
Automated checker for detecting
method-hiding in Java programs

INFOCOMMUNICATIONS JOURNAL

JUNE 2024 • VOLUME XVI • NUMBER 2 19

Automated checker for detecting
method-hiding in Java programs

M. Z. I. Nazir, M. Alqaradaghi, and T. Kozsik

Abstract—Method overriding is a valuable mechanism that
happens when an instance method is defined in a subclass and
has the same signature and return type as an instance method
in the superclass. However, in Java, if those methods are static,
then instead method hiding happens, which is a programming
weakness and may produce unexpected results. Static analysis
is an approach in software testing that examines code to identify
various programming weaknesses throughout the software de-
velopment process without running it.

This paper addresses the detection of method-hiding problem
in Java programs. We implemented a new automated checker
under the SpotBugs static analysis tool that can detect the men-
tioned problem. According to our results, the checker precisely
detected the related issues in both custom test cases and real-
world programs.

Index Terms—Java, method-hiding, precise automated
checker, static analysis, SpotBugs tool

M. Z. I. Nazir was with the Department of Programming Languages and
Compilers, ELTE, Eötvös Loránd University, Budapest, Hungary. He is now
with the Technical University Munich (e-mail: bsvncs@inf.elte.hu).

M. Alqaradaghi is with the Department of Programming Languages and
Compilers, ELTE, Eötvös Loránd University, Budapest, Hungary and Northern
Technical University, Kirkuk, Iraq (e-mail: alqaradaghi.midya@inf.elte.hu).

T. Kozsik is with the Department of Programming Languages and Compil-
ers, ELTE, Eötvös Loránd University, Budapest, Hungary
(e-mail: kto@inf.elte.hu).

1 @Override annotation instructs the compiler that you intend to override a
method in the superclass.

2 error: static methods cannot be annotated with the @Override.

Automated checker for detecting methods hiding in Java programs

Abstract — Method overriding is a valuable mechanism that

happens when an instance method is defined in a subclass and has
the same signature and return type as an instance method in the
superclass. However, in Java, if those methods are static, then
instead method hiding happens, which is a programming weakness
and may produce unexpected results. Static analysis is an
approach in software testing that examines code to identify various
programming weaknesses throughout the software development
process without running it.

This paper addresses the detection of method-hiding
problem in Java programs. We implemented a new automated
checker under the SpotBugs static analysis tool that can detect the
mentioned problem. According to our results, the checker
precisely detected the related issues in both custom test cases and
real-world programs.

Index Terms— Java, method-hiding, precise automated

checker, static analysis, SpotBugs tool.

I. INTRODUCTION
FREQUENT cyberattacks on IT infrastructures drive
cybersecurity research [1]. It is crucial to keep software free of
weaknesses. Method overriding (also called late binding, run-
time polymorphism, and dynamic polymorphism) happens
when an instance method is defined in a subclass and has the
same signature (method’s name, parameters’ numbers, and
parameters’ types) and return type as an instance method in one
of the superclasses. In this case, the method in the subclass will
override the one in the superclass. This programming
mechanism is valuable. It enables a class to derive from a
superclass that exhibits similar behavior and subsequently
customize and/or extend the behavior as required [2, 3]. While
the compiler in Java does not require the @Override
annotation1 to be present for the overridden method. Doing so
is advised for the following reasons:
1) The compiler will produce an error if the method is not
present in one of the superclasses, informing the programmer
that this is not actually overriding and that he must fix it.
2) If the overridden method is static, the compiler will generate
another type of error 2 which will instruct about the necessity of
removing that annotation because it is not possible to override
a static method. Omitting the @Override annotation in the latter
case will make the compiler ignore this issue, leading to the
problem of method hiding.

M. Z. I. Nazir was with the Department of Programming Languages and
Compilers, ELTE, Eötvös Loránd University, Budapest, Hungary. He is now
with the Technical University Munich (e-mail: bsvncs@inf.elte.hu).

M. Alqaradaghi is with the Department of Programming Languages and
Compilers, ELTE, Eötvös Loránd University, Budapest, Hungary and Northern
Technical University, Kirkuk, Iraq (e-mail: alqaradaghi.midya@inf.elte.hu).

