.
Implementing animal aggression using a fuzzy state system
requires several stages. First, we must define the animal states.
In this context, the states can be categorized as Attack, Escape,

logic framework, linking significant behavioural components
to fuzzy rules that effectively manage the imprecise and
variable nature of aggression. The development phase involves
constructing a fuzzy inference system that processes sensory
inputs and produces appropriate behavioural outputs. Inte-
grating the Fuzzy behaviour Description Language (FBDL)
facilitates smooth and efficient interaction between the robot’s
control system and its environment. The accuracy of the
model in replicating animal-like aggressive behaviours is visu-
alized using the Robot Operating System (ROS), Gazebo, and
RViz. This research aims to create a durable and adaptable
robotic system capable of accurately imitating and managing
aggressive behaviours by leveraging the complex dynamics
observed in animal environments. Ultimately, the system can
be applied in real-life scenarios to evaluate its effectiveness
and adaptability.

A. Implementing “Aggression”
The goal is to create a fuzzy behaviour-based model of

aggression based on the ethological model described in [28].
This model, developed by Archer in his paper “The Organi-
zation of Aggression and Fear in Vertebrates: Perspectives in
Ethology,” is a control theory-based ethological model, see
figure 3. This model can help to provide insight into the
underlying motivations for aggressive and fear behaviours. It
provides a structured decision-making framework for animal
behaviour, particularly in contexts involving aggression, fear,
and responses to stimuli. The model comprises the following
components:

Expectation Copy: The animal forms an expectation re-
garding the actions of the other animal. This anticipation is
grounded in the animal’s prior experiences with others, its
understanding of animal behaviour, and its present internal
state, such as its level of arousal.

Input: The animal receives sensory input from the other
animal, including details like its size, posture, and movements.

Orientation Response: Upon receiving sensory input, the
animal repositions towards the other animal and evaluates the
situation.

Discrepancy: The animal compares the input it receives with
its expectation. If an inconsistency arises between the two, the
animal experiences heightened stimulation and may transition
into a fight-or-flee state.

Decision Process 1 - Fear or Attack?: The animal weighs
the options of responding with fear or launching an attack.
This decision is influenced by several factors, such as the size
of the discrepancy, the animal’s hormone levels, past fighting
experiences, and current internal state.

Attack: If the animal chooses to attack, it will initiate
aggressive behaviour.

Environmental Consequences of Behaviour: The animal’s
actions will result in environmental outcomes. For instance, if
the animal launches an attack on another, the other may flee.

Decision Process 2 - Escape or Immobility?: If the animal
decides not to attack during Decision Process 1, it must decide
whether to escape or immobility. This determination considers
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factors like the animal’s hormonal state, the location of the
other animal, and the animal’s perceived ability to flee.

Escape: If the animal decides to escape, it will try to get
away from the other animal.

Sensory Input No Longer Impinges on the Animal: If the
animal chooses to escape, then the sensory input from the
other animal no longer affects the animal’s senses.

If Escape is Blocked: If no escaping path exists, it will
become aggressive and decide to attack.

Immobility: When the animal chooses not to attack and
escape, it enters a state of immobility, which subsequently
leads to the Sensory Input Switched Off:

Sensory Input Switched Off: The animal disengages from
reacting to the sensory input provided by the other creature.
In short, it means animals will not do anything at all.

The Archer Control Theory model provides a framework
for understanding how systems function and how they can be
controlled to achieve specific goals. According to this model,
animals regulate their behaviour in response to various internal
and external influences within the context of motivation. A
simplified version of the control theory model of aggression
and fear in vertebrates suggests that these behaviours are
governed by two conflicting control systems: the aggression
system and the fear/anxiety system. These two systems are
thought to be in dynamic equilibrium, with the balance be-
tween them determining an animal’s behavioural response.
This model indicates that a complex interplay between internal
and external factors influences these behaviours. The balance
between the aggression and fear/anxiety systems can shift
depending on the animal’s current needs and environment.

Animal aggression is complex, involving elements such
as Attack, Escape, and Immobility. FSMs offer a powerful
method for simulating this behaviour because they can model
the ambiguity and imprecision inherent in animal behaviour.
Implementing animal aggression using a fuzzy state system
requires several stages. First, we must define the animal states.
In this context, the states can be categorized as Attack, Escape,
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to fuzzy rules that effectively manage the imprecise and
variable nature of aggression. The development phase involves
constructing a fuzzy inference system that processes sensory
inputs and produces appropriate behavioural outputs. Inte-
grating the Fuzzy behaviour Description Language (FBDL)
facilitates smooth and efficient interaction between the robot’s
control system and its environment. The accuracy of the
model in replicating animal-like aggressive behaviours is visu-
alized using the Robot Operating System (ROS), Gazebo, and
RViz. This research aims to create a durable and adaptable
robotic system capable of accurately imitating and managing
aggressive behaviours by leveraging the complex dynamics
observed in animal environments. Ultimately, the system can
be applied in real-life scenarios to evaluate its effectiveness
and adaptability.

A. Implementing “Aggression”
The goal is to create a fuzzy behaviour-based model of

aggression based on the ethological model described in [28].
This model, developed by Archer in his paper “The Organi-
zation of Aggression and Fear in Vertebrates: Perspectives in
Ethology,” is a control theory-based ethological model, see
figure 3. This model can help to provide insight into the
underlying motivations for aggressive and fear behaviours. It
provides a structured decision-making framework for animal
behaviour, particularly in contexts involving aggression, fear,
and responses to stimuli. The model comprises the following
components:

Expectation Copy: The animal forms an expectation re-
garding the actions of the other animal. This anticipation is
grounded in the animal’s prior experiences with others, its
understanding of animal behaviour, and its present internal
state, such as its level of arousal.

Input: The animal receives sensory input from the other
animal, including details like its size, posture, and movements.

Orientation Response: Upon receiving sensory input, the
animal repositions towards the other animal and evaluates the
situation.

Discrepancy: The animal compares the input it receives with
its expectation. If an inconsistency arises between the two, the
animal experiences heightened stimulation and may transition
into a fight-or-flee state.

Decision Process 1 - Fear or Attack?: The animal weighs
the options of responding with fear or launching an attack.
This decision is influenced by several factors, such as the size
of the discrepancy, the animal’s hormone levels, past fighting
experiences, and current internal state.

Attack: If the animal chooses to attack, it will initiate
aggressive behaviour.

Environmental Consequences of Behaviour: The animal’s
actions will result in environmental outcomes. For instance, if
the animal launches an attack on another, the other may flee.

Decision Process 2 - Escape or Immobility?: If the animal
decides not to attack during Decision Process 1, it must decide
whether to escape or immobility. This determination considers
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factors like the animal’s hormonal state, the location of the
other animal, and the animal’s perceived ability to flee.

Escape: If the animal decides to escape, it will try to get
away from the other animal.

Sensory Input No Longer Impinges on the Animal: If the
animal chooses to escape, then the sensory input from the
other animal no longer affects the animal’s senses.

If Escape is Blocked: If no escaping path exists, it will
become aggressive and decide to attack.

Immobility: When the animal chooses not to attack and
escape, it enters a state of immobility, which subsequently
leads to the Sensory Input Switched Off:

Sensory Input Switched Off: The animal disengages from
reacting to the sensory input provided by the other creature.
In short, it means animals will not do anything at all.

The Archer Control Theory model provides a framework
for understanding how systems function and how they can be
controlled to achieve specific goals. According to this model,
animals regulate their behaviour in response to various internal
and external influences within the context of motivation. A
simplified version of the control theory model of aggression
and fear in vertebrates suggests that these behaviours are
governed by two conflicting control systems: the aggression
system and the fear/anxiety system. These two systems are
thought to be in dynamic equilibrium, with the balance be-
tween them determining an animal’s behavioural response.
This model indicates that a complex interplay between internal
and external factors influences these behaviours. The balance
between the aggression and fear/anxiety systems can shift
depending on the animal’s current needs and environment.

Animal aggression is complex, involving elements such
as Attack, Escape, and Immobility. FSMs offer a powerful
method for simulating this behaviour because they can model
the ambiguity and imprecision inherent in animal behaviour.
Implementing animal aggression using a fuzzy state system
requires several stages. First, we must define the animal states.
In this context, the states can be categorized as Attack, Escape,

and Immobility each representing a different behavioural re-
sponse to a specific stimulus. Next, the inputs to the system
must be defined. These inputs can include various stimuli,
such as the presence of a predator or another animal in the
animal’s vicinity. Fuzzy logic can be employed to express
the uncertainty surrounding certain inputs. For example, the
input ”presence of another animal” could be represented as a
fuzzy set with membership functions like “Low” and “High”
depending on the level of familiarity. After defining the states
and inputs, we can establish the rules that govern how the
states transition over time. These rules can also be represented
using fuzzy logic. For instance, a rule might be stated as
“The transition to Escape is high if the input “familiarity with
another animal is low” and “familiarity with the environment
is low.” The degree of membership for each transition can be
expressed using linguistic terms like “high” and “low.” Finally,
we define the system’s outputs. These outputs correspond to
the behaviours that the animal may exhibit in response to
the stimuli. For example, the output “attack” could be linked
to the aggressive state, if “familiarity with another animal
and with the environment is low.” In summary, implementing
animal aggression behaviour using an FSM involves defining
the states, inputs, rules, and outputs of the system. Fuzzy logic
allows us to capture the ambiguity and imprecision of animal
behaviour, providing a powerful tool for simulating such
behaviours and developing strategies for managing animal
aggression in various situations.

To implement the ethologically inspired behaviour model
described above, we examine aggressive behaviour in animals
with the following aims: First, we must categorize the cir-
cumstances in which aggression occurs. Second, we need to
establish that these circumstances also trigger reactions related
to Fear, Attack, Escape, Immobility, and distress communica-
tion. Third, we propose that these circumstances share specific
characteristics, allowing for the development of a general
theory on the causes of aggressive and fear-related behaviours.
Fourth, we consider additional factors—such as internal physi-
ological and motivational states, past experiences, and external
variables—that may influence the likelihood of aggressive and
fearful behaviours occurring. To conduct this analysis, we will
employ a fuzzy behaviour model inspired by ethology. Before
starting the implementation, we have defined specific terms
below, which can also be expressed as fuzzy rules.

State Variables: The fuzzy “Aggression” behaviour model
has four state variables. Three of them, the “Attack”, “Escape,”
and “Immobility,” have related behaviour components, and
one, the “Fear,” is a hidden state variable (see example in
Fig. 4.).

“Fear”is an animal’s physiological, behavioural, and emo-
tional response to stimuli it comes across. For example, when
an animal is terrified, it will display changes in body posture
and activity. The scared animal may adopt protective body
postures such as lowering the body and head, bringing the
ears closer to the head, widening the eyes, and tucking the tail
beneath the body. In our simplified model, fear has no related
behaviour component, i.e., it is not observable independently

from the environment but affects the other three state variables.
“Attack” refers to a rapid movement addressed at a specific

stimulus that frequently results in physical damage to that
stimulus, such as biting, hitting, pecking, and so on, but ex-
cludes such actions when they are related to food acquisition.

“Escape” any response intended to move away is referred
to as Escape. Animals engage in escape behaviour when an
animal’s life is in danger, which may include rushing away
from a threat in the environment.

“Immobility” is when an animal shows no signs of motion.
This might be generated in a fear-conditioning experiment as
a trained reaction to an aversively conditioned signal, or it
could be elicited in response to unexpected stimuli that would
be linked with a predator.

Observations: Following the “Aggression” ethological
model described in [25], in our simplified fuzzy behaviour
model, the four state variables depend on the following obser-
vations:

“Animal Familiarity Towards Place” (AFTP): This is
defined as the level of familiarity an animal has with the place.
These circumstances might occur when an animal enters a
familiar or unfamiliar environment. Fear behaviour is most
common when an animal enters an unknown environment,
but attacking behaviour can also happen if a suitable target
is attacked.

“Animal Familiarity Towards another Animal” (AFTA):
The level of familiarity of an animal concerning another ani-
mal. These circumstances can occur in familiar or unfamiliar
environments, i.e., when an animal is familiar with a place
and some unknown animal comes close to an animal or enters
another’s familiar area; in this case, the animal shows fear and
can also show attack behaviour.

“Animal Distance Towards another Animal” ADTA):
How far is another animal? In simple terms, we can say the
level of distance towards another animal. These circumstances
can occur in different ways, such as familiar or unfamiliar
with a place and familiar or unfamiliar with another animal,
i.e., when an animal is unfamiliar with a place, another animal
and the distance towards another animal is close in this case,
animal shows high fear and can also show attack behaviour as
well if there is no escape path existing.

“Animal Familiarity Towards Object” (AFTO): The
animal’s familiarity with an object. This situation occurs in
an animal’s familiar and unfamiliar environment, like when
a moving object comes close to an animal or when the
distance between the animal and the object decreases in an
unfamiliar place. Also, when a novel object enters an animal’s
familiar place, these include the conventional territorial issue
and a wide range of other scenarios such as fear, Attack, and
escape behaviours. This observation (and also ADTO) serves
as a robotic extension of the original model by Archer by
considering that the appearance of a non-living object cause
territorial issues for robots (i.e., non-living objects).

“Animal Distance Towards Object” (ADTO): The level
of distance from an animal towards the object. This situation
occurs in animal familiarity and unfamiliarity with the place



Implementation Guidelines for Ethologically  
Inspired Fuzzy Behaviour-Based Systems

SEPTEMBER 2024 • VOLUME XVI • NUMBER 348

INFOCOMMUNICATIONS JOURNAL

and Immobility each representing a different behavioural re-
sponse to a specific stimulus. Next, the inputs to the system
must be defined. These inputs can include various stimuli,
such as the presence of a predator or another animal in the
animal’s vicinity. Fuzzy logic can be employed to express
the uncertainty surrounding certain inputs. For example, the
input ”presence of another animal” could be represented as a
fuzzy set with membership functions like “Low” and “High”
depending on the level of familiarity. After defining the states
and inputs, we can establish the rules that govern how the
states transition over time. These rules can also be represented
using fuzzy logic. For instance, a rule might be stated as
“The transition to Escape is high if the input “familiarity with
another animal is low” and “familiarity with the environment
is low.” The degree of membership for each transition can be
expressed using linguistic terms like “high” and “low.” Finally,
we define the system’s outputs. These outputs correspond to
the behaviours that the animal may exhibit in response to
the stimuli. For example, the output “attack” could be linked
to the aggressive state, if “familiarity with another animal
and with the environment is low.” In summary, implementing
animal aggression behaviour using an FSM involves defining
the states, inputs, rules, and outputs of the system. Fuzzy logic
allows us to capture the ambiguity and imprecision of animal
behaviour, providing a powerful tool for simulating such
behaviours and developing strategies for managing animal
aggression in various situations.

To implement the ethologically inspired behaviour model
described above, we examine aggressive behaviour in animals
with the following aims: First, we must categorize the cir-
cumstances in which aggression occurs. Second, we need to
establish that these circumstances also trigger reactions related
to Fear, Attack, Escape, Immobility, and distress communica-
tion. Third, we propose that these circumstances share specific
characteristics, allowing for the development of a general
theory on the causes of aggressive and fear-related behaviours.
Fourth, we consider additional factors—such as internal physi-
ological and motivational states, past experiences, and external
variables—that may influence the likelihood of aggressive and
fearful behaviours occurring. To conduct this analysis, we will
employ a fuzzy behaviour model inspired by ethology. Before
starting the implementation, we have defined specific terms
below, which can also be expressed as fuzzy rules.

State Variables: The fuzzy “Aggression” behaviour model
has four state variables. Three of them, the “Attack”, “Escape,”
and “Immobility,” have related behaviour components, and
one, the “Fear,” is a hidden state variable (see example in
Fig. 4.).

“Fear”is an animal’s physiological, behavioural, and emo-
tional response to stimuli it comes across. For example, when
an animal is terrified, it will display changes in body posture
and activity. The scared animal may adopt protective body
postures such as lowering the body and head, bringing the
ears closer to the head, widening the eyes, and tucking the tail
beneath the body. In our simplified model, fear has no related
behaviour component, i.e., it is not observable independently

from the environment but affects the other three state variables.
“Attack” refers to a rapid movement addressed at a specific

stimulus that frequently results in physical damage to that
stimulus, such as biting, hitting, pecking, and so on, but ex-
cludes such actions when they are related to food acquisition.

“Escape” any response intended to move away is referred
to as Escape. Animals engage in escape behaviour when an
animal’s life is in danger, which may include rushing away
from a threat in the environment.

“Immobility” is when an animal shows no signs of motion.
This might be generated in a fear-conditioning experiment as
a trained reaction to an aversively conditioned signal, or it
could be elicited in response to unexpected stimuli that would
be linked with a predator.

Observations: Following the “Aggression” ethological
model described in [25], in our simplified fuzzy behaviour
model, the four state variables depend on the following obser-
vations:

“Animal Familiarity Towards Place” (AFTP): This is
defined as the level of familiarity an animal has with the place.
These circumstances might occur when an animal enters a
familiar or unfamiliar environment. Fear behaviour is most
common when an animal enters an unknown environment,
but attacking behaviour can also happen if a suitable target
is attacked.

“Animal Familiarity Towards another Animal” (AFTA):
The level of familiarity of an animal concerning another ani-
mal. These circumstances can occur in familiar or unfamiliar
environments, i.e., when an animal is familiar with a place
and some unknown animal comes close to an animal or enters
another’s familiar area; in this case, the animal shows fear and
can also show attack behaviour.

“Animal Distance Towards another Animal” ADTA):
How far is another animal? In simple terms, we can say the
level of distance towards another animal. These circumstances
can occur in different ways, such as familiar or unfamiliar
with a place and familiar or unfamiliar with another animal,
i.e., when an animal is unfamiliar with a place, another animal
and the distance towards another animal is close in this case,
animal shows high fear and can also show attack behaviour as
well if there is no escape path existing.

“Animal Familiarity Towards Object” (AFTO): The
animal’s familiarity with an object. This situation occurs in
an animal’s familiar and unfamiliar environment, like when
a moving object comes close to an animal or when the
distance between the animal and the object decreases in an
unfamiliar place. Also, when a novel object enters an animal’s
familiar place, these include the conventional territorial issue
and a wide range of other scenarios such as fear, Attack, and
escape behaviours. This observation (and also ADTO) serves
as a robotic extension of the original model by Archer by
considering that the appearance of a non-living object cause
territorial issues for robots (i.e., non-living objects).

“Animal Distance Towards Object” (ADTO): The level
of distance from an animal towards the object. This situation
occurs in animal familiarity and unfamiliarity with the place

and Immobility each representing a different behavioural re-
sponse to a specific stimulus. Next, the inputs to the system
must be defined. These inputs can include various stimuli,
such as the presence of a predator or another animal in the
animal’s vicinity. Fuzzy logic can be employed to express
the uncertainty surrounding certain inputs. For example, the
input ”presence of another animal” could be represented as a
fuzzy set with membership functions like “Low” and “High”
depending on the level of familiarity. After defining the states
and inputs, we can establish the rules that govern how the
states transition over time. These rules can also be represented
using fuzzy logic. For instance, a rule might be stated as
“The transition to Escape is high if the input “familiarity with
another animal is low” and “familiarity with the environment
is low.” The degree of membership for each transition can be
expressed using linguistic terms like “high” and “low.” Finally,
we define the system’s outputs. These outputs correspond to
the behaviours that the animal may exhibit in response to
the stimuli. For example, the output “attack” could be linked
to the aggressive state, if “familiarity with another animal
and with the environment is low.” In summary, implementing
animal aggression behaviour using an FSM involves defining
the states, inputs, rules, and outputs of the system. Fuzzy logic
allows us to capture the ambiguity and imprecision of animal
behaviour, providing a powerful tool for simulating such
behaviours and developing strategies for managing animal
aggression in various situations.

To implement the ethologically inspired behaviour model
described above, we examine aggressive behaviour in animals
with the following aims: First, we must categorize the cir-
cumstances in which aggression occurs. Second, we need to
establish that these circumstances also trigger reactions related
to Fear, Attack, Escape, Immobility, and distress communica-
tion. Third, we propose that these circumstances share specific
characteristics, allowing for the development of a general
theory on the causes of aggressive and fear-related behaviours.
Fourth, we consider additional factors—such as internal physi-
ological and motivational states, past experiences, and external
variables—that may influence the likelihood of aggressive and
fearful behaviours occurring. To conduct this analysis, we will
employ a fuzzy behaviour model inspired by ethology. Before
starting the implementation, we have defined specific terms
below, which can also be expressed as fuzzy rules.

State Variables: The fuzzy “Aggression” behaviour model
has four state variables. Three of them, the “Attack”, “Escape,”
and “Immobility,” have related behaviour components, and
one, the “Fear,” is a hidden state variable (see example in
Fig. 4.).

“Fear”is an animal’s physiological, behavioural, and emo-
tional response to stimuli it comes across. For example, when
an animal is terrified, it will display changes in body posture
and activity. The scared animal may adopt protective body
postures such as lowering the body and head, bringing the
ears closer to the head, widening the eyes, and tucking the tail
beneath the body. In our simplified model, fear has no related
behaviour component, i.e., it is not observable independently

from the environment but affects the other three state variables.
“Attack” refers to a rapid movement addressed at a specific

stimulus that frequently results in physical damage to that
stimulus, such as biting, hitting, pecking, and so on, but ex-
cludes such actions when they are related to food acquisition.

“Escape” any response intended to move away is referred
to as Escape. Animals engage in escape behaviour when an
animal’s life is in danger, which may include rushing away
from a threat in the environment.

“Immobility” is when an animal shows no signs of motion.
This might be generated in a fear-conditioning experiment as
a trained reaction to an aversively conditioned signal, or it
could be elicited in response to unexpected stimuli that would
be linked with a predator.

Observations: Following the “Aggression” ethological
model described in [25], in our simplified fuzzy behaviour
model, the four state variables depend on the following obser-
vations:

“Animal Familiarity Towards Place” (AFTP): This is
defined as the level of familiarity an animal has with the place.
These circumstances might occur when an animal enters a
familiar or unfamiliar environment. Fear behaviour is most
common when an animal enters an unknown environment,
but attacking behaviour can also happen if a suitable target
is attacked.

“Animal Familiarity Towards another Animal” (AFTA):
The level of familiarity of an animal concerning another ani-
mal. These circumstances can occur in familiar or unfamiliar
environments, i.e., when an animal is familiar with a place
and some unknown animal comes close to an animal or enters
another’s familiar area; in this case, the animal shows fear and
can also show attack behaviour.

“Animal Distance Towards another Animal” ADTA):
How far is another animal? In simple terms, we can say the
level of distance towards another animal. These circumstances
can occur in different ways, such as familiar or unfamiliar
with a place and familiar or unfamiliar with another animal,
i.e., when an animal is unfamiliar with a place, another animal
and the distance towards another animal is close in this case,
animal shows high fear and can also show attack behaviour as
well if there is no escape path existing.

“Animal Familiarity Towards Object” (AFTO): The
animal’s familiarity with an object. This situation occurs in
an animal’s familiar and unfamiliar environment, like when
a moving object comes close to an animal or when the
distance between the animal and the object decreases in an
unfamiliar place. Also, when a novel object enters an animal’s
familiar place, these include the conventional territorial issue
and a wide range of other scenarios such as fear, Attack, and
escape behaviours. This observation (and also ADTO) serves
as a robotic extension of the original model by Archer by
considering that the appearance of a non-living object cause
territorial issues for robots (i.e., non-living objects).

“Animal Distance Towards Object” (ADTO): The level
of distance from an animal towards the object. This situation
occurs in animal familiarity and unfamiliarity with the place

and Immobility each representing a different behavioural re-
sponse to a specific stimulus. Next, the inputs to the system
must be defined. These inputs can include various stimuli,
such as the presence of a predator or another animal in the
animal’s vicinity. Fuzzy logic can be employed to express
the uncertainty surrounding certain inputs. For example, the
input ”presence of another animal” could be represented as a
fuzzy set with membership functions like “Low” and “High”
depending on the level of familiarity. After defining the states
and inputs, we can establish the rules that govern how the
states transition over time. These rules can also be represented
using fuzzy logic. For instance, a rule might be stated as
“The transition to Escape is high if the input “familiarity with
another animal is low” and “familiarity with the environment
is low.” The degree of membership for each transition can be
expressed using linguistic terms like “high” and “low.” Finally,
we define the system’s outputs. These outputs correspond to
the behaviours that the animal may exhibit in response to
the stimuli. For example, the output “attack” could be linked
to the aggressive state, if “familiarity with another animal
and with the environment is low.” In summary, implementing
animal aggression behaviour using an FSM involves defining
the states, inputs, rules, and outputs of the system. Fuzzy logic
allows us to capture the ambiguity and imprecision of animal
behaviour, providing a powerful tool for simulating such
behaviours and developing strategies for managing animal
aggression in various situations.

To implement the ethologically inspired behaviour model
described above, we examine aggressive behaviour in animals
with the following aims: First, we must categorize the cir-
cumstances in which aggression occurs. Second, we need to
establish that these circumstances also trigger reactions related
to Fear, Attack, Escape, Immobility, and distress communica-
tion. Third, we propose that these circumstances share specific
characteristics, allowing for the development of a general
theory on the causes of aggressive and fear-related behaviours.
Fourth, we consider additional factors—such as internal physi-
ological and motivational states, past experiences, and external
variables—that may influence the likelihood of aggressive and
fearful behaviours occurring. To conduct this analysis, we will
employ a fuzzy behaviour model inspired by ethology. Before
starting the implementation, we have defined specific terms
below, which can also be expressed as fuzzy rules.

State Variables: The fuzzy “Aggression” behaviour model
has four state variables. Three of them, the “Attack”, “Escape,”
and “Immobility,” have related behaviour components, and
one, the “Fear,” is a hidden state variable (see example in
Fig. 4.).

“Fear”is an animal’s physiological, behavioural, and emo-
tional response to stimuli it comes across. For example, when
an animal is terrified, it will display changes in body posture
and activity. The scared animal may adopt protective body
postures such as lowering the body and head, bringing the
ears closer to the head, widening the eyes, and tucking the tail
beneath the body. In our simplified model, fear has no related
behaviour component, i.e., it is not observable independently
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stimulus that frequently results in physical damage to that
stimulus, such as biting, hitting, pecking, and so on, but ex-
cludes such actions when they are related to food acquisition.

“Escape” any response intended to move away is referred
to as Escape. Animals engage in escape behaviour when an
animal’s life is in danger, which may include rushing away
from a threat in the environment.

“Immobility” is when an animal shows no signs of motion.
This might be generated in a fear-conditioning experiment as
a trained reaction to an aversively conditioned signal, or it
could be elicited in response to unexpected stimuli that would
be linked with a predator.

Observations: Following the “Aggression” ethological
model described in [25], in our simplified fuzzy behaviour
model, the four state variables depend on the following obser-
vations:

“Animal Familiarity Towards Place” (AFTP): This is
defined as the level of familiarity an animal has with the place.
These circumstances might occur when an animal enters a
familiar or unfamiliar environment. Fear behaviour is most
common when an animal enters an unknown environment,
but attacking behaviour can also happen if a suitable target
is attacked.

“Animal Familiarity Towards another Animal” (AFTA):
The level of familiarity of an animal concerning another ani-
mal. These circumstances can occur in familiar or unfamiliar
environments, i.e., when an animal is familiar with a place
and some unknown animal comes close to an animal or enters
another’s familiar area; in this case, the animal shows fear and
can also show attack behaviour.

“Animal Distance Towards another Animal” ADTA):
How far is another animal? In simple terms, we can say the
level of distance towards another animal. These circumstances
can occur in different ways, such as familiar or unfamiliar
with a place and familiar or unfamiliar with another animal,
i.e., when an animal is unfamiliar with a place, another animal
and the distance towards another animal is close in this case,
animal shows high fear and can also show attack behaviour as
well if there is no escape path existing.

“Animal Familiarity Towards Object” (AFTO): The
animal’s familiarity with an object. This situation occurs in
an animal’s familiar and unfamiliar environment, like when
a moving object comes close to an animal or when the
distance between the animal and the object decreases in an
unfamiliar place. Also, when a novel object enters an animal’s
familiar place, these include the conventional territorial issue
and a wide range of other scenarios such as fear, Attack, and
escape behaviours. This observation (and also ADTO) serves
as a robotic extension of the original model by Archer by
considering that the appearance of a non-living object cause
territorial issues for robots (i.e., non-living objects).

“Animal Distance Towards Object” (ADTO): The level
of distance from an animal towards the object. This situation
occurs in animal familiarity and unfamiliarity with the place

and towards the object, such as when an unfamiliar moving
object comes close to an animal, and the animal is unfamiliar
with the place; in this case, various scenarios occur, such as
fear, Attack, and escape behaviours.

“Escape Path Exists” (EPE): The level of a possible
escaping path for the animal. This situation occurs when an-
other animal or moving object approaches, and if the animal’s
escaping path is not blocked, then the animal’s only option
is to escape from that environment. When the possibility of
Escape is blocked, the attack behaviour is mostly to occur,
even if the animal shows broad signs of fear behaviour such
as painful, stressful, or threatening stimuli.

“Positive Impact With respect to Previous Experience”
(PIWPE): The degree of positivity and negativity associated
with past experiences. In other words, it is the past positive
and negative feelings of the animal that relate to the previous
attacks. In this situation, the animal remembers his last feed-
back. Previous interactions are crucial in determining how an
animal would react to a problem that could trigger attack or
fear behaviour.

B. The fuzzy model for the “Aggression” behaviour
For implementing the fuzzy behaviour model of the “Ag-

gression” behaviour, the Fuzzy Behaviour Description Lan-
guage (FBDL) [29] was applied. The FBDL follows the
concepts of fuzzy rule-based systems, Fuzzy Rule Interpola-
tion (FRI), and their relationships to build behaviour com-
ponents and behaviour coordination. The rule-based design
makes knowledge representations comprehensible and self-
explanatory for humans. The fuzziness and related Linguistic
Term fuzzy set notion also improve human comprehension
when variables are described on continuous universes. Having
the FBDL description of the fuzzy behaviour model, the model
can be directly evaluated numerically. The FBDL code can
be performed directly on a system or, with some additional
measurement data, can be used as an object for machine
learning parameter optimization algorithms.

The FBDL defines the universes of the input and state
variables, their linguistic terms (fuzzy sets applied in the fuzzy
rule-bases), and the fuzzy rule-bases.

If we have an observation, e.g., the level of the “Animal
Familiarity to the Place,” which is an input universe having
two linguistic terms Low and High then giving a symbol name
AFTP, the FBDL definition has the following form:

universe: AFTP
description: The Animal’s Level of Familiarity with
the Place.
Low 0 0
High 1 1
end

A fuzzy rule in a rule-base determining, e.g., the level of
the “Fear” hidden state-variable in the function of the level of
the animal familiarity to the place, to the other animal, and
the approaching object, could be the following in fuzzy rule
format:

If AFTP=High And AFTA=High And AFTO=High
Then FEAR=Low

where as AFTP is Animal Familiarity to the Place, AFTA
is Animal Familiarity Towards Another, and AFTO is Animal
Familiarity Towards Object are antecedent variables.

The same rule in FBDL format:
Rule Low When “AFTP” is High And “AFTA” is
High And “AFTO” is High end

The fuzzy model of the “Aggression” behaviour in FBDL
format. The FBDL definition of the AFTP, AFTA, AFTO,
ADTA, ADTO, PIWPE, EPE input and the FEAR, ATTACK,
ESCAPE, IMMOBILITY state variable universes are similar
(see e.g. AFTP and FEAR):

universe: AFTP
Low 0 0
High 1 1
end
universe: FEAR
Low 0 0
High 1 1
end

The FBDL definition of the state rule-bases is described
below one by one. It is represented based on different scenarios
such as (a) animal familiarity with a place, object, and another
animal, (b) a moving object or animal approaching an animal
too closely (individual distance intrusion), (c) a new object or
animal enters another’s familiar territory: this can encompass
the usual territorial issue and various scenarios, (d) entering
an unfamiliar environment: fear typically occurs, (e) a familiar
object in a strange setting, (f) degree of positiveness associated
with the previous Attack.

In fuzzy rule-base format, the FEAR Fuzzy Rule-base
(RFEAR) is the following:

If AFTP=Low And AFTA=Low And AFTO=Low Then
FEAR=High
If AFTA=Low And ADTA=Low And EPE=Low Then
FEAR=High
If AFTO=Low And ADTO=Low And EPE=Low Then
FEAR=High
If AFTP=Low And EPE=Low And PIWPE=Low Then
FEAR=High
If AFTP=High And AFTA=High And AFTO=High
Then FEAR=Low
If AFTA=High And ADTA=High And EPE=High Then
FEAR=Low
If AFTP=High And AFTA=High And EPE=High And
PIWPE=High Then FEAR=Low

where AFTP, AFTA, ADTA, AFTO, ADTO, EPE, PIWPE
are the antecedent universes, FEAR is the consequent universe,
Low and High are fuzzy linguistic terms in the corresponding
universes.