More specifically, method hiding happens when a subclass
defines a static method with the same signature and the return
type as a static method in the superclass. The method in the
superclass, in this case, hides the one in the subclass [2].
Overriding and hiding methods have distinct differences in
determining which method is called from a specific location. In
the case of overriding, the method called is determined during
runtime based on the specific instance of the object being used.
On the other hand, hiding determines the method called during
compile time by considering the specific qualified name or
method invocation expression used at the call [3].
 Method hiding is neither considered an error nor a
compilation failure. However, according to the SEI CERT
Oracle Coding Standard for Java, method hiding should be
avoided because it often leads to unexpected results, especially
when programmers mistakenly expect method overriding. This
has been clarified under Rule 06. Methods (MET) MET07-J [4].
Moreover, according to the same web page, no free automated
static analysis tool can detect this issue in Java code. Static
analysis approaches save time, effort, and money by identifying
software flaws and security vulnerabilities early in the software
development process [5, 6]. These techniques are capable of
identifying a wide variety of security flaws and vulnerabilities,
from simple programming errors to more complex concerns
like access control difficulties [5].

The motivations of this paper are:

• According to the TIOBE index [7], Java is still one of
the most widely used programming languages despite
some decline in popularity.

• Java is used to create many long-lasting programs that
we use on a daily basis. It is crucial to keep these
applications up to date and fix any flaws.

• Static analysis techniques are useful for finding code
flaws and security issues.

The contributions of the paper are:
• Design and implement an automated checker named

FindHidingMethod under the SpotBugs static analysis
tool (SB) [8], which raises an issue when finding
method hiding bugs in Java programs.

• Assess our approach and report the assessment results
using recall, false alarm rate, and precision metrics.

T. Kozsik is with the Department of Programming Languages and
Compilers, ELTE, Eötvös Loránd University, Budapest, Hungary (e-mail:
kto@inf.elte.hu).

1 @Override annotation instructs the compiler that you intend to override a
method in the superclass.

2 error: static methods cannot be annotated with the @Override.

Automated checker for detecting
method-hiding in Java programs

M. Z. I. Nazir, M. Alqaradaghi, and T. Kozsik

Automated checker for detecting methods hiding in Java programs

Abstract — Method overriding is a valuable mechanism that

happens when an instance method is defined in a subclass and has
the same signature and return type as an instance method in the
superclass. However, in Java, if those methods are static, then
instead method hiding happens, which is a programming weakness
and may produce unexpected results. Static analysis is an
approach in software testing that examines code to identify various
programming weaknesses throughout the software development
process without running it.

This paper addresses the detection of method-hiding
problem in Java programs. We implemented a new automated
checker under the SpotBugs static analysis tool that can detect the
mentioned problem. According to our results, the checker
precisely detected the related issues in both custom test cases and
real-world programs.

Index Terms— Java, method-hiding, precise automated

checker, static analysis, SpotBugs tool.

I. INTRODUCTION
FREQUENT cyberattacks on IT infrastructures drive
cybersecurity research [1]. It is crucial to keep software free of
weaknesses. Method overriding (also called late binding, run-
time polymorphism, and dynamic polymorphism) happens
when an instance method is defined in a subclass and has the
same signature (method’s name, parameters’ numbers, and
parameters’ types) and return type as an instance method in one
of the superclasses. In this case, the method in the subclass will
override the one in the superclass. This programming
mechanism is valuable. It enables a class to derive from a
superclass that exhibits similar behavior and subsequently
customize and/or extend the behavior as required [2, 3]. While
the compiler in Java does not require the @Override
annotation1 to be present for the overridden method. Doing so
is advised for the following reasons:
1) The compiler will produce an error if the method is not
present in one of the superclasses, informing the programmer
that this is not actually overriding and that he must fix it.
2) If the overridden method is static, the compiler will generate
another type of error 2 which will instruct about the necessity of
removing that annotation because it is not possible to override
a static method. Omitting the @Override annotation in the latter
case will make the compiler ignore this issue, leading to the
problem of method hiding.

M. Z. I. Nazir was with the Department of Programming Languages and
Compilers, ELTE, Eötvös Loránd University, Budapest, Hungary. He is now
with the Technical University Munich (e-mail: bsvncs@inf.elte.hu).