The same FEAR rule-base in FBDL format appears as:
RuleBase “FEAR”
Rule High When “AFTP” is Low And “AFTA” is Low
And “AFTO” is Low end
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and towards the object, such as when an unfamiliar moving
object comes close to an animal, and the animal is unfamiliar
with the place; in this case, various scenarios occur, such as
fear, Attack, and escape behaviours.

“Escape Path Exists” (EPE): The level of a possible
escaping path for the animal. This situation occurs when an-
other animal or moving object approaches, and if the animal’s
escaping path is not blocked, then the animal’s only option
is to escape from that environment. When the possibility of
Escape is blocked, the attack behaviour is mostly to occur,
even if the animal shows broad signs of fear behaviour such
as painful, stressful, or threatening stimuli.

“Positive Impact With respect to Previous Experience”
(PIWPE): The degree of positivity and negativity associated
with past experiences. In other words, it is the past positive
and negative feelings of the animal that relate to the previous
attacks. In this situation, the animal remembers his last feed-
back. Previous interactions are crucial in determining how an
animal would react to a problem that could trigger attack or
fear behaviour.

B. The fuzzy model for the “Aggression” behaviour
For implementing the fuzzy behaviour model of the “Ag-

gression” behaviour, the Fuzzy Behaviour Description Lan-
guage (FBDL) [29] was applied. The FBDL follows the
concepts of fuzzy rule-based systems, Fuzzy Rule Interpola-
tion (FRI), and their relationships to build behaviour com-
ponents and behaviour coordination. The rule-based design
makes knowledge representations comprehensible and self-
explanatory for humans. The fuzziness and related Linguistic
Term fuzzy set notion also improve human comprehension
when variables are described on continuous universes. Having
the FBDL description of the fuzzy behaviour model, the model
can be directly evaluated numerically. The FBDL code can
be performed directly on a system or, with some additional
measurement data, can be used as an object for machine
learning parameter optimization algorithms.

The FBDL defines the universes of the input and state
variables, their linguistic terms (fuzzy sets applied in the fuzzy
rule-bases), and the fuzzy rule-bases.

If we have an observation, e.g., the level of the “Animal
Familiarity to the Place,” which is an input universe having
two linguistic terms Low and High then giving a symbol name
AFTP, the FBDL definition has the following form:

universe: AFTP
description: The Animal’s Level of Familiarity with
the Place.
Low 0 0
High 1 1
end

A fuzzy rule in a rule-base determining, e.g., the level of
the “Fear” hidden state-variable in the function of the level of
the animal familiarity to the place, to the other animal, and
the approaching object, could be the following in fuzzy rule
format:

If AFTP=High And AFTA=High And AFTO=High
Then FEAR=Low

where as AFTP is Animal Familiarity to the Place, AFTA
is Animal Familiarity Towards Another, and AFTO is Animal
Familiarity Towards Object are antecedent variables.

The same rule in FBDL format:
Rule Low When “AFTP” is High And “AFTA” is
High And “AFTO” is High end

The fuzzy model of the “Aggression” behaviour in FBDL
format. The FBDL definition of the AFTP, AFTA, AFTO,
ADTA, ADTO, PIWPE, EPE input and the FEAR, ATTACK,
ESCAPE, IMMOBILITY state variable universes are similar
(see e.g. AFTP and FEAR):

universe: AFTP
Low 0 0
High 1 1
end
universe: FEAR
Low 0 0
High 1 1
end

The FBDL definition of the state rule-bases is described
below one by one. It is represented based on different scenarios
such as (a) animal familiarity with a place, object, and another
animal, (b) a moving object or animal approaching an animal
too closely (individual distance intrusion), (c) a new object or
animal enters another’s familiar territory: this can encompass
the usual territorial issue and various scenarios, (d) entering
an unfamiliar environment: fear typically occurs, (e) a familiar
object in a strange setting, (f) degree of positiveness associated
with the previous Attack.

In fuzzy rule-base format, the FEAR Fuzzy Rule-base
(RFEAR) is the following:

If AFTP=Low And AFTA=Low And AFTO=Low Then
FEAR=High
If AFTA=Low And ADTA=Low And EPE=Low Then
FEAR=High
If AFTO=Low And ADTO=Low And EPE=Low Then
FEAR=High
If AFTP=Low And EPE=Low And PIWPE=Low Then
FEAR=High
If AFTP=High And AFTA=High And AFTO=High
Then FEAR=Low
If AFTA=High And ADTA=High And EPE=High Then
FEAR=Low
If AFTP=High And AFTA=High And EPE=High And
PIWPE=High Then FEAR=Low

where AFTP, AFTA, ADTA, AFTO, ADTO, EPE, PIWPE
are the antecedent universes, FEAR is the consequent universe,
Low and High are fuzzy linguistic terms in the corresponding
universes.

The same FEAR rule-base in FBDL format appears as:
RuleBase “FEAR”
Rule High When “AFTP” is Low And “AFTA” is Low
And “AFTO” is Low end

and towards the object, such as when an unfamiliar moving
object comes close to an animal, and the animal is unfamiliar
with the place; in this case, various scenarios occur, such as
fear, Attack, and escape behaviours.

“Escape Path Exists” (EPE): The level of a possible
escaping path for the animal. This situation occurs when an-
other animal or moving object approaches, and if the animal’s
escaping path is not blocked, then the animal’s only option
is to escape from that environment. When the possibility of
Escape is blocked, the attack behaviour is mostly to occur,
even if the animal shows broad signs of fear behaviour such
as painful, stressful, or threatening stimuli.

“Positive Impact With respect to Previous Experience”
(PIWPE): The degree of positivity and negativity associated
with past experiences. In other words, it is the past positive
and negative feelings of the animal that relate to the previous
attacks. In this situation, the animal remembers his last feed-
back. Previous interactions are crucial in determining how an
animal would react to a problem that could trigger attack or
fear behaviour.

B. The fuzzy model for the “Aggression” behaviour
For implementing the fuzzy behaviour model of the “Ag-

gression” behaviour, the Fuzzy Behaviour Description Lan-
guage (FBDL) [29] was applied. The FBDL follows the
concepts of fuzzy rule-based systems, Fuzzy Rule Interpola-
tion (FRI), and their relationships to build behaviour com-
ponents and behaviour coordination. The rule-based design
makes knowledge representations comprehensible and self-
explanatory for humans. The fuzziness and related Linguistic
Term fuzzy set notion also improve human comprehension
when variables are described on continuous universes. Having
the FBDL description of the fuzzy behaviour model, the model
can be directly evaluated numerically. The FBDL code can
be performed directly on a system or, with some additional
measurement data, can be used as an object for machine
learning parameter optimization algorithms.

The FBDL defines the universes of the input and state
variables, their linguistic terms (fuzzy sets applied in the fuzzy
rule-bases), and the fuzzy rule-bases.

If we have an observation, e.g., the level of the “Animal
Familiarity to the Place,” which is an input universe having
two linguistic terms Low and High then giving a symbol name
AFTP, the FBDL definition has the following form:

universe: AFTP
description: The Animal’s Level of Familiarity with
the Place.
Low 0 0
High 1 1
end

A fuzzy rule in a rule-base determining, e.g., the level of
the “Fear” hidden state-variable in the function of the level of
the animal familiarity to the place, to the other animal, and
the approaching object, could be the following in fuzzy rule
format:

If AFTP=High And AFTA=High And AFTO=High
Then FEAR=Low

where as AFTP is Animal Familiarity to the Place, AFTA
is Animal Familiarity Towards Another, and AFTO is Animal
Familiarity Towards Object are antecedent variables.

The same rule in FBDL format:
Rule Low When “AFTP” is High And “AFTA” is
High And “AFTO” is High end

The fuzzy model of the “Aggression” behaviour in FBDL
format. The FBDL definition of the AFTP, AFTA, AFTO,
ADTA, ADTO, PIWPE, EPE input and the FEAR, ATTACK,
ESCAPE, IMMOBILITY state variable universes are similar
(see e.g. AFTP and FEAR):

universe: AFTP
Low 0 0
High 1 1
end
universe: FEAR
Low 0 0
High 1 1
end

The FBDL definition of the state rule-bases is described
below one by one. It is represented based on different scenarios
such as (a) animal familiarity with a place, object, and another
animal, (b) a moving object or animal approaching an animal
too closely (individual distance intrusion), (c) a new object or
animal enters another’s familiar territory: this can encompass
the usual territorial issue and various scenarios, (d) entering
an unfamiliar environment: fear typically occurs, (e) a familiar
object in a strange setting, (f) degree of positiveness associated
with the previous Attack.

In fuzzy rule-base format, the FEAR Fuzzy Rule-base
(RFEAR) is the following:

If AFTP=Low And AFTA=Low And AFTO=Low Then
FEAR=High
If AFTA=Low And ADTA=Low And EPE=Low Then
FEAR=High
If AFTO=Low And ADTO=Low And EPE=Low Then
FEAR=High
If AFTP=Low And EPE=Low And PIWPE=Low Then
FEAR=High
If AFTP=High And AFTA=High And AFTO=High
Then FEAR=Low
If AFTA=High And ADTA=High And EPE=High Then
FEAR=Low
If AFTP=High And AFTA=High And EPE=High And
PIWPE=High Then FEAR=Low

where AFTP, AFTA, ADTA, AFTO, ADTO, EPE, PIWPE
are the antecedent universes, FEAR is the consequent universe,
Low and High are fuzzy linguistic terms in the corresponding
universes.

The same FEAR rule-base in FBDL format appears as:
RuleBase “FEAR”
Rule High When “AFTP” is Low And “AFTA” is Low
And “AFTO” is Low end

and towards the object, such as when an unfamiliar moving
object comes close to an animal, and the animal is unfamiliar
with the place; in this case, various scenarios occur, such as
fear, Attack, and escape behaviours.

“Escape Path Exists” (EPE): The level of a possible
escaping path for the animal. This situation occurs when an-
other animal or moving object approaches, and if the animal’s
escaping path is not blocked, then the animal’s only option
is to escape from that environment. When the possibility of
Escape is blocked, the attack behaviour is mostly to occur,
even if the animal shows broad signs of fear behaviour such
as painful, stressful, or threatening stimuli.

“Positive Impact With respect to Previous Experience”
(PIWPE): The degree of positivity and negativity associated
with past experiences. In other words, it is the past positive
and negative feelings of the animal that relate to the previous
attacks. In this situation, the animal remembers his last feed-
back. Previous interactions are crucial in determining how an
animal would react to a problem that could trigger attack or
fear behaviour.

B. The fuzzy model for the “Aggression” behaviour
For implementing the fuzzy behaviour model of the “Ag-

gression” behaviour, the Fuzzy Behaviour Description Lan-
guage (FBDL) [29] was applied. The FBDL follows the
concepts of fuzzy rule-based systems, Fuzzy Rule Interpola-
tion (FRI), and their relationships to build behaviour com-
ponents and behaviour coordination. The rule-based design
makes knowledge representations comprehensible and self-
explanatory for humans. The fuzziness and related Linguistic
Term fuzzy set notion also improve human comprehension
when variables are described on continuous universes. Having
the FBDL description of the fuzzy behaviour model, the model
can be directly evaluated numerically. The FBDL code can
be performed directly on a system or, with some additional
measurement data, can be used as an object for machine
learning parameter optimization algorithms.

The FBDL defines the universes of the input and state
variables, their linguistic terms (fuzzy sets applied in the fuzzy
rule-bases), and the fuzzy rule-bases.

If we have an observation, e.g., the level of the “Animal
Familiarity to the Place,” which is an input universe having
two linguistic terms Low and High then giving a symbol name
AFTP, the FBDL definition has the following form:

universe: AFTP
description: The Animal’s Level of Familiarity with
the Place.
Low 0 0
High 1 1
end

A fuzzy rule in a rule-base determining, e.g., the level of
the “Fear” hidden state-variable in the function of the level of
the animal familiarity to the place, to the other animal, and
the approaching object, could be the following in fuzzy rule
format:

If AFTP=High And AFTA=High And AFTO=High
Then FEAR=Low

where as AFTP is Animal Familiarity to the Place, AFTA
is Animal Familiarity Towards Another, and AFTO is Animal
Familiarity Towards Object are antecedent variables.

The same rule in FBDL format:
Rule Low When “AFTP” is High And “AFTA” is
High And “AFTO” is High end

The fuzzy model of the “Aggression” behaviour in FBDL
format. The FBDL definition of the AFTP, AFTA, AFTO,
ADTA, ADTO, PIWPE, EPE input and the FEAR, ATTACK,
ESCAPE, IMMOBILITY state variable universes are similar
(see e.g. AFTP and FEAR):

universe: AFTP
Low 0 0
High 1 1
end
universe: FEAR
Low 0 0
High 1 1
end

The FBDL definition of the state rule-bases is described
below one by one. It is represented based on different scenarios
such as (a) animal familiarity with a place, object, and another
animal, (b) a moving object or animal approaching an animal
too closely (individual distance intrusion), (c) a new object or
animal enters another’s familiar territory: this can encompass
the usual territorial issue and various scenarios, (d) entering
an unfamiliar environment: fear typically occurs, (e) a familiar
object in a strange setting, (f) degree of positiveness associated
with the previous Attack.

In fuzzy rule-base format, the FEAR Fuzzy Rule-base
(RFEAR) is the following:

If AFTP=Low And AFTA=Low And AFTO=Low Then
FEAR=High
If AFTA=Low And ADTA=Low And EPE=Low Then
FEAR=High
If AFTO=Low And ADTO=Low And EPE=Low Then
FEAR=High
If AFTP=Low And EPE=Low And PIWPE=Low Then
FEAR=High
If AFTP=High And AFTA=High And AFTO=High
Then FEAR=Low
If AFTA=High And ADTA=High And EPE=High Then
FEAR=Low
If AFTP=High And AFTA=High And EPE=High And
PIWPE=High Then FEAR=Low

where AFTP, AFTA, ADTA, AFTO, ADTO, EPE, PIWPE
are the antecedent universes, FEAR is the consequent universe,
Low and High are fuzzy linguistic terms in the corresponding
universes.

The same FEAR rule-base in FBDL format appears as:
RuleBase “FEAR”
Rule High When “AFTP” is Low And “AFTA” is Low
And “AFTO” is Low end

Rule High When “AFTA” is Low And “ADTA” is Low
And “EPE” is Low end
Rule High When “AFTO” is Low And “ADTO” is Low
And “EPE” is Low end
Rule High When “AFTP” is Low And “EPE” is Low
And “PIWPE” is Low end
Rule Low When “AFTP” is High And “AFTA” is High
And “AFTO” is High end
Rule Low When “AFTA” is High And “ADTA” is High
And “EPE” is High end
Rule Low When “AFTP” is High And “AFTA” is High
And “EPE” is High And “PIWPE” is High end
end

In fuzzy rule-base format, the ATTACK Fuzzy Rule-base
(RATTACK) is the following:

If AFTA=Low And ADTA=Low And EPE=Low Then
ATTACK=High
If AFTO=Low And ADTO=Low And EPE=Low Then
ATTACK=High
If AFTP=Low And ADTA=Low And ADTO=Low And
EPE=Low Then ATTACK=High
If FEAR=High And EPE=Low Then ATTACK=High
If AFTP=High And AFTA=High And PIWPE=High
Then ATTACK=High
If AFTP=High And AFTO=High And PIWPE=High
Then ATTACK=High
If EPE=High And FEAR=High Then ATTACK=Low
If EPE=High And AFTP=Low And ADTA=High Then
ATTACK=Low
If EPE=High And AFTA=Low And ADTA=High And
PIWPE=Low And ADTO=High Then ATTACK=Low
If EPE=High And AFTO=Low And ADTO=High And
PIWPE=Low Then ATTACK=Low
If AFTA=Low And AFTP=Low And AFTO=Low And
EPE=High Then ATTACK=Low

The antecedent universes are AFTP, AFTA, ADTA, AFTO,
ADTO, EPE, PIWPE, FEAR. The consequent universe is
ATTACK, and Low and High are fuzzy linguistic terms in
the corresponding universes.

In fuzzy rule-base format, the ESCAPE Fuzzy Rule-base
(RESCAPE) is the following:

If EPE=High And FEAR=High Then ESCAPE=High
If EPE=High And AFTP=Low And AFTA=Low And
AFTO=Low Then ESCAPE=High
If EPE=High And AFTA=Low And ADTA=High And
PIWPE=Low Then ESCAPE=High
If EPE=High And AFTO=Low And ADTO=High And
PIWPE=Low Then ESCAPE=High
If EPE=High And AFTP=Low And ADTA=High And
ADTO=High And PIWPE=Low Then ESCAPE=High
If FEAR=Low And EPE=Low Then ESCAPE=Low
If FEAR=Low And PIWPE=High Then ESCAPE=Low
If AFTA=High And AFTO=High And AFTP=High
And PIWPE=High Then ESCAPE=Low
If AFTA=High And ADTA=High And PIWPE=High

And EPE=Low Then ESCAPE=Low
If AFTO=High And ADTO=High And PIWPE=High
And EPE=Low Then ESCAPE=Low

where AFTP, AFTA, ADTA, AFTO, ADTO, EPE, PIWPE,
FEAR are the antecedent universes, ESCAPE is the conse-
quent universe, and Low and High are fuzzy linguistic terms
in the corresponding universes.

In fuzzy rule-base format, the IMMOBILITY Fuzzy Rule-
base (RIMMOBILITY) is the following:

If FEAR=Low And EPE=Low Then IMMOBIL-
ITY=High If AFTA=Low And ADTA=High And
EPE=Low Then IMMOBILITY=High
If AFTO=Low And ADTO=High And EPE=Low Then
IMMOBILITY=High
If AFTP=Low And ADTA=High And EPE=Low Then
IMMOBILITY=High
If AFTP=Low And AFTA=Low And PIWPE=Low Then
IMMOBILITY=High
If EPE=High And FEAR=High And PIWPE=Low Then
IMMOBILITY=Low
If EPE=High And AFTA=Low And ADTA=Low And
PIWPE=Low Then IMMOBILITY=Low
If EPE=High And AFTO=Low And ADTO=Low And
PIWPE=Low Then IMMOBILITY=Low

The antecedent universes are AFTP, AFTA, ADTA, AFTO,
ADTO, EPE, PIWPE, FEAR, and the consequent universe is
IMMOBILITY, with the fuzzy linguistic terms Low and High
in the corresponding universes.

Several variables can influence whether an animal will
exhibit Fear, Escape, Attack, or Immobility behaviours in
a given situation. These variables can be categorized into
internal characteristics and behavioural outcomes.

“Internal characteristics” that may impact an animal’s
tendency to exhibit fear or attack behaviours include: (a) The
degree of discrepancy between expectations and observations:
A significant difference between what an animal expects and
what it observes can trigger fear and escape behaviours, as
the animal perceives a potential threat. Conversely, if the ob-
served stimulus closely matches expectations, the animal may
exhibit attack behaviours instead. This highlights how animals
respond to uncertainty and familiarity in their environment. (b)
The degree of positive motivation from previous experiences:
An animal’s positive motivation or reinforcement from earlier
experiences influences its present behaviour. When this level
of positive motivation is high, the animal is more likely to
attack rather than escape in a given situation. Prior positive
reinforcement may lead an animal to fight rather than flee.
(c) Experiential factors: Early life situations, social isolation,
and previous reinforcements significantly impact an animal’s
decision to either attack or escape when faced with a fright-
ening circumstance. Early experiences and social interactions
shape their responses, while past reinforcements guide their
decision-making. These elements contribute to the complexity
of animal behaviour and enhance our understanding of why
animals respond the way they do in various situations.
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Rule High When “AFTA” is Low And “ADTA” is Low
And “EPE” is Low end
Rule High When “AFTO” is Low And “ADTO” is Low
And “EPE” is Low end
Rule High When “AFTP” is Low And “EPE” is Low
And “PIWPE” is Low end
Rule Low When “AFTP” is High And “AFTA” is High
And “AFTO” is High end
Rule Low When “AFTA” is High And “ADTA” is High
And “EPE” is High end
Rule Low When “AFTP” is High And “AFTA” is High
And “EPE” is High And “PIWPE” is High end
end

In fuzzy rule-base format, the ATTACK Fuzzy Rule-base
(RATTACK) is the following:

If AFTA=Low And ADTA=Low And EPE=Low Then
ATTACK=High
If AFTO=Low And ADTO=Low And EPE=Low Then
ATTACK=High
If AFTP=Low And ADTA=Low And ADTO=Low And
EPE=Low Then ATTACK=High
If FEAR=High And EPE=Low Then ATTACK=High
If AFTP=High And AFTA=High And PIWPE=High
Then ATTACK=High
If AFTP=High And AFTO=High And PIWPE=High
Then ATTACK=High
If EPE=High And FEAR=High Then ATTACK=Low
If EPE=High And AFTP=Low And ADTA=High Then
ATTACK=Low
If EPE=High And AFTA=Low And ADTA=High And
PIWPE=Low And ADTO=High Then ATTACK=Low
If EPE=High And AFTO=Low And ADTO=High And
PIWPE=Low Then ATTACK=Low
If AFTA=Low And AFTP=Low And AFTO=Low And
EPE=High Then ATTACK=Low

The antecedent universes are AFTP, AFTA, ADTA, AFTO,
ADTO, EPE, PIWPE, FEAR. The consequent universe is
ATTACK, and Low and High are fuzzy linguistic terms in
the corresponding universes.

In fuzzy rule-base format, the ESCAPE Fuzzy Rule-base
(RESCAPE) is the following:

If EPE=High And FEAR=High Then ESCAPE=High
If EPE=High And AFTP=Low And AFTA=Low And
AFTO=Low Then ESCAPE=High
If EPE=High And AFTA=Low And ADTA=High And
PIWPE=Low Then ESCAPE=High
If EPE=High And AFTO=Low And ADTO=High And
PIWPE=Low Then ESCAPE=High
If EPE=High And AFTP=Low And ADTA=High And
ADTO=High And PIWPE=Low Then ESCAPE=High
If FEAR=Low And EPE=Low Then ESCAPE=Low
If FEAR=Low And PIWPE=High Then ESCAPE=Low
If AFTA=High And AFTO=High And AFTP=High
And PIWPE=High Then ESCAPE=Low
If AFTA=High And ADTA=High And PIWPE=High

And EPE=Low Then ESCAPE=Low
If AFTO=High And ADTO=High And PIWPE=High
And EPE=Low Then ESCAPE=Low

where AFTP, AFTA, ADTA, AFTO, ADTO, EPE, PIWPE,
FEAR are the antecedent universes, ESCAPE is the conse-
quent universe, and Low and High are fuzzy linguistic terms
in the corresponding universes.

In fuzzy rule-base format, the IMMOBILITY Fuzzy Rule-
base (RIMMOBILITY) is the following:

If FEAR=Low And EPE=Low Then IMMOBIL-
ITY=High If AFTA=Low And ADTA=High And
EPE=Low Then IMMOBILITY=High
If AFTO=Low And ADTO=High And EPE=Low Then
IMMOBILITY=High
If AFTP=Low And ADTA=High And EPE=Low Then
IMMOBILITY=High
If AFTP=Low And AFTA=Low And PIWPE=Low Then
IMMOBILITY=High
If EPE=High And FEAR=High And PIWPE=Low Then
IMMOBILITY=Low
If EPE=High And AFTA=Low And ADTA=Low And
PIWPE=Low Then IMMOBILITY=Low
If EPE=High And AFTO=Low And ADTO=Low And
PIWPE=Low Then IMMOBILITY=Low

The antecedent universes are AFTP, AFTA, ADTA, AFTO,
ADTO, EPE, PIWPE, FEAR, and the consequent universe is
IMMOBILITY, with the fuzzy linguistic terms Low and High
in the corresponding universes.

Several variables can influence whether an animal will
exhibit Fear, Escape, Attack, or Immobility behaviours in
a given situation. These variables can be categorized into
internal characteristics and behavioural outcomes.

“Internal characteristics” that may impact an animal’s
tendency to exhibit fear or attack behaviours include: (a) The
degree of discrepancy between expectations and observations:
A significant difference between what an animal expects and
what it observes can trigger fear and escape behaviours, as
the animal perceives a potential threat. Conversely, if the ob-
served stimulus closely matches expectations, the animal may
exhibit attack behaviours instead. This highlights how animals
respond to uncertainty and familiarity in their environment. (b)
The degree of positive motivation from previous experiences:
An animal’s positive motivation or reinforcement from earlier
experiences influences its present behaviour. When this level
of positive motivation is high, the animal is more likely to
attack rather than escape in a given situation. Prior positive
reinforcement may lead an animal to fight rather than flee.
(c) Experiential factors: Early life situations, social isolation,
and previous reinforcements significantly impact an animal’s
decision to either attack or escape when faced with a fright-
ening circumstance. Early experiences and social interactions
shape their responses, while past reinforcements guide their
decision-making. These elements contribute to the complexity
of animal behaviour and enhance our understanding of why
animals respond the way they do in various situations.

Rule High When “AFTA” is Low And “ADTA” is Low
And “EPE” is Low end
Rule High When “AFTO” is Low And “ADTO” is Low
And “EPE” is Low end
Rule High When “AFTP” is Low And “EPE” is Low
And “PIWPE” is Low end
Rule Low When “AFTP” is High And “AFTA” is High
And “AFTO” is High end
Rule Low When “AFTA” is High And “ADTA” is High
And “EPE” is High end
Rule Low When “AFTP” is High And “AFTA” is High
And “EPE” is High And “PIWPE” is High end
end

In fuzzy rule-base format, the ATTACK Fuzzy Rule-base
(RATTACK) is the following:

If AFTA=Low And ADTA=Low And EPE=Low Then
ATTACK=High
If AFTO=Low And ADTO=Low And EPE=Low Then
ATTACK=High
If AFTP=Low And ADTA=Low And ADTO=Low And
EPE=Low Then ATTACK=High
If FEAR=High And EPE=Low Then ATTACK=High
If AFTP=High And AFTA=High And PIWPE=High
Then ATTACK=High
If AFTP=High And AFTO=High And PIWPE=High
Then ATTACK=High
If EPE=High And FEAR=High Then ATTACK=Low
If EPE=High And AFTP=Low And ADTA=High Then
ATTACK=Low
If EPE=High And AFTA=Low And ADTA=High And
PIWPE=Low And ADTO=High Then ATTACK=Low
If EPE=High And AFTO=Low And ADTO=High And
PIWPE=Low Then ATTACK=Low
If AFTA=Low And AFTP=Low And AFTO=Low And
EPE=High Then ATTACK=Low

The antecedent universes are AFTP, AFTA, ADTA, AFTO,
ADTO, EPE, PIWPE, FEAR. The consequent universe is
ATTACK, and Low and High are fuzzy linguistic terms in
the corresponding universes.

In fuzzy rule-base format, the ESCAPE Fuzzy Rule-base
(RESCAPE) is the following:

If EPE=High And FEAR=High Then ESCAPE=High
If EPE=High And AFTP=Low And AFTA=Low And
AFTO=Low Then ESCAPE=High
If EPE=High And AFTA=Low And ADTA=High And
PIWPE=Low Then ESCAPE=High
If EPE=High And AFTO=Low And ADTO=High And
PIWPE=Low Then ESCAPE=High
If EPE=High And AFTP=Low And ADTA=High And
ADTO=High And PIWPE=Low Then ESCAPE=High
If FEAR=Low And EPE=Low Then ESCAPE=Low
If FEAR=Low And PIWPE=High Then ESCAPE=Low
If AFTA=High And AFTO=High And AFTP=High
And PIWPE=High Then ESCAPE=Low
If AFTA=High And ADTA=High And PIWPE=High

And EPE=Low Then ESCAPE=Low
If AFTO=High And ADTO=High And PIWPE=High
And EPE=Low Then ESCAPE=Low

where AFTP, AFTA, ADTA, AFTO, ADTO, EPE, PIWPE,
FEAR are the antecedent universes, ESCAPE is the conse-
quent universe, and Low and High are fuzzy linguistic terms
in the corresponding universes.

In fuzzy rule-base format, the IMMOBILITY Fuzzy Rule-
base (RIMMOBILITY) is the following:

If FEAR=Low And EPE=Low Then IMMOBIL-
ITY=High If AFTA=Low And ADTA=High And
EPE=Low Then IMMOBILITY=High
If AFTO=Low And ADTO=High And EPE=Low Then
IMMOBILITY=High
If AFTP=Low And ADTA=High And EPE=Low Then
IMMOBILITY=High
If AFTP=Low And AFTA=Low And PIWPE=Low Then
IMMOBILITY=High
If EPE=High And FEAR=High And PIWPE=Low Then
IMMOBILITY=Low
If EPE=High And AFTA=Low And ADTA=Low And
PIWPE=Low Then IMMOBILITY=Low
If EPE=High And AFTO=Low And ADTO=Low And
PIWPE=Low Then IMMOBILITY=Low

The antecedent universes are AFTP, AFTA, ADTA, AFTO,
ADTO, EPE, PIWPE, FEAR, and the consequent universe is
IMMOBILITY, with the fuzzy linguistic terms Low and High
in the corresponding universes.

Several variables can influence whether an animal will
exhibit Fear, Escape, Attack, or Immobility behaviours in
a given situation. These variables can be categorized into
internal characteristics and behavioural outcomes.

“Internal characteristics” that may impact an animal’s
tendency to exhibit fear or attack behaviours include: (a) The
degree of discrepancy between expectations and observations:
A significant difference between what an animal expects and
what it observes can trigger fear and escape behaviours, as
the animal perceives a potential threat. Conversely, if the ob-
served stimulus closely matches expectations, the animal may
exhibit attack behaviours instead. This highlights how animals
respond to uncertainty and familiarity in their environment. (b)
The degree of positive motivation from previous experiences:
An animal’s positive motivation or reinforcement from earlier
experiences influences its present behaviour. When this level
of positive motivation is high, the animal is more likely to
attack rather than escape in a given situation. Prior positive
reinforcement may lead an animal to fight rather than flee.
(c) Experiential factors: Early life situations, social isolation,
and previous reinforcements significantly impact an animal’s
decision to either attack or escape when faced with a fright-
ening circumstance. Early experiences and social interactions
shape their responses, while past reinforcements guide their
decision-making. These elements contribute to the complexity
of animal behaviour and enhance our understanding of why
animals respond the way they do in various situations.Rule High When “AFTA” is Low And “ADTA” is Low

And “EPE” is Low end
Rule High When “AFTO” is Low And “ADTO” is Low
And “EPE” is Low end
Rule High When “AFTP” is Low And “EPE” is Low
And “PIWPE” is Low end
Rule Low When “AFTP” is High And “AFTA” is High
And “AFTO” is High end
Rule Low When “AFTA” is High And “ADTA” is High
And “EPE” is High end
Rule Low When “AFTP” is High And “AFTA” is High
And “EPE” is High And “PIWPE” is High end
end

In fuzzy rule-base format, the ATTACK Fuzzy Rule-base
(RATTACK) is the following:

If AFTA=Low And ADTA=Low And EPE=Low Then
ATTACK=High
If AFTO=Low And ADTO=Low And EPE=Low Then
ATTACK=High
If AFTP=Low And ADTA=Low And ADTO=Low And
EPE=Low Then ATTACK=High
If FEAR=High And EPE=Low Then ATTACK=High
If AFTP=High And AFTA=High And PIWPE=High
Then ATTACK=High
If AFTP=High And AFTO=High And PIWPE=High
Then ATTACK=High
If EPE=High And FEAR=High Then ATTACK=Low
If EPE=High And AFTP=Low And ADTA=High Then
ATTACK=Low
If EPE=High And AFTA=Low And ADTA=High And
PIWPE=Low And ADTO=High Then ATTACK=Low
If EPE=High And AFTO=Low And ADTO=High And
PIWPE=Low Then ATTACK=Low
If AFTA=Low And AFTP=Low And AFTO=Low And
EPE=High Then ATTACK=Low

The antecedent universes are AFTP, AFTA, ADTA, AFTO,
ADTO, EPE, PIWPE, FEAR. The consequent universe is
ATTACK, and Low and High are fuzzy linguistic terms in
the corresponding universes.