M. Alqaradaghi is with the Department of Programming Languages and
Compilers, ELTE, Eötvös Loránd University, Budapest, Hungary and Northern
Technical University, Kirkuk, Iraq (e-mail: alqaradaghi.midya@inf.elte.hu).

More specifically, method hiding happens when a subclass
defines a static method with the same signature and the return
type as a static method in the superclass. The method in the
superclass, in this case, hides the one in the subclass [2].
Overriding and hiding methods have distinct differences in
determining which method is called from a specific location. In
the case of overriding, the method called is determined during
runtime based on the specific instance of the object being used.
On the other hand, hiding determines the method called during
compile time by considering the specific qualified name or
method invocation expression used at the call [3].
 Method hiding is neither considered an error nor a
compilation failure. However, according to the SEI CERT
Oracle Coding Standard for Java, method hiding should be
avoided because it often leads to unexpected results, especially
when programmers mistakenly expect method overriding. This
has been clarified under Rule 06. Methods (MET) MET07-J [4].
Moreover, according to the same web page, no free automated
static analysis tool can detect this issue in Java code. Static
analysis approaches save time, effort, and money by identifying
software flaws and security vulnerabilities early in the software
development process [5, 6]. These techniques are capable of
identifying a wide variety of security flaws and vulnerabilities,
from simple programming errors to more complex concerns
like access control difficulties [5].

The motivations of this paper are:

• According to the TIOBE index [7], Java is still one of
the most widely used programming languages despite
some decline in popularity.

• Java is used to create many long-lasting programs that
we use on a daily basis. It is crucial to keep these
applications up to date and fix any flaws.

• Static analysis techniques are useful for finding code
flaws and security issues.

The contributions of the paper are:
• Design and implement an automated checker named

FindHidingMethod under the SpotBugs static analysis
tool (SB) [8], which raises an issue when finding
method hiding bugs in Java programs.

• Assess our approach and report the assessment results
using recall, false alarm rate, and precision metrics.

T. Kozsik is with the Department of Programming Languages and
Compilers, ELTE, Eötvös Loránd University, Budapest, Hungary (e-mail:
kto@inf.elte.hu).

1 @Override annotation instructs the compiler that you intend to override a
method in the superclass.

2 error: static methods cannot be annotated with the @Override.

Automated checker for detecting
method-hiding in Java programs

M. Z. I. Nazir, M. Alqaradaghi, and T. Kozsik

Automated checker for detecting methods hiding in Java programs

Abstract — Method overriding is a valuable mechanism that

happens when an instance method is defined in a subclass and has
the same signature and return type as an instance method in the
superclass. However, in Java, if those methods are static, then
instead method hiding happens, which is a programming weakness
and may produce unexpected results. Static analysis is an
approach in software testing that examines code to identify various
programming weaknesses throughout the software development
process without running it.

This paper addresses the detection of method-hiding
problem in Java programs. We implemented a new automated
checker under the SpotBugs static analysis tool that can detect the
mentioned problem. According to our results, the checker
precisely detected the related issues in both custom test cases and
real-world programs.

Index Terms— Java, method-hiding, precise automated

checker, static analysis, SpotBugs tool.

I. INTRODUCTION
FREQUENT cyberattacks on IT infrastructures drive
cybersecurity research [1]. It is crucial to keep software free of
weaknesses. Method overriding (also called late binding, run-
time polymorphism, and dynamic polymorphism) happens
when an instance method is defined in a subclass and has the
same signature (method’s name, parameters’ numbers, and
parameters’ types) and return type as an instance method in one
of the superclasses. In this case, the method in the subclass will
override the one in the superclass. This programming
mechanism is valuable. It enables a class to derive from a
superclass that exhibits similar behavior and subsequently
customize and/or extend the behavior as required [2, 3]. While
the compiler in Java does not require the @Override
annotation1 to be present for the overridden method. Doing so
is advised for the following reasons:
1) The compiler will produce an error if the method is not
present in one of the superclasses, informing the programmer
that this is not actually overriding and that he must fix it.
2) If the overridden method is static, the compiler will generate
another type of error 2 which will instruct about the necessity of
removing that annotation because it is not possible to override
a static method. Omitting the @Override annotation in the latter
case will make the compiler ignore this issue, leading to the
problem of method hiding.

M. Z. I. Nazir was with the Department of Programming Languages and
Compilers, ELTE, Eötvös Loránd University, Budapest, Hungary. He is now
with the Technical University Munich (e-mail: bsvncs@inf.elte.hu).

M. Alqaradaghi is with the Department of Programming Languages and
Compilers, ELTE, Eötvös Loránd University, Budapest, Hungary and Northern
Technical University, Kirkuk, Iraq (e-mail: alqaradaghi.midya@inf.elte.hu).

More specifically, method hiding happens when a subclass
defines a static method with the same signature and the return
type as a static method in the superclass. The method in the
superclass, in this case, hides the one in the subclass [2].
Overriding and hiding methods have distinct differences in
determining which method is called from a specific location. In
the case of overriding, the method called is determined during
runtime based on the specific instance of the object being used.
On the other hand, hiding determines the method called during
compile time by considering the specific qualified name or
method invocation expression used at the call [3].
 Method hiding is neither considered an error nor a
compilation failure. However, according to the SEI CERT
Oracle Coding Standard for Java, method hiding should be
avoided because it often leads to unexpected results, especially
when programmers mistakenly expect method overriding. This
has been clarified under Rule 06. Methods (MET) MET07-J [4].
Moreover, according to the same web page, no free automated
static analysis tool can detect this issue in Java code. Static
analysis approaches save time, effort, and money by identifying
software flaws and security vulnerabilities early in the software
development process [5, 6]. These techniques are capable of
identifying a wide variety of security flaws and vulnerabilities,
from simple programming errors to more complex concerns
like access control difficulties [5].

The motivations of this paper are:

• According to the TIOBE index [7], Java is still one of
the most widely used programming languages despite
some decline in popularity.

• Java is used to create many long-lasting programs that
we use on a daily basis. It is crucial to keep these
applications up to date and fix any flaws.

• Static analysis techniques are useful for finding code
flaws and security issues.

The contributions of the paper are:
• Design and implement an automated checker named

FindHidingMethod under the SpotBugs static analysis
tool (SB) [8], which raises an issue when finding
method hiding bugs in Java programs.

• Assess our approach and report the assessment results
using recall, false alarm rate, and precision metrics.

T. Kozsik is with the Department of Programming Languages and
Compilers, ELTE, Eötvös Loránd University, Budapest, Hungary (e-mail:
kto@inf.elte.hu).

1 @Override annotation instructs the compiler that you intend to override a
method in the superclass.

2 error: static methods cannot be annotated with the @Override.

Automated checker for detecting
method-hiding in Java programs

M. Z. I. Nazir, M. Alqaradaghi, and T. Kozsik

DOI: 10.36244/ICJ.2024.2.3

mailto:bsvncs%40inf.elte.hu?subject=
mailto:alqaradaghi.midya%40inf.elte.hu?subject=
mailto:kto%40inf.elte.hu?subject=
https://doi.org/10.36244/ICJ.2024.2.3

Automated checker for detecting
method-hiding in Java programs

JUNE 2024 • VOLUME XVI • NUMBER 220

INFOCOMMUNICATIONS JOURNAL

Automated checker for detecting methods hiding in Java programs

B. Problem Statement
The issue of defining a static method in a subclass that has the
same signature as a static method in the superclass is known as
method hiding. Here, the superclass method is hidden by the
subclass method. It is important to avoid method hiding because
it can lead to confusion and unexpected behavior, especially
when programmers mistakenly expect method overriding.
Listing 1 presents simple Java code for method overriding
versus method hiding.