In fuzzy rule-base format, the ESCAPE Fuzzy Rule-base
(RESCAPE) is the following:

If EPE=High And FEAR=High Then ESCAPE=High
If EPE=High And AFTP=Low And AFTA=Low And
AFTO=Low Then ESCAPE=High
If EPE=High And AFTA=Low And ADTA=High And
PIWPE=Low Then ESCAPE=High
If EPE=High And AFTO=Low And ADTO=High And
PIWPE=Low Then ESCAPE=High
If EPE=High And AFTP=Low And ADTA=High And
ADTO=High And PIWPE=Low Then ESCAPE=High
If FEAR=Low And EPE=Low Then ESCAPE=Low
If FEAR=Low And PIWPE=High Then ESCAPE=Low
If AFTA=High And AFTO=High And AFTP=High
And PIWPE=High Then ESCAPE=Low
If AFTA=High And ADTA=High And PIWPE=High

And EPE=Low Then ESCAPE=Low
If AFTO=High And ADTO=High And PIWPE=High
And EPE=Low Then ESCAPE=Low

where AFTP, AFTA, ADTA, AFTO, ADTO, EPE, PIWPE,
FEAR are the antecedent universes, ESCAPE is the conse-
quent universe, and Low and High are fuzzy linguistic terms
in the corresponding universes.

In fuzzy rule-base format, the IMMOBILITY Fuzzy Rule-
base (RIMMOBILITY) is the following:

If FEAR=Low And EPE=Low Then IMMOBIL-
ITY=High If AFTA=Low And ADTA=High And
EPE=Low Then IMMOBILITY=High
If AFTO=Low And ADTO=High And EPE=Low Then
IMMOBILITY=High
If AFTP=Low And ADTA=High And EPE=Low Then
IMMOBILITY=High
If AFTP=Low And AFTA=Low And PIWPE=Low Then
IMMOBILITY=High
If EPE=High And FEAR=High And PIWPE=Low Then
IMMOBILITY=Low
If EPE=High And AFTA=Low And ADTA=Low And
PIWPE=Low Then IMMOBILITY=Low
If EPE=High And AFTO=Low And ADTO=Low And
PIWPE=Low Then IMMOBILITY=Low

The antecedent universes are AFTP, AFTA, ADTA, AFTO,
ADTO, EPE, PIWPE, FEAR, and the consequent universe is
IMMOBILITY, with the fuzzy linguistic terms Low and High
in the corresponding universes.

Several variables can influence whether an animal will
exhibit Fear, Escape, Attack, or Immobility behaviours in
a given situation. These variables can be categorized into
internal characteristics and behavioural outcomes.

“Internal characteristics” that may impact an animal’s
tendency to exhibit fear or attack behaviours include: (a) The
degree of discrepancy between expectations and observations:
A significant difference between what an animal expects and
what it observes can trigger fear and escape behaviours, as
the animal perceives a potential threat. Conversely, if the ob-
served stimulus closely matches expectations, the animal may
exhibit attack behaviours instead. This highlights how animals
respond to uncertainty and familiarity in their environment. (b)
The degree of positive motivation from previous experiences:
An animal’s positive motivation or reinforcement from earlier
experiences influences its present behaviour. When this level
of positive motivation is high, the animal is more likely to
attack rather than escape in a given situation. Prior positive
reinforcement may lead an animal to fight rather than flee.
(c) Experiential factors: Early life situations, social isolation,
and previous reinforcements significantly impact an animal’s
decision to either attack or escape when faced with a fright-
ening circumstance. Early experiences and social interactions
shape their responses, while past reinforcements guide their
decision-making. These elements contribute to the complexity
of animal behaviour and enhance our understanding of why
animals respond the way they do in various situations.

Rule High When “AFTA” is Low And “ADTA” is Low
And “EPE” is Low end
Rule High When “AFTO” is Low And “ADTO” is Low
And “EPE” is Low end
Rule High When “AFTP” is Low And “EPE” is Low
And “PIWPE” is Low end
Rule Low When “AFTP” is High And “AFTA” is High
And “AFTO” is High end
Rule Low When “AFTA” is High And “ADTA” is High
And “EPE” is High end
Rule Low When “AFTP” is High And “AFTA” is High
And “EPE” is High And “PIWPE” is High end
end

In fuzzy rule-base format, the ATTACK Fuzzy Rule-base
(RATTACK) is the following:

If AFTA=Low And ADTA=Low And EPE=Low Then
ATTACK=High
If AFTO=Low And ADTO=Low And EPE=Low Then
ATTACK=High
If AFTP=Low And ADTA=Low And ADTO=Low And
EPE=Low Then ATTACK=High
If FEAR=High And EPE=Low Then ATTACK=High
If AFTP=High And AFTA=High And PIWPE=High
Then ATTACK=High
If AFTP=High And AFTO=High And PIWPE=High
Then ATTACK=High
If EPE=High And FEAR=High Then ATTACK=Low
If EPE=High And AFTP=Low And ADTA=High Then
ATTACK=Low
If EPE=High And AFTA=Low And ADTA=High And
PIWPE=Low And ADTO=High Then ATTACK=Low
If EPE=High And AFTO=Low And ADTO=High And
PIWPE=Low Then ATTACK=Low
If AFTA=Low And AFTP=Low And AFTO=Low And
EPE=High Then ATTACK=Low

The antecedent universes are AFTP, AFTA, ADTA, AFTO,
ADTO, EPE, PIWPE, FEAR. The consequent universe is
ATTACK, and Low and High are fuzzy linguistic terms in
the corresponding universes.

In fuzzy rule-base format, the ESCAPE Fuzzy Rule-base
(RESCAPE) is the following:

If EPE=High And FEAR=High Then ESCAPE=High
If EPE=High And AFTP=Low And AFTA=Low And
AFTO=Low Then ESCAPE=High
If EPE=High And AFTA=Low And ADTA=High And
PIWPE=Low Then ESCAPE=High
If EPE=High And AFTO=Low And ADTO=High And
PIWPE=Low Then ESCAPE=High
If EPE=High And AFTP=Low And ADTA=High And
ADTO=High And PIWPE=Low Then ESCAPE=High
If FEAR=Low And EPE=Low Then ESCAPE=Low
If FEAR=Low And PIWPE=High Then ESCAPE=Low
If AFTA=High And AFTO=High And AFTP=High
And PIWPE=High Then ESCAPE=Low
If AFTA=High And ADTA=High And PIWPE=High

And EPE=Low Then ESCAPE=Low
If AFTO=High And ADTO=High And PIWPE=High
And EPE=Low Then ESCAPE=Low

where AFTP, AFTA, ADTA, AFTO, ADTO, EPE, PIWPE,
FEAR are the antecedent universes, ESCAPE is the conse-
quent universe, and Low and High are fuzzy linguistic terms
in the corresponding universes.

In fuzzy rule-base format, the IMMOBILITY Fuzzy Rule-
base (RIMMOBILITY) is the following:

If FEAR=Low And EPE=Low Then IMMOBIL-
ITY=High If AFTA=Low And ADTA=High And
EPE=Low Then IMMOBILITY=High
If AFTO=Low And ADTO=High And EPE=Low Then
IMMOBILITY=High
If AFTP=Low And ADTA=High And EPE=Low Then
IMMOBILITY=High
If AFTP=Low And AFTA=Low And PIWPE=Low Then
IMMOBILITY=High
If EPE=High And FEAR=High And PIWPE=Low Then
IMMOBILITY=Low
If EPE=High And AFTA=Low And ADTA=Low And
PIWPE=Low Then IMMOBILITY=Low
If EPE=High And AFTO=Low And ADTO=Low And
PIWPE=Low Then IMMOBILITY=Low

The antecedent universes are AFTP, AFTA, ADTA, AFTO,
ADTO, EPE, PIWPE, FEAR, and the consequent universe is
IMMOBILITY, with the fuzzy linguistic terms Low and High
in the corresponding universes.

Several variables can influence whether an animal will
exhibit Fear, Escape, Attack, or Immobility behaviours in
a given situation. These variables can be categorized into
internal characteristics and behavioural outcomes.

“Internal characteristics” that may impact an animal’s
tendency to exhibit fear or attack behaviours include: (a) The
degree of discrepancy between expectations and observations:
A significant difference between what an animal expects and
what it observes can trigger fear and escape behaviours, as
the animal perceives a potential threat. Conversely, if the ob-
served stimulus closely matches expectations, the animal may
exhibit attack behaviours instead. This highlights how animals
respond to uncertainty and familiarity in their environment. (b)
The degree of positive motivation from previous experiences:
An animal’s positive motivation or reinforcement from earlier
experiences influences its present behaviour. When this level
of positive motivation is high, the animal is more likely to
attack rather than escape in a given situation. Prior positive
reinforcement may lead an animal to fight rather than flee.
(c) Experiential factors: Early life situations, social isolation,
and previous reinforcements significantly impact an animal’s
decision to either attack or escape when faced with a fright-
ening circumstance. Early experiences and social interactions
shape their responses, while past reinforcements guide their
decision-making. These elements contribute to the complexity
of animal behaviour and enhance our understanding of why
animals respond the way they do in various situations.

“Behavioural Outcomes” that may affect specific be-
haviours include: (a) Properties of the target: The character-
istics of the object being attacked or defended against, such
as its size, movement, and location, can influence behaviour.
For example, the size (whether it is large or small), the ease
of movement (how easily it can be moved), and the proximity
(how close or far it is from the attacker) are factors to consider.
(b) Preference for passive or active responses: Animals often
have a preferred course of action when faced with danger.
They may choose to avoid the threat passively by remaining
still or to escape by moving away. The degree and location
of sensory discrepancies—anything that seems abnormal in
their environment—can impact this choice. (c) The possibility
of escape: The likelihood of escaping from danger affects
behaviour. If escape is physically impossible (for instance,
if an animal is trapped in an area with no way out), attack
behaviours may become more likely as a form of self-defense.

Figure 4 represents the components of an animal’s ag-
gressive behaviour fuzzy model concerning all the possible
components defined above, such as towards place, another
animal, object, distance, etc.

Fig. 4. Animal Aggressive Behaviour Fuzzy model.

Figure 5 demonstrates some examples of the behaviour
component level changes in the functions of the observations
according to the fuzzy model of aggressive behaviour. All
the graphs are based on the calculation of the FBDL [29]
description given in this paper using the implemented FBDL
functions publicly available in [30], [31]. We have taken
two observations, ADTA and EPE changing from Low to
High and the rest of the observations to be constant (i.e.,
the animal is highly familiar with the place and another
animal: AFTP=High, AFTA=High, and less familiar with
AFTO=Low, ADTO=Low, PIWPE=Low). Red color represents
High, and blue represents Low. Figure 5(a) demonstrates the
state change of “Fear” in the function of ADTA and EPE in
this case. According to the graph, the FEAR will be High
if no escape path exists. The approaching other animal is
unfamiliar (AFTA=Low, EPE=Low) and Low if the animal is
familiar with these states such as AFTA=High, AFTP=High,
AFTO=High). The level of ATTACK behaviour (see Figure
5(b)) is High if the animal is not familiar with the approaching
other animal, distance towards other animal is less, and there
is no escape path exists (AFTA=Low, ADTA=Low, EPE=Low)
and Low if escape path exists (EPE=High). The level of

ESCAPE (see Figure 5(c)) is High if the animal is not familiar
with the approaching another animal, not familiar with the
place, and there is a high escape path exists (AFTA=Low,
AFTP=Low, EPE=High) and Low if there is no escape path
exists (EPE=Low). The level of IMMOBILITY (see Figure
5(d)) as a decision instead of attacking is High if the animal
is not familiar with the approaching another animal, distance
towards another animal is less, and there is no escape path
exists (AFTA=Low, ADTA=Low, EPE=Low) and Low if an
escape path exists and distance towards another animal is High
(EPE=High, ADTA=High).

Figure 6 illustrates the trajectories of Robot 1 and Robot 2,
showcasing a sophisticated representation of animal Escape
behaviour, based on fuzzy behaviour principles. This be-
haviour is well-suited for replicating animal-like actions in
robotics. The blue trajectory of Robot 1 (R1) and the green
trajectory of Robot 2 (R2) display intricate behavioural pat-
terns similar to those observed in animals, with a particular
focus on escape behaviours in response to the presence of
another entity. The robots start at the following positions:
Robot 1 begins at coordinates (0.5, 0.5), and Robot 2 starts
at coordinates (6, 6). Robot 1 is tasked with moving closer
to Robot 2’s starting location, while Robot 2 is directed
to approach Robot 1’s initial position. This setup creates a
scenario where both robots advance towards each other’s initial
positions.

In this escape behaviour example, Robot 1 serves as the
primary actor and will perform the escape behaviour. We
assume that Robot 1 is initially unfamiliar with its envi-
ronment, including Robot 2, which is fully acquainted with
the surroundings. Upon entering the environment, Robot 1
exhibits a baseline level of fear due to its unfamiliarity. As the
robots move and the distance between them decreases, a fuzzy
logic-based system evaluates Robot 1’s behavioural response,
considering parameters such as the distance between the robots
(ADTA), the FEAR level, and the availability of an escape
route (EPE). When Robot 1 perceives that its proximity to
Robot 2 has reached a critical threshold, its FEAR level is
algorithmically increased. Subsequently, Robot 1 assesses the
feasibility of an escape and, upon seeing an escape route, initi-
ates an escape response. This response is visually represented
by a shift in Robot 1’s trajectory color to red, symbolizing
heightened fear and the commencement of escape maneuvers,
thus graphically indicating an increased state of alertness.

The synchronization and integration of behaviours are fun-
damental to the dynamics of the trajectories. The trajectories
of both robots are interdependent, reflecting the behavioural
coordination observed in animal interactions, where the ac-
tions of one organism provoke responses from another. The
interactions between Robot 1 and Robot 2 influence various
behaviours, such as movement toward a target and avoidance
of potential threats, which, in turn, determine Robot 1’s
trajectory. This interaction results in a flexible and complex
behavioural pattern that adapts to perceived changes in threat
levels.

As the distance between the robots increases, Robot 1’s
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“Behavioural Outcomes” that may affect specific be-
haviours include: (a) Properties of the target: The character-
istics of the object being attacked or defended against, such
as its size, movement, and location, can influence behaviour.
For example, the size (whether it is large or small), the ease
of movement (how easily it can be moved), and the proximity
(how close or far it is from the attacker) are factors to consider.
(b) Preference for passive or active responses: Animals often
have a preferred course of action when faced with danger.
They may choose to avoid the threat passively by remaining
still or to escape by moving away. The degree and location
of sensory discrepancies—anything that seems abnormal in
their environment—can impact this choice. (c) The possibility
of escape: The likelihood of escaping from danger affects
behaviour. If escape is physically impossible (for instance,
if an animal is trapped in an area with no way out), attack
behaviours may become more likely as a form of self-defense.

Figure 4 represents the components of an animal’s ag-
gressive behaviour fuzzy model concerning all the possible
components defined above, such as towards place, another
animal, object, distance, etc.

Fig. 4. Animal Aggressive Behaviour Fuzzy model.

Figure 5 demonstrates some examples of the behaviour
component level changes in the functions of the observations
according to the fuzzy model of aggressive behaviour. All
the graphs are based on the calculation of the FBDL [29]
description given in this paper using the implemented FBDL
functions publicly available in [30], [31]. We have taken
two observations, ADTA and EPE changing from Low to
High and the rest of the observations to be constant (i.e.,
the animal is highly familiar with the place and another
animal: AFTP=High, AFTA=High, and less familiar with
AFTO=Low, ADTO=Low, PIWPE=Low). Red color represents
High, and blue represents Low. Figure 5(a) demonstrates the
state change of “Fear” in the function of ADTA and EPE in
this case. According to the graph, the FEAR will be High
if no escape path exists. The approaching other animal is
unfamiliar (AFTA=Low, EPE=Low) and Low if the animal is
familiar with these states such as AFTA=High, AFTP=High,
AFTO=High). The level of ATTACK behaviour (see Figure
5(b)) is High if the animal is not familiar with the approaching
other animal, distance towards other animal is less, and there
is no escape path exists (AFTA=Low, ADTA=Low, EPE=Low)
and Low if escape path exists (EPE=High). The level of

ESCAPE (see Figure 5(c)) is High if the animal is not familiar
with the approaching another animal, not familiar with the
place, and there is a high escape path exists (AFTA=Low,
AFTP=Low, EPE=High) and Low if there is no escape path
exists (EPE=Low). The level of IMMOBILITY (see Figure
5(d)) as a decision instead of attacking is High if the animal
is not familiar with the approaching another animal, distance
towards another animal is less, and there is no escape path
exists (AFTA=Low, ADTA=Low, EPE=Low) and Low if an
escape path exists and distance towards another animal is High
(EPE=High, ADTA=High).