LISTING 1
METHOD OVERRIDING VERSUS METHOD HIDING

1 class SuperClass {
2 public static void methodHiding() {
3 System.out.println("methodHiding (SuperClass)");
4 }
5 public void methodOverriding() {
6 System.out.println("methodOverriding (SuperClass)");
7 }
8 }
9 class HidingVsOverriding extends SuperClass {
10 public static void methodHiding() {
11 System.out.println("Method Hiding (SubClass)");
12 }
13 public void methodOverriding() {
14 System.out.println("Method Overriding (SubClass)");
15 }
16 }
17 public class MainClass {
18 public static void main(String[] args) {
19 SuperClass bs3 = new HidingVsOverriding();
20 bs3.methodOverriding();
21 bs3.methodHiding();
22 }
23 }

--
Results:
Method Overriding (SubClass)
Method Hiding (SuperClass)

As we can see here, method hiding may create confusion. It may
become a source of a programming error when a static method
is called using an instance of the subclass (an object) because,
in this case, an inexperienced or incautious programmer may
expect dynamic binding of the call to a method implementation
defined in the dynamic type of the object (the subclass).
However, even though some of the IDEs today provide hints
that an instance should not call static methods and attributes,
rather it should be called by the class (because static methods
and attributes belong to the class and not to an instance), we
have to assume that some people have nothing more than their
compiler and a simple text editor, which will not catch such
issues.

II.RELATED WORKS

No automated static analysis tool available for free can find
methods hiding problems within Java programs [4]. However,
some static analysis tools target various issues regarding the
method overriding mechanism, which is very similar to the
method hiding’s problem. In this section, we present them.

PMD source code analyzer [9] targets the problem of useless
overriding methods [10]. The related checker only raises an
issue when an overridden method does not do any more than

the method it overrides, marking it as useless. SB targets
various issues related to method overriding in Java [11]. We
will go through them in detail. The first one is when there is a
call for an overridable method that performs a security check.
This is considered an issue because the overridden method may
compromise it and omit the checks. We have implemented this
checker, in our previous work [12].
Due to the similarity of the upcoming SB’s rules, we will
explain them by grouping them into two groups. The first is
related explicitly to how equals, compareTo, and toString
methods are overridden. SB raises an issue when a) the
hashCode method is not being overridden by the class
overriding the equals method. This is an issue because,
according to the contract of those two methods, equal objects
should have equal hashcodes (i.e., calling
the hashCode method on each of the two objects must produce
the same integer result). b) a class defines a covariant version
of the equals method. c) a class defines a covariant version of
compareTo method. The last two rules state that the parameters
of equals and compareTo methods must have type
java.lang.Object otherwise, it is considered a bug d) a class
defines a toString method that is not actually the one in the
java.lang.Object class. The latter is probably what the
programmer intended. The second rules group targets different
overriding related issues. Those rules will raise an issue e) when
a method overrides a method included in an Adapter class that
implements a listener defined in the java.awt.event or
javax.swing.event package. SB considers this an issue because
this method will not be called when an event occurs. f) when an
overriding method changes the superclass contract related to the
Liskov Substitution Principle defined in a superclass. This is an
issue since a subclass instance can be cast and handled as an
instance of the superclass. g) when a class overrides an equals
method in a superclass, and both methods use the instanceof
operator to decide whether two objects are equal. This is
problematic since it is important to ensure those two equal
methods are symmetrical, i.e., a.equals(b) == b.equals(a). If B
is a subtype of A, then there is a good chance that this method's
equivalence connection is not symmetric. A's equals method
verifies that the argument is an instance of A, and B's equals
method verifies that the argument is an instance of B.

SonarQube static analysis tool (Sonar) [13] targets some of the
previously mentioned issues, as shown in Table 1. However, it
also targets other method overriding related issues of Java, list-
ing them as rules [14]. We present the most important ones. An
issue will be raised when these rules are violated. a) while not
mandatory, using the @Override annotation on compliant
methods improves readability by making it explicit that meth-
ods are overridden. According to this rule, @Override should
be used to override and implement methods; b) In JUnit testing,
to make sure that the test cases are set up and cleaned up con-
sistently, the overriding implementations of setUp and
tearDown methods should call the parent implementations ex-
plicitly because those two methods provide some shared logic
that is called before all test cases. This logic may change over
the lifetime of your codebase; c) a record class has an array field
and is not overriding equals, hashcode, or toString methods.

Automated checker for detecting methods hiding in Java programs

B. Problem Statement
The issue of defining a static method in a subclass that has the
same signature as a static method in the superclass is known as
method hiding. Here, the superclass method is hidden by the
subclass method. It is important to avoid method hiding because
it can lead to confusion and unexpected behavior, especially
when programmers mistakenly expect method overriding.
Listing 1 presents simple Java code for method overriding
versus method hiding.

LISTING 1
METHOD OVERRIDING VERSUS METHOD HIDING

1 class SuperClass {
2 public static void methodHiding() {
3 System.out.println("methodHiding (SuperClass)");
4 }
5 public void methodOverriding() {
6 System.out.println("methodOverriding (SuperClass)");
7 }
8 }
9 class HidingVsOverriding extends SuperClass {
10 public static void methodHiding() {
11 System.out.println("Method Hiding (SubClass)");
12 }
13 public void methodOverriding() {
14 System.out.println("Method Overriding (SubClass)");
15 }
16 }
17 public class MainClass {
18 public static void main(String[] args) {
19 SuperClass bs3 = new HidingVsOverriding();
20 bs3.methodOverriding();
21 bs3.methodHiding();
22 }
23 }

--
Results:
Method Overriding (SubClass)
Method Hiding (SuperClass)

As we can see here, method hiding may create confusion. It may
become a source of a programming error when a static method
is called using an instance of the subclass (an object) because,
in this case, an inexperienced or incautious programmer may
expect dynamic binding of the call to a method implementation
defined in the dynamic type of the object (the subclass).
However, even though some of the IDEs today provide hints
that an instance should not call static methods and attributes,
rather it should be called by the class (because static methods
and attributes belong to the class and not to an instance), we
have to assume that some people have nothing more than their
compiler and a simple text editor, which will not catch such
issues.

II.RELATED WORKS

No automated static analysis tool available for free can find
methods hiding problems within Java programs [4]. However,
some static analysis tools target various issues regarding the
method overriding mechanism, which is very similar to the
method hiding’s problem. In this section, we present them.

PMD source code analyzer [9] targets the problem of useless
overriding methods [10]. The related checker only raises an
issue when an overridden method does not do any more than

the method it overrides, marking it as useless. SB targets
various issues related to method overriding in Java [11]. We
will go through them in detail. The first one is when there is a
call for an overridable method that performs a security check.
This is considered an issue because the overridden method may
compromise it and omit the checks. We have implemented this
checker, in our previous work [12].
Due to the similarity of the upcoming SB’s rules, we will
explain them by grouping them into two groups. The first is
related explicitly to how equals, compareTo, and toString
methods are overridden. SB raises an issue when a) the
hashCode method is not being overridden by the class
overriding the equals method. This is an issue because,
according to the contract of those two methods, equal objects
should have equal hashcodes (i.e., calling
the hashCode method on each of the two objects must produce
the same integer result). b) a class defines a covariant version
of the equals method. c) a class defines a covariant version of
compareTo method. The last two rules state that the parameters
of equals and compareTo methods must have type
java.lang.Object otherwise, it is considered a bug d) a class
defines a toString method that is not actually the one in the
java.lang.Object class. The latter is probably what the
programmer intended. The second rules group targets different
overriding related issues. Those rules will raise an issue e) when
a method overrides a method included in an Adapter class that
implements a listener defined in the java.awt.event or
javax.swing.event package. SB considers this an issue because
this method will not be called when an event occurs. f) when an
overriding method changes the superclass contract related to the
Liskov Substitution Principle defined in a superclass. This is an
issue since a subclass instance can be cast and handled as an
instance of the superclass. g) when a class overrides an equals
method in a superclass, and both methods use the instanceof
operator to decide whether two objects are equal. This is
problematic since it is important to ensure those two equal
methods are symmetrical, i.e., a.equals(b) == b.equals(a). If B
is a subtype of A, then there is a good chance that this method's
equivalence connection is not symmetric. A's equals method
verifies that the argument is an instance of A, and B's equals
method verifies that the argument is an instance of B.