Figure 6 illustrates the trajectories of Robot 1 and Robot 2,
showcasing a sophisticated representation of animal Escape
behaviour, based on fuzzy behaviour principles. This be-
haviour is well-suited for replicating animal-like actions in
robotics. The blue trajectory of Robot 1 (R1) and the green
trajectory of Robot 2 (R2) display intricate behavioural pat-
terns similar to those observed in animals, with a particular
focus on escape behaviours in response to the presence of
another entity. The robots start at the following positions:
Robot 1 begins at coordinates (0.5, 0.5), and Robot 2 starts
at coordinates (6, 6). Robot 1 is tasked with moving closer
to Robot 2’s starting location, while Robot 2 is directed
to approach Robot 1’s initial position. This setup creates a
scenario where both robots advance towards each other’s initial
positions.

In this escape behaviour example, Robot 1 serves as the
primary actor and will perform the escape behaviour. We
assume that Robot 1 is initially unfamiliar with its envi-
ronment, including Robot 2, which is fully acquainted with
the surroundings. Upon entering the environment, Robot 1
exhibits a baseline level of fear due to its unfamiliarity. As the
robots move and the distance between them decreases, a fuzzy
logic-based system evaluates Robot 1’s behavioural response,
considering parameters such as the distance between the robots
(ADTA), the FEAR level, and the availability of an escape
route (EPE). When Robot 1 perceives that its proximity to
Robot 2 has reached a critical threshold, its FEAR level is
algorithmically increased. Subsequently, Robot 1 assesses the
feasibility of an escape and, upon seeing an escape route, initi-
ates an escape response. This response is visually represented
by a shift in Robot 1’s trajectory color to red, symbolizing
heightened fear and the commencement of escape maneuvers,
thus graphically indicating an increased state of alertness.

The synchronization and integration of behaviours are fun-
damental to the dynamics of the trajectories. The trajectories
of both robots are interdependent, reflecting the behavioural
coordination observed in animal interactions, where the ac-
tions of one organism provoke responses from another. The
interactions between Robot 1 and Robot 2 influence various
behaviours, such as movement toward a target and avoidance
of potential threats, which, in turn, determine Robot 1’s
trajectory. This interaction results in a flexible and complex
behavioural pattern that adapts to perceived changes in threat
levels.

As the distance between the robots increases, Robot 1’s

“Behavioural Outcomes” that may affect specific be-
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For example, the size (whether it is large or small), the ease
of movement (how easily it can be moved), and the proximity
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their environment—can impact this choice. (c) The possibility
of escape: The likelihood of escaping from danger affects
behaviour. If escape is physically impossible (for instance,
if an animal is trapped in an area with no way out), attack
behaviours may become more likely as a form of self-defense.
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Figure 5 demonstrates some examples of the behaviour
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showcasing a sophisticated representation of animal Escape
behaviour, based on fuzzy behaviour principles. This be-
haviour is well-suited for replicating animal-like actions in
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terns similar to those observed in animals, with a particular
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another entity. The robots start at the following positions:
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to Robot 2’s starting location, while Robot 2 is directed
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ronment, including Robot 2, which is fully acquainted with
the surroundings. Upon entering the environment, Robot 1
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feasibility of an escape and, upon seeing an escape route, initi-
ates an escape response. This response is visually represented
by a shift in Robot 1’s trajectory color to red, symbolizing
heightened fear and the commencement of escape maneuvers,
thus graphically indicating an increased state of alertness.

The synchronization and integration of behaviours are fun-
damental to the dynamics of the trajectories. The trajectories
of both robots are interdependent, reflecting the behavioural
coordination observed in animal interactions, where the ac-
tions of one organism provoke responses from another. The
interactions between Robot 1 and Robot 2 influence various
behaviours, such as movement toward a target and avoidance
of potential threats, which, in turn, determine Robot 1’s
trajectory. This interaction results in a flexible and complex
behavioural pattern that adapts to perceived changes in threat
levels.
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description given in this paper using the implemented FBDL
functions publicly available in [30], [31]. We have taken
two observations, ADTA and EPE changing from Low to
High and the rest of the observations to be constant (i.e.,
the animal is highly familiar with the place and another
animal: AFTP=High, AFTA=High, and less familiar with
AFTO=Low, ADTO=Low, PIWPE=Low). Red color represents
High, and blue represents Low. Figure 5(a) demonstrates the
state change of “Fear” in the function of ADTA and EPE in
this case. According to the graph, the FEAR will be High
if no escape path exists. The approaching other animal is
unfamiliar (AFTA=Low, EPE=Low) and Low if the animal is
familiar with these states such as AFTA=High, AFTP=High,
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5(d)) as a decision instead of attacking is High if the animal
is not familiar with the approaching another animal, distance
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Figure 6 illustrates the trajectories of Robot 1 and Robot 2,
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behaviour, based on fuzzy behaviour principles. This be-
haviour is well-suited for replicating animal-like actions in
robotics. The blue trajectory of Robot 1 (R1) and the green
trajectory of Robot 2 (R2) display intricate behavioural pat-
terns similar to those observed in animals, with a particular
focus on escape behaviours in response to the presence of
another entity. The robots start at the following positions:
Robot 1 begins at coordinates (0.5, 0.5), and Robot 2 starts
at coordinates (6, 6). Robot 1 is tasked with moving closer
to Robot 2’s starting location, while Robot 2 is directed
to approach Robot 1’s initial position. This setup creates a
scenario where both robots advance towards each other’s initial
positions.

In this escape behaviour example, Robot 1 serves as the
primary actor and will perform the escape behaviour. We
assume that Robot 1 is initially unfamiliar with its envi-
ronment, including Robot 2, which is fully acquainted with
the surroundings. Upon entering the environment, Robot 1
exhibits a baseline level of fear due to its unfamiliarity. As the
robots move and the distance between them decreases, a fuzzy
logic-based system evaluates Robot 1’s behavioural response,
considering parameters such as the distance between the robots
(ADTA), the FEAR level, and the availability of an escape
route (EPE). When Robot 1 perceives that its proximity to
Robot 2 has reached a critical threshold, its FEAR level is
algorithmically increased. Subsequently, Robot 1 assesses the
feasibility of an escape and, upon seeing an escape route, initi-
ates an escape response. This response is visually represented
by a shift in Robot 1’s trajectory color to red, symbolizing
heightened fear and the commencement of escape maneuvers,
thus graphically indicating an increased state of alertness.

The synchronization and integration of behaviours are fun-
damental to the dynamics of the trajectories. The trajectories
of both robots are interdependent, reflecting the behavioural
coordination observed in animal interactions, where the ac-
tions of one organism provoke responses from another. The
interactions between Robot 1 and Robot 2 influence various
behaviours, such as movement toward a target and avoidance
of potential threats, which, in turn, determine Robot 1’s
trajectory. This interaction results in a flexible and complex
behavioural pattern that adapts to perceived changes in threat
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fear level decreases, leading to a diminished escape response.
During this phase, Robot 1 undergoes a behavioural shift,
indicated by a change in its trajectory color back to blue,
signaling a reduction in anxiety and the cessation of the escape

response. The trajectories of Robot 1 and Robot 2 not only
demonstrate the effectiveness of fuzzy logic in developing
behaviour-based robotic systems but also provide a compelling
model for emulating animal escape strategies. By integrating
fuzzy rules, coordinating interactive behaviours, and synthe-
sizing multiple actions into a cohesive response, this system
offers valuable insights into the potential capabilities of ad-
vanced autonomous robotic systems. Such systems, capable of
navigating and responding to complex environments similarly
to biological entities, hold significant promise for applications
in autonomous exploration and interactive robotics.

Figure 7 depicts the ATTACK behaviour trajectory between
Robot 1 (R1) and Robot 2 (R2), utilizing a fuzzy behavioural
architecture that emulates the dynamics of animal aggression.
The fuzzy rule base within this framework facilitates the
simulation of complex and uncertain interspecies interactions,
particularly in the context of aggression. In this scenario,
each robot’s behaviour is represented by a distinct color-coded

“Behavioural Outcomes” that may affect specific be-
haviours include: (a) Properties of the target: The character-
istics of the object being attacked or defended against, such
as its size, movement, and location, can influence behaviour.
For example, the size (whether it is large or small), the ease
of movement (how easily it can be moved), and the proximity
(how close or far it is from the attacker) are factors to consider.
(b) Preference for passive or active responses: Animals often
have a preferred course of action when faced with danger.
They may choose to avoid the threat passively by remaining
still or to escape by moving away. The degree and location
of sensory discrepancies—anything that seems abnormal in
their environment—can impact this choice. (c) The possibility
of escape: The likelihood of escaping from danger affects
behaviour. If escape is physically impossible (for instance,
if an animal is trapped in an area with no way out), attack
behaviours may become more likely as a form of self-defense.

Figure 4 represents the components of an animal’s ag-
gressive behaviour fuzzy model concerning all the possible
components defined above, such as towards place, another
animal, object, distance, etc.
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Figure 5 demonstrates some examples of the behaviour
component level changes in the functions of the observations
according to the fuzzy model of aggressive behaviour. All
the graphs are based on the calculation of the FBDL [29]
description given in this paper using the implemented FBDL
functions publicly available in [30], [31]. We have taken
two observations, ADTA and EPE changing from Low to
High and the rest of the observations to be constant (i.e.,
the animal is highly familiar with the place and another
animal: AFTP=High, AFTA=High, and less familiar with
AFTO=Low, ADTO=Low, PIWPE=Low). Red color represents
High, and blue represents Low. Figure 5(a) demonstrates the
state change of “Fear” in the function of ADTA and EPE in
this case. According to the graph, the FEAR will be High
if no escape path exists. The approaching other animal is
unfamiliar (AFTA=Low, EPE=Low) and Low if the animal is
familiar with these states such as AFTA=High, AFTP=High,
AFTO=High). The level of ATTACK behaviour (see Figure
5(b)) is High if the animal is not familiar with the approaching
other animal, distance towards other animal is less, and there
is no escape path exists (AFTA=Low, ADTA=Low, EPE=Low)
and Low if escape path exists (EPE=High). The level of

ESCAPE (see Figure 5(c)) is High if the animal is not familiar
with the approaching another animal, not familiar with the
place, and there is a high escape path exists (AFTA=Low,
AFTP=Low, EPE=High) and Low if there is no escape path
exists (EPE=Low). The level of IMMOBILITY (see Figure
5(d)) as a decision instead of attacking is High if the animal
is not familiar with the approaching another animal, distance
towards another animal is less, and there is no escape path
exists (AFTA=Low, ADTA=Low, EPE=Low) and Low if an
escape path exists and distance towards another animal is High
(EPE=High, ADTA=High).

Figure 6 illustrates the trajectories of Robot 1 and Robot 2,
showcasing a sophisticated representation of animal Escape
behaviour, based on fuzzy behaviour principles. This be-
haviour is well-suited for replicating animal-like actions in
robotics. The blue trajectory of Robot 1 (R1) and the green
trajectory of Robot 2 (R2) display intricate behavioural pat-
terns similar to those observed in animals, with a particular
focus on escape behaviours in response to the presence of
another entity. The robots start at the following positions:
Robot 1 begins at coordinates (0.5, 0.5), and Robot 2 starts
at coordinates (6, 6). Robot 1 is tasked with moving closer
to Robot 2’s starting location, while Robot 2 is directed
to approach Robot 1’s initial position. This setup creates a
scenario where both robots advance towards each other’s initial
positions.

In this escape behaviour example, Robot 1 serves as the
primary actor and will perform the escape behaviour. We
assume that Robot 1 is initially unfamiliar with its envi-
ronment, including Robot 2, which is fully acquainted with
the surroundings. Upon entering the environment, Robot 1
exhibits a baseline level of fear due to its unfamiliarity. As the
robots move and the distance between them decreases, a fuzzy
logic-based system evaluates Robot 1’s behavioural response,
considering parameters such as the distance between the robots
(ADTA), the FEAR level, and the availability of an escape
route (EPE). When Robot 1 perceives that its proximity to
Robot 2 has reached a critical threshold, its FEAR level is
algorithmically increased. Subsequently, Robot 1 assesses the
feasibility of an escape and, upon seeing an escape route, initi-
ates an escape response. This response is visually represented
by a shift in Robot 1’s trajectory color to red, symbolizing
heightened fear and the commencement of escape maneuvers,
thus graphically indicating an increased state of alertness.

The synchronization and integration of behaviours are fun-
damental to the dynamics of the trajectories. The trajectories
of both robots are interdependent, reflecting the behavioural
coordination observed in animal interactions, where the ac-
tions of one organism provoke responses from another. The
interactions between Robot 1 and Robot 2 influence various
behaviours, such as movement toward a target and avoidance
of potential threats, which, in turn, determine Robot 1’s
trajectory. This interaction results in a flexible and complex
behavioural pattern that adapts to perceived changes in threat
levels.

As the distance between the robots increases, Robot 1’s
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fear level decreases, leading to a diminished escape response.
During this phase, Robot 1 undergoes a behavioural shift,
indicated by a change in its trajectory color back to blue,
signaling a reduction in anxiety and the cessation of the escape

response. The trajectories of Robot 1 and Robot 2 not only
demonstrate the effectiveness of fuzzy logic in developing
behaviour-based robotic systems but also provide a compelling
model for emulating animal escape strategies. By integrating
fuzzy rules, coordinating interactive behaviours, and synthe-
sizing multiple actions into a cohesive response, this system
offers valuable insights into the potential capabilities of ad-
vanced autonomous robotic systems. Such systems, capable of
navigating and responding to complex environments similarly
to biological entities, hold significant promise for applications
in autonomous exploration and interactive robotics.

Figure 7 depicts the ATTACK behaviour trajectory between
Robot 1 (R1) and Robot 2 (R2), utilizing a fuzzy behavioural
architecture that emulates the dynamics of animal aggression.
The fuzzy rule base within this framework facilitates the
simulation of complex and uncertain interspecies interactions,
particularly in the context of aggression. In this scenario,
each robot’s behaviour is represented by a distinct color-coded
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demonstrate the effectiveness of fuzzy logic in developing
behaviour-based robotic systems but also provide a compelling
model for emulating animal escape strategies. By integrating
fuzzy rules, coordinating interactive behaviours, and synthe-
sizing multiple actions into a cohesive response, this system
offers valuable insights into the potential capabilities of ad-
vanced autonomous robotic systems. Such systems, capable of
navigating and responding to complex environments similarly
to biological entities, hold significant promise for applications
in autonomous exploration and interactive robotics.

Figure 7 depicts the ATTACK behaviour trajectory between
Robot 1 (R1) and Robot 2 (R2), utilizing a fuzzy behavioural
architecture that emulates the dynamics of animal aggression.
The fuzzy rule base within this framework facilitates the
simulation of complex and uncertain interspecies interactions,
particularly in the context of aggression. In this scenario,
each robot’s behaviour is represented by a distinct color-coded

“Behavioural Outcomes” that may affect specific be-
haviours include: (a) Properties of the target: The character-
istics of the object being attacked or defended against, such
as its size, movement, and location, can influence behaviour.
For example, the size (whether it is large or small), the ease
of movement (how easily it can be moved), and the proximity
(how close or far it is from the attacker) are factors to consider.
(b) Preference for passive or active responses: Animals often
have a preferred course of action when faced with danger.
They may choose to avoid the threat passively by remaining
still or to escape by moving away. The degree and location
of sensory discrepancies—anything that seems abnormal in
their environment—can impact this choice. (c) The possibility
of escape: The likelihood of escaping from danger affects
behaviour. If escape is physically impossible (for instance,
if an animal is trapped in an area with no way out), attack
behaviours may become more likely as a form of self-defense.

Figure 4 represents the components of an animal’s ag-
gressive behaviour fuzzy model concerning all the possible
components defined above, such as towards place, another
animal, object, distance, etc.

Fig. 4. Animal Aggressive Behaviour Fuzzy model.

Figure 5 demonstrates some examples of the behaviour
component level changes in the functions of the observations
according to the fuzzy model of aggressive behaviour. All
the graphs are based on the calculation of the FBDL [29]
description given in this paper using the implemented FBDL
functions publicly available in [30], [31]. We have taken
two observations, ADTA and EPE changing from Low to
High and the rest of the observations to be constant (i.e.,
the animal is highly familiar with the place and another
animal: AFTP=High, AFTA=High, and less familiar with
AFTO=Low, ADTO=Low, PIWPE=Low). Red color represents
High, and blue represents Low. Figure 5(a) demonstrates the
state change of “Fear” in the function of ADTA and EPE in
this case. According to the graph, the FEAR will be High
if no escape path exists. The approaching other animal is
unfamiliar (AFTA=Low, EPE=Low) and Low if the animal is
familiar with these states such as AFTA=High, AFTP=High,
AFTO=High). The level of ATTACK behaviour (see Figure
5(b)) is High if the animal is not familiar with the approaching
other animal, distance towards other animal is less, and there
is no escape path exists (AFTA=Low, ADTA=Low, EPE=Low)
and Low if escape path exists (EPE=High). The level of

ESCAPE (see Figure 5(c)) is High if the animal is not familiar
with the approaching another animal, not familiar with the
place, and there is a high escape path exists (AFTA=Low,
AFTP=Low, EPE=High) and Low if there is no escape path
exists (EPE=Low). The level of IMMOBILITY (see Figure
5(d)) as a decision instead of attacking is High if the animal
is not familiar with the approaching another animal, distance
towards another animal is less, and there is no escape path
exists (AFTA=Low, ADTA=Low, EPE=Low) and Low if an
escape path exists and distance towards another animal is High
(EPE=High, ADTA=High).

Figure 6 illustrates the trajectories of Robot 1 and Robot 2,
showcasing a sophisticated representation of animal Escape
behaviour, based on fuzzy behaviour principles. This be-
haviour is well-suited for replicating animal-like actions in
robotics. The blue trajectory of Robot 1 (R1) and the green
trajectory of Robot 2 (R2) display intricate behavioural pat-
terns similar to those observed in animals, with a particular
focus on escape behaviours in response to the presence of
another entity. The robots start at the following positions:
Robot 1 begins at coordinates (0.5, 0.5), and Robot 2 starts
at coordinates (6, 6). Robot 1 is tasked with moving closer
to Robot 2’s starting location, while Robot 2 is directed
to approach Robot 1’s initial position. This setup creates a
scenario where both robots advance towards each other’s initial
positions.

In this escape behaviour example, Robot 1 serves as the
primary actor and will perform the escape behaviour. We
assume that Robot 1 is initially unfamiliar with its envi-
ronment, including Robot 2, which is fully acquainted with
the surroundings. Upon entering the environment, Robot 1
exhibits a baseline level of fear due to its unfamiliarity. As the
robots move and the distance between them decreases, a fuzzy
logic-based system evaluates Robot 1’s behavioural response,
considering parameters such as the distance between the robots
(ADTA), the FEAR level, and the availability of an escape
route (EPE). When Robot 1 perceives that its proximity to
Robot 2 has reached a critical threshold, its FEAR level is
algorithmically increased. Subsequently, Robot 1 assesses the
feasibility of an escape and, upon seeing an escape route, initi-
ates an escape response. This response is visually represented
by a shift in Robot 1’s trajectory color to red, symbolizing
heightened fear and the commencement of escape maneuvers,
thus graphically indicating an increased state of alertness.

The synchronization and integration of behaviours are fun-
damental to the dynamics of the trajectories. The trajectories
of both robots are interdependent, reflecting the behavioural
coordination observed in animal interactions, where the ac-
tions of one organism provoke responses from another. The
interactions between Robot 1 and Robot 2 influence various
behaviours, such as movement toward a target and avoidance
of potential threats, which, in turn, determine Robot 1’s
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As the distance between the robots increases, Robot 1’s
“Behavioural Outcomes” that may affect specific be-

haviours include: (a) Properties of the target: The character-
istics of the object being attacked or defended against, such
as its size, movement, and location, can influence behaviour.
For example, the size (whether it is large or small), the ease
of movement (how easily it can be moved), and the proximity
(how close or far it is from the attacker) are factors to consider.
(b) Preference for passive or active responses: Animals often
have a preferred course of action when faced with danger.
They may choose to avoid the threat passively by remaining
still or to escape by moving away. The degree and location
of sensory discrepancies—anything that seems abnormal in
their environment—can impact this choice. (c) The possibility
of escape: The likelihood of escaping from danger affects
behaviour. If escape is physically impossible (for instance,
if an animal is trapped in an area with no way out), attack
behaviours may become more likely as a form of self-defense.

Figure 4 represents the components of an animal’s ag-
gressive behaviour fuzzy model concerning all the possible
components defined above, such as towards place, another
animal, object, distance, etc.

Fig. 4. Animal Aggressive Behaviour Fuzzy model.

Figure 5 demonstrates some examples of the behaviour
component level changes in the functions of the observations
according to the fuzzy model of aggressive behaviour. All
the graphs are based on the calculation of the FBDL [29]
description given in this paper using the implemented FBDL
functions publicly available in [30], [31]. We have taken
two observations, ADTA and EPE changing from Low to
High and the rest of the observations to be constant (i.e.,
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AFTO=Low, ADTO=Low, PIWPE=Low). Red color represents
High, and blue represents Low. Figure 5(a) demonstrates the
state change of “Fear” in the function of ADTA and EPE in
this case. According to the graph, the FEAR will be High
if no escape path exists. The approaching other animal is
unfamiliar (AFTA=Low, EPE=Low) and Low if the animal is
familiar with these states such as AFTA=High, AFTP=High,
AFTO=High). The level of ATTACK behaviour (see Figure
5(b)) is High if the animal is not familiar with the approaching
other animal, distance towards other animal is less, and there
is no escape path exists (AFTA=Low, ADTA=Low, EPE=Low)
and Low if escape path exists (EPE=High). The level of

ESCAPE (see Figure 5(c)) is High if the animal is not familiar
with the approaching another animal, not familiar with the
place, and there is a high escape path exists (AFTA=Low,
AFTP=Low, EPE=High) and Low if there is no escape path
exists (EPE=Low). The level of IMMOBILITY (see Figure
5(d)) as a decision instead of attacking is High if the animal
is not familiar with the approaching another animal, distance
towards another animal is less, and there is no escape path
exists (AFTA=Low, ADTA=Low, EPE=Low) and Low if an
escape path exists and distance towards another animal is High
(EPE=High, ADTA=High).

Figure 6 illustrates the trajectories of Robot 1 and Robot 2,
showcasing a sophisticated representation of animal Escape
behaviour, based on fuzzy behaviour principles. This be-
haviour is well-suited for replicating animal-like actions in
robotics. The blue trajectory of Robot 1 (R1) and the green
trajectory of Robot 2 (R2) display intricate behavioural pat-
terns similar to those observed in animals, with a particular
focus on escape behaviours in response to the presence of
another entity. The robots start at the following positions:
Robot 1 begins at coordinates (0.5, 0.5), and Robot 2 starts
at coordinates (6, 6). Robot 1 is tasked with moving closer
to Robot 2’s starting location, while Robot 2 is directed
to approach Robot 1’s initial position. This setup creates a
scenario where both robots advance towards each other’s initial
positions.

In this escape behaviour example, Robot 1 serves as the
primary actor and will perform the escape behaviour. We
assume that Robot 1 is initially unfamiliar with its envi-
ronment, including Robot 2, which is fully acquainted with
the surroundings. Upon entering the environment, Robot 1
exhibits a baseline level of fear due to its unfamiliarity. As the
robots move and the distance between them decreases, a fuzzy
logic-based system evaluates Robot 1’s behavioural response,
considering parameters such as the distance between the robots
(ADTA), the FEAR level, and the availability of an escape
route (EPE). When Robot 1 perceives that its proximity to
Robot 2 has reached a critical threshold, its FEAR level is
algorithmically increased. Subsequently, Robot 1 assesses the
feasibility of an escape and, upon seeing an escape route, initi-
ates an escape response. This response is visually represented
by a shift in Robot 1’s trajectory color to red, symbolizing
heightened fear and the commencement of escape maneuvers,
thus graphically indicating an increased state of alertness.

The synchronization and integration of behaviours are fun-
damental to the dynamics of the trajectories. The trajectories
of both robots are interdependent, reflecting the behavioural
coordination observed in animal interactions, where the ac-
tions of one organism provoke responses from another. The
interactions between Robot 1 and Robot 2 influence various
behaviours, such as movement toward a target and avoidance
of potential threats, which, in turn, determine Robot 1’s
trajectory. This interaction results in a flexible and complex
behavioural pattern that adapts to perceived changes in threat
levels.

As the distance between the robots increases, Robot 1’s

“Behavioural Outcomes” that may affect specific be-
haviours include: (a) Properties of the target: The character-
istics of the object being attacked or defended against, such
as its size, movement, and location, can influence behaviour.
For example, the size (whether it is large or small), the ease
of movement (how easily it can be moved), and the proximity
(how close or far it is from the attacker) are factors to consider.
(b) Preference for passive or active responses: Animals often
have a preferred course of action when faced with danger.
They may choose to avoid the threat passively by remaining
still or to escape by moving away. The degree and location
of sensory discrepancies—anything that seems abnormal in
their environment—can impact this choice. (c) The possibility
of escape: The likelihood of escaping from danger affects
behaviour. If escape is physically impossible (for instance,
if an animal is trapped in an area with no way out), attack
behaviours may become more likely as a form of self-defense.

Figure 4 represents the components of an animal’s ag-
gressive behaviour fuzzy model concerning all the possible
components defined above, such as towards place, another
animal, object, distance, etc.

Fig. 4. Animal Aggressive Behaviour Fuzzy model.
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thus graphically indicating an increased state of alertness.
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of both robots are interdependent, reflecting the behavioural
coordination observed in animal interactions, where the ac-
tions of one organism provoke responses from another. The
interactions between Robot 1 and Robot 2 influence various
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of potential threats, which, in turn, determine Robot 1’s
trajectory. This interaction results in a flexible and complex
behavioural pattern that adapts to perceived changes in threat
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path, illustrating their interactions over time and space. This
mirrors the movement and interaction patterns observed among
animals within a shared space. Initially, Robot 1’s trajectory,
starting at coordinates (1,1), is colored blue, reflecting typical
non-aggressive behaviour. Robot 1’s objective is to approach
Robot 2, display aggression, and assert dominance. Robot 2’s
trajectory, represented by a green line at coordinates (5.5, 5.5),
suggests an absence of fear. As the distance between Robot 1
and Robot 2 diminishes, Robot 1’s trajectory shifts to red,
signifying an escalation in aggression and the initiation of an
attack, analogous to an animal transitioning from pursuit to
combat.

Fig. 7. Trajectories for the Attack Behaviour.

As Robot 1 approaches, Robot 2 begins to experience fear,
which is visually represented by its trajectory turning orange,
indicating a heightened fear response. This shift can be likened
to an animal becoming increasingly anxious and defensive
when it perceives a threat or rival, prompting it either to defend
itself or flee. The changing colors in Robot 2’s path signify its
escalating fear and desire to avoid confrontation by retreating,
particularly due to its unfamiliarity with Robot 1 and the
decreasing distance between them. This interaction between
the two robots mirrors animal behaviour, characterized by a
complex interplay of stimuli and responses. The aggressive
movements of Robot 1 elicit a fear-based reaction in Robot 2,
governed by fuzzy rules that take into account factors such as
proximity ADTA, environmental familiarity AFTP, and per-
ceived threat levels AFTA. Consequently, Robot 1’s behaviour
adapts, becoming increasingly aggressive as it closes in on its
target. Similarly, a fuzzy logic system modulates Robot 2’s
responses by evaluating its fear level, resulting in a retreat
as the threat diminishes and a return to its original low-fear
trajectory, represented by a green path. This pattern reflects
the natural process by which animals regain composure once
the perceived threat has subsided.

The trajectories of both robots underscore the sophistication
of the FSM in emulating animal behaviours. The system
effectively replicates complex actions such as aggression,
fear, and survival strategies. This advancement is pivotal for
the development of autonomous robotics, enabling robots to
navigate and respond to complex environments by dynamically
adjusting their behaviour in response to internal states and ex-

ternal stimuli. Moreover, this approach offers valuable insights
into animal behaviour, facilitating ecosystem studies and the
creation of intelligent machines capable of natural interactions
with their surroundings.

The simulation of animal escape behaviour, as depicted in
figures 8(a)–8(e), is based on the escape behaviour trajectory
described above. It employs the Robot Operating System
(ROS) in conjunction with tools such as Gazebo and Rviz
to model the escape behaviour of robots designed to mimic
animals. This simulation involves a sophisticated integration
of robotic vision, decision-making processes, and movement,
all orchestrated within a controlled virtual environment. A key
element of this setup is the use of LIDAR (Light Detection
and Ranging), a highly esteemed sensor in robotics for its
ability to generate real-time, high-resolution 3D scans of the
environment. In the escape scenario, LIDAR is crucial for
the system’s operation at high speeds, enabling instantaneous
object detection and data collection from multiple angles. This
capability is particularly important for the rapid and accurate
identification of other entities, which is essential for timely
and precise reactions.

The simulated scenario involves two robots, designated as
Robot 1 and Robot 2,, within a confined space containing
walls and other objects. In this scenario, Robot 1, represented
by blue dots, is positioned near an object, while Robot 2,
indicated by red dots, is located near a wall. Robot 1 serves as
the primary actor, with its behaviour and responses driving the
sequence of interactions within the simulation. The trajectory
and behaviour of Robot 1, as described earlier, illustrate the
complex decision-making processes that underpin its actions,
driven by fuzzy logic and real-time environmental data. This
demonstrates the potential of such systems to replicate the
adaptive and dynamic nature of animal escape behaviours.

The simulation designates the initial location of these animal
robots, as seen in figure 8(a). The subsequent stages involve
Robot 1 and Robot 2 approaching their respective starting
positions, leading to a scenario where they progress towards
each other. Figure 8(b) depicts the dynamic stage of the
robots, capturing their movement. The experiment incorporates
concepts such as behaviour fusion, behaviour coordination,
and fuzzy component behaviour to analyze the system’s perfor-
mance. Fuzzy component behaviour specifically refers to the
use of fuzzy logic for interpreting input data obtained from
sensors such as LIDAR. In this instance, the robotic animals
use data from laser scans to identify each other and calculate
their relative distance.

As the robots approach each other, as shown in figure 8(c),
Robot 1 detects the presence of Robot 2 using its sensors and
input data. The fear level of Robot 1 increases and is assessed
using a fuzzy rule-based approach that considers factors such
as the robot’s familiarity with other robots, the surroundings,
the distance to Robot 2, and the availability of escape route.
Figure 8(d) illustrates the moment when Robot 1 escapes due
to high fear and the presence of escape path.

behaviour coordination in this context refers to the synchro-
nization of the robots actions to achieve a shared goal, such
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trajectory, represented by a green line at coordinates (5.5, 5.5),
suggests an absence of fear. As the distance between Robot 1
and Robot 2 diminishes, Robot 1’s trajectory shifts to red,
signifying an escalation in aggression and the initiation of an
attack, analogous to an animal transitioning from pursuit to
combat.
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the two robots mirrors animal behaviour, characterized by a
complex interplay of stimuli and responses. The aggressive
movements of Robot 1 elicit a fear-based reaction in Robot 2,
governed by fuzzy rules that take into account factors such as
proximity ADTA, environmental familiarity AFTP, and per-
ceived threat levels AFTA. Consequently, Robot 1’s behaviour
adapts, becoming increasingly aggressive as it closes in on its
target. Similarly, a fuzzy logic system modulates Robot 2’s
responses by evaluating its fear level, resulting in a retreat
as the threat diminishes and a return to its original low-fear
trajectory, represented by a green path. This pattern reflects
the natural process by which animals regain composure once
the perceived threat has subsided.

The trajectories of both robots underscore the sophistication
of the FSM in emulating animal behaviours. The system
effectively replicates complex actions such as aggression,
fear, and survival strategies. This advancement is pivotal for
the development of autonomous robotics, enabling robots to
navigate and respond to complex environments by dynamically
adjusting their behaviour in response to internal states and ex-

ternal stimuli. Moreover, this approach offers valuable insights
into animal behaviour, facilitating ecosystem studies and the
creation of intelligent machines capable of natural interactions
with their surroundings.

The simulation of animal escape behaviour, as depicted in
figures 8(a)–8(e), is based on the escape behaviour trajectory
described above. It employs the Robot Operating System
(ROS) in conjunction with tools such as Gazebo and Rviz
to model the escape behaviour of robots designed to mimic
animals. This simulation involves a sophisticated integration
of robotic vision, decision-making processes, and movement,
all orchestrated within a controlled virtual environment. A key
element of this setup is the use of LIDAR (Light Detection
and Ranging), a highly esteemed sensor in robotics for its
ability to generate real-time, high-resolution 3D scans of the
environment. In the escape scenario, LIDAR is crucial for
the system’s operation at high speeds, enabling instantaneous
object detection and data collection from multiple angles. This
capability is particularly important for the rapid and accurate
identification of other entities, which is essential for timely
and precise reactions.

The simulated scenario involves two robots, designated as
Robot 1 and Robot 2,, within a confined space containing
walls and other objects. In this scenario, Robot 1, represented
by blue dots, is positioned near an object, while Robot 2,
indicated by red dots, is located near a wall. Robot 1 serves as
the primary actor, with its behaviour and responses driving the
sequence of interactions within the simulation. The trajectory
and behaviour of Robot 1, as described earlier, illustrate the
complex decision-making processes that underpin its actions,
driven by fuzzy logic and real-time environmental data. This
demonstrates the potential of such systems to replicate the
adaptive and dynamic nature of animal escape behaviours.

The simulation designates the initial location of these animal
robots, as seen in figure 8(a). The subsequent stages involve
Robot 1 and Robot 2 approaching their respective starting
positions, leading to a scenario where they progress towards
each other. Figure 8(b) depicts the dynamic stage of the
robots, capturing their movement. The experiment incorporates
concepts such as behaviour fusion, behaviour coordination,
and fuzzy component behaviour to analyze the system’s perfor-
mance. Fuzzy component behaviour specifically refers to the
use of fuzzy logic for interpreting input data obtained from
sensors such as LIDAR. In this instance, the robotic animals
use data from laser scans to identify each other and calculate
their relative distance.

As the robots approach each other, as shown in figure 8(c),
Robot 1 detects the presence of Robot 2 using its sensors and
input data. The fear level of Robot 1 increases and is assessed
using a fuzzy rule-based approach that considers factors such
as the robot’s familiarity with other robots, the surroundings,
the distance to Robot 2, and the availability of escape route.
Figure 8(d) illustrates the moment when Robot 1 escapes due
to high fear and the presence of escape path.

behaviour coordination in this context refers to the synchro-
nization of the robots actions to achieve a shared goal, such

path, illustrating their interactions over time and space. This
mirrors the movement and interaction patterns observed among
animals within a shared space. Initially, Robot 1’s trajectory,
starting at coordinates (1,1), is colored blue, reflecting typical
non-aggressive behaviour. Robot 1’s objective is to approach
Robot 2, display aggression, and assert dominance. Robot 2’s
trajectory, represented by a green line at coordinates (5.5, 5.5),
suggests an absence of fear. As the distance between Robot 1
and Robot 2 diminishes, Robot 1’s trajectory shifts to red,
signifying an escalation in aggression and the initiation of an
attack, analogous to an animal transitioning from pursuit to
combat.

Fig. 7. Trajectories for the Attack Behaviour.

As Robot 1 approaches, Robot 2 begins to experience fear,
which is visually represented by its trajectory turning orange,
indicating a heightened fear response. This shift can be likened
to an animal becoming increasingly anxious and defensive
when it perceives a threat or rival, prompting it either to defend
itself or flee. The changing colors in Robot 2’s path signify its
escalating fear and desire to avoid confrontation by retreating,
particularly due to its unfamiliarity with Robot 1 and the
decreasing distance between them. This interaction between
the two robots mirrors animal behaviour, characterized by a
complex interplay of stimuli and responses. The aggressive
movements of Robot 1 elicit a fear-based reaction in Robot 2,
governed by fuzzy rules that take into account factors such as
proximity ADTA, environmental familiarity AFTP, and per-
ceived threat levels AFTA. Consequently, Robot 1’s behaviour
adapts, becoming increasingly aggressive as it closes in on its
target. Similarly, a fuzzy logic system modulates Robot 2’s
responses by evaluating its fear level, resulting in a retreat
as the threat diminishes and a return to its original low-fear
trajectory, represented by a green path. This pattern reflects
the natural process by which animals regain composure once
the perceived threat has subsided.

The trajectories of both robots underscore the sophistication
of the FSM in emulating animal behaviours. The system
effectively replicates complex actions such as aggression,
fear, and survival strategies. This advancement is pivotal for
the development of autonomous robotics, enabling robots to
navigate and respond to complex environments by dynamically
adjusting their behaviour in response to internal states and ex-

ternal stimuli. Moreover, this approach offers valuable insights
into animal behaviour, facilitating ecosystem studies and the
creation of intelligent machines capable of natural interactions
with their surroundings.

The simulation of animal escape behaviour, as depicted in
figures 8(a)–8(e), is based on the escape behaviour trajectory
described above. It employs the Robot Operating System
(ROS) in conjunction with tools such as Gazebo and Rviz
to model the escape behaviour of robots designed to mimic
animals. This simulation involves a sophisticated integration
of robotic vision, decision-making processes, and movement,
all orchestrated within a controlled virtual environment. A key
element of this setup is the use of LIDAR (Light Detection
and Ranging), a highly esteemed sensor in robotics for its
ability to generate real-time, high-resolution 3D scans of the
environment. In the escape scenario, LIDAR is crucial for
the system’s operation at high speeds, enabling instantaneous
object detection and data collection from multiple angles. This
capability is particularly important for the rapid and accurate
identification of other entities, which is essential for timely
and precise reactions.

The simulated scenario involves two robots, designated as
Robot 1 and Robot 2,, within a confined space containing
walls and other objects. In this scenario, Robot 1, represented
by blue dots, is positioned near an object, while Robot 2,
indicated by red dots, is located near a wall. Robot 1 serves as
the primary actor, with its behaviour and responses driving the
sequence of interactions within the simulation. The trajectory
and behaviour of Robot 1, as described earlier, illustrate the
complex decision-making processes that underpin its actions,
driven by fuzzy logic and real-time environmental data. This
demonstrates the potential of such systems to replicate the
adaptive and dynamic nature of animal escape behaviours.

The simulation designates the initial location of these animal
robots, as seen in figure 8(a). The subsequent stages involve
Robot 1 and Robot 2 approaching their respective starting
positions, leading to a scenario where they progress towards
each other. Figure 8(b) depicts the dynamic stage of the
robots, capturing their movement. The experiment incorporates
concepts such as behaviour fusion, behaviour coordination,
and fuzzy component behaviour to analyze the system’s perfor-
mance. Fuzzy component behaviour specifically refers to the
use of fuzzy logic for interpreting input data obtained from
sensors such as LIDAR. In this instance, the robotic animals
use data from laser scans to identify each other and calculate
their relative distance.

As the robots approach each other, as shown in figure 8(c),
Robot 1 detects the presence of Robot 2 using its sensors and
input data. The fear level of Robot 1 increases and is assessed
using a fuzzy rule-based approach that considers factors such
as the robot’s familiarity with other robots, the surroundings,
the distance to Robot 2, and the availability of escape route.
Figure 8(d) illustrates the moment when Robot 1 escapes due
to high fear and the presence of escape path.

behaviour coordination in this context refers to the synchro-
nization of the robots actions to achieve a shared goal, such

as escaping in this particular scenario. Robot 1’s escape upon
approaching Robot 2 is a result of its unfamiliarity with the
environment and the other robot, as specified in the escape
regulations. behaviour fusion combines the behaviours of both
robots to achieve the specific objective of assisting Robot 1
in escaping.

Figure 8(e) depicts Robot 1 successfully evading Robot 2,
indicating that it is now at a safe distance. This result high-
lights the effectiveness of the fuzzy rule-based system and the
principles of behaviour coordination in achieving the desired
outcome.

V. CONCLUSION

This paper presents a method for implementing an etho-
logically inspired animal behaviour model, ”aggression,” for
robotic applications. It uses a Fuzzy Behaviour-based System
to improve the realism and complexity of animals’ escape
behaviour models. We employ a fuzzy rule-based system
to process input data, orchestrate different agents’ actions,
and amalgamate multiple agents’ behaviours. ROS tools such
as Gazebo and RVIZ were applied for visualization of the
escape behaviour trajectories. The goal was to develop robots
that could independently make decisions based on detailed
sensory inputs, effectively emulating animal instincts and
responses. The study also explores the dynamics of multi-agent
systems and the intricate interactions among robots, which
have profound implications for sectors like collaborative man-
ufacturing, search and rescue operations, and surveillance. The
presented methodology supports the development of adaptable,
intelligent, and safe robotic systems applicable in various
disciplines. The goal is to implement the animal aggression
behaviour model from simulation to practical use in real-
world robots, improving the scope of behavioural models and
enhancing safety and intelligence to increase robot autonomy.
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approach to human-robot relationship,” Frontiers in psychology, vol. 8,
p. 958, 2017. DOI: https://doi.org/10.3389/fpsyg.2017.00958.

[5] A. Maghzaoui, E. Aridhi, and A. Mami, “Fuzzy control of mobile robot
speed for safe and adaptive navigation,” in 2023 IEEE Third Interna-
tional Conference on Signal, Control and Communication (SCC), pp. 1–
6, IEEE, 2023. DOI: https://doi.org/10.1109/scc59637.2023.10527570.

[6] J. Song and Y. Wen, “A generic construction of fuzzy signature,” in
Information Security and Cryptology: 17th International Conference,
Inscrypt 2021, Virtual Event, August 12–14, 2021, Revised Selected
Papers 17, pp. 23–41, Springer, 2021. DOI: https://doi.org/10.1007/
978-3-030-88323-2 2.

[7] S. Manna, B. S. U. Mendis, and T. Gedeon, “Hierarchical document
signature: A specialized application of fuzzy signature for document
computing,” in 2009 IEEE International Conference on Fuzzy Systems,
pp. 1083–1088, IEEE, 2009. DOI: https://doi.org/10.1109/fuzzy.2009.
5277054.
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[16] D. McFarland and T. Bösser, Intelligent behavior in animals and robots.
Mit Press, 1993. DOI: https://doi.org/10.7551/mitpress/3830.001.0001.

[17] B. Hallam and G. M. Hayes, Comparing robot and animal behaviour.
Citeseer, 1992. DOI: https://doi.org/10.7551/mitpress/3116.003.0074.

[18] H. Mo, Q. Tang, and L. Meng, “Behavior-based fuzzy control for mobile
robot navigation,” Mathematical problems in engineering, vol. 2013,
no. 1, p. 561451, 2013. DOI: https://doi.org/10.1155/2013/561451.

[19] H. Primova, D. Mukhamedieva, and L. Safarova, “Application of algo-
rithm of fuzzy rule conclusions in determination of animal’s diseases,” in
Journal of Physics: Conference Series, vol. 2224, p. 012007, IOP Pub-
lishing, 2022. DOI: https://doi.org/10.1088/1742-6596/2224/1/012007.

[20] B. Sandeep and P. Supriya, “Analysis of fuzzy rules for robot path
planning,” in 2016 international conference on advances in computing,
communications and informatics (ICACCI), pp. 309–314, IEEE, 2016.
DOI: https://doi.org/10.1109/icacci.2016.7732065.
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(a) Initial Position of Robots: both robots start at designated positions. (b) Movement Stage: robots move towards each other.

(c) Detection and Fear Assessment: Robot 1 detects Robot 2 and assesses
fear based on proximity and environment unfamiliarity.

(d) Escaping, High fear, and the presence of an escape route triggered
Robot 1’s Escape.

(e) Robot 1 successfully escapes, illustrating the effective use of fuzzy logic,
behaviour coordination, and fusion.

Fig. 8. (a), (b), (c), (d), (e): Escape behaviour simulation

as escaping in this particular scenario. Robot 1’s escape upon
approaching Robot 2 is a result of its unfamiliarity with the
environment and the other robot, as specified in the escape
regulations. behaviour fusion combines the behaviours of both
robots to achieve the specific objective of assisting Robot 1
in escaping.

Figure 8(e) depicts Robot 1 successfully evading Robot 2,
indicating that it is now at a safe distance. This result high-
lights the effectiveness of the fuzzy rule-based system and the
principles of behaviour coordination in achieving the desired
outcome.

V. CONCLUSION

This paper presents a method for implementing an etho-
logically inspired animal behaviour model, ”aggression,” for
robotic applications. It uses a Fuzzy Behaviour-based System
to improve the realism and complexity of animals’ escape
behaviour models. We employ a fuzzy rule-based system
to process input data, orchestrate different agents’ actions,
and amalgamate multiple agents’ behaviours. ROS tools such
as Gazebo and RVIZ were applied for visualization of the
escape behaviour trajectories. The goal was to develop robots
that could independently make decisions based on detailed
sensory inputs, effectively emulating animal instincts and
responses. The study also explores the dynamics of multi-agent
systems and the intricate interactions among robots, which
have profound implications for sectors like collaborative man-
ufacturing, search and rescue operations, and surveillance. The
presented methodology supports the development of adaptable,
intelligent, and safe robotic systems applicable in various
disciplines. The goal is to implement the animal aggression
behaviour model from simulation to practical use in real-
world robots, improving the scope of behavioural models and
enhancing safety and intelligence to increase robot autonomy.
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[21] S. Kovács, “Interpolative fuzzy reasoning in behaviour-based control,”
in Computational Intelligence, Theory and Applications: International
Conference 8th Fuzzy Days in Dortmund, Germany, Sept. 29–Oct. 01,
2004 Proceedings, pp. 159–170, Springer, 2005. DOI: https://doi.org/
10.1007/3-540-31182-3 14.

[22] K. Benbouabdallah and Z. Qi-dan, “A fuzzy logic behavior architec-
ture controller for a mobile robot path planning in multi-obstacles
environment,” Research Journal of Applied Sciences, Engineering and
Technology, vol. 5, no. 14, pp. 3835–3842, 2013. DOI: https://doi.org/
10.19026/rjaset.5.4533.

[23] H. Chang and T. Jin, “Command fusion based fuzzy controller design
for moving obstacle avoidance of mobile robot,” Future Information
Communication Technology and Applications: ICFICE 2013, pp. 905–
913, 2013. DOI: https://doi.org/10.1007/978-94-007-6516-0 99.

[24] L. D. Oliveira and A. A. Neto, “Comparative analysis of fuzzy in-
ference systems applications on mobile robot navigation in unknown
environments,” in 2023 Latin American Robotics Symposium (LARS),
2023 Brazilian Symposium on Robotics (SBR), and 2023 Workshop
on Robotics in Education (WRE), pp. 325–330, IEEE, 2023. DOI:
https://doi.org/10.1109/lars/sbr/wre59448.2023.10333047.

[25] A. K. Abduljabbar, Y. Al Mashhadany, and S. Algburi, “High-
performance of mobile robot behavior based on intelligent system,”
in 2023 16th International Conference on Developments in eSystems

as escaping in this particular scenario. Robot 1’s escape upon
approaching Robot 2 is a result of its unfamiliarity with the
environment and the other robot, as specified in the escape
regulations. behaviour fusion combines the behaviours of both
robots to achieve the specific objective of assisting Robot 1
in escaping.

Figure 8(e) depicts Robot 1 successfully evading Robot 2,
indicating that it is now at a safe distance. This result high-
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as escaping in this particular scenario. Robot 1’s escape upon
approaching Robot 2 is a result of its unfamiliarity with the
environment and the other robot, as specified in the escape
regulations. behaviour fusion combines the behaviours of both
robots to achieve the specific objective of assisting Robot 1
in escaping.

Figure 8(e) depicts Robot 1 successfully evading Robot 2,
indicating that it is now at a safe distance. This result high-
lights the effectiveness of the fuzzy rule-based system and the
principles of behaviour coordination in achieving the desired
outcome.

V. CONCLUSION

This paper presents a method for implementing an etho-
logically inspired animal behaviour model, ”aggression,” for
robotic applications. It uses a Fuzzy Behaviour-based System
to improve the realism and complexity of animals’ escape
behaviour models. We employ a fuzzy rule-based system
to process input data, orchestrate different agents’ actions,
and amalgamate multiple agents’ behaviours. ROS tools such
as Gazebo and RVIZ were applied for visualization of the
escape behaviour trajectories. The goal was to develop robots
that could independently make decisions based on detailed
sensory inputs, effectively emulating animal instincts and
responses. The study also explores the dynamics of multi-agent
systems and the intricate interactions among robots, which
have profound implications for sectors like collaborative man-
ufacturing, search and rescue operations, and surveillance. The
presented methodology supports the development of adaptable,
intelligent, and safe robotic systems applicable in various
disciplines. The goal is to implement the animal aggression
behaviour model from simulation to practical use in real-
world robots, improving the scope of behavioural models and
enhancing safety and intelligence to increase robot autonomy.
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