SonarQube static analysis tool (Sonar) [13] targets some of the
previously mentioned issues, as shown in Table 1. However, it
also targets other method overriding related issues of Java, list-
ing them as rules [14]. We present the most important ones. An
issue will be raised when these rules are violated. a) while not
mandatory, using the @Override annotation on compliant
methods improves readability by making it explicit that meth-
ods are overridden. According to this rule, @Override should
be used to override and implement methods; b) In JUnit testing,
to make sure that the test cases are set up and cleaned up con-
sistently, the overriding implementations of setUp and
tearDown methods should call the parent implementations ex-
plicitly because those two methods provide some shared logic
that is called before all test cases. This logic may change over
the lifetime of your codebase; c) a record class has an array field
and is not overriding equals, hashcode, or toString methods.

Automated checker for detecting methods hiding in Java programs

B. Problem Statement
The issue of defining a static method in a subclass that has the
same signature as a static method in the superclass is known as
method hiding. Here, the superclass method is hidden by the
subclass method. It is important to avoid method hiding because
it can lead to confusion and unexpected behavior, especially
when programmers mistakenly expect method overriding.
Listing 1 presents simple Java code for method overriding
versus method hiding.

LISTING 1
METHOD OVERRIDING VERSUS METHOD HIDING

1 class SuperClass {
2 public static void methodHiding() {
3 System.out.println("methodHiding (SuperClass)");
4 }
5 public void methodOverriding() {
6 System.out.println("methodOverriding (SuperClass)");
7 }
8 }
9 class HidingVsOverriding extends SuperClass {
10 public static void methodHiding() {
11 System.out.println("Method Hiding (SubClass)");
12 }
13 public void methodOverriding() {
14 System.out.println("Method Overriding (SubClass)");
15 }
16 }
17 public class MainClass {
18 public static void main(String[] args) {
19 SuperClass bs3 = new HidingVsOverriding();
20 bs3.methodOverriding();
21 bs3.methodHiding();
22 }
23 }

--
Results:
Method Overriding (SubClass)
Method Hiding (SuperClass)

As we can see here, method hiding may create confusion. It may
become a source of a programming error when a static method
is called using an instance of the subclass (an object) because,
in this case, an inexperienced or incautious programmer may
expect dynamic binding of the call to a method implementation
defined in the dynamic type of the object (the subclass).
However, even though some of the IDEs today provide hints
that an instance should not call static methods and attributes,
rather it should be called by the class (because static methods
and attributes belong to the class and not to an instance), we
have to assume that some people have nothing more than their
compiler and a simple text editor, which will not catch such
issues.

II.RELATED WORKS

No automated static analysis tool available for free can find
methods hiding problems within Java programs [4]. However,
some static analysis tools target various issues regarding the
method overriding mechanism, which is very similar to the
method hiding’s problem. In this section, we present them.

PMD source code analyzer [9] targets the problem of useless
overriding methods [10]. The related checker only raises an
issue when an overridden method does not do any more than

the method it overrides, marking it as useless. SB targets
various issues related to method overriding in Java [11]. We
will go through them in detail. The first one is when there is a
call for an overridable method that performs a security check.
This is considered an issue because the overridden method may
compromise it and omit the checks. We have implemented this
checker, in our previous work [12].
Due to the similarity of the upcoming SB’s rules, we will
explain them by grouping them into two groups. The first is
related explicitly to how equals, compareTo, and toString
methods are overridden. SB raises an issue when a) the
hashCode method is not being overridden by the class
overriding the equals method. This is an issue because,
according to the contract of those two methods, equal objects
should have equal hashcodes (i.e., calling
the hashCode method on each of the two objects must produce
the same integer result). b) a class defines a covariant version
of the equals method. c) a class defines a covariant version of
compareTo method. The last two rules state that the parameters
of equals and compareTo methods must have type
java.lang.Object otherwise, it is considered a bug d) a class
defines a toString method that is not actually the one in the
java.lang.Object class. The latter is probably what the
programmer intended. The second rules group targets different
overriding related issues. Those rules will raise an issue e) when
a method overrides a method included in an Adapter class that
implements a listener defined in the java.awt.event or
javax.swing.event package. SB considers this an issue because
this method will not be called when an event occurs. f) when an
overriding method changes the superclass contract related to the
Liskov Substitution Principle defined in a superclass. This is an
issue since a subclass instance can be cast and handled as an
instance of the superclass. g) when a class overrides an equals
method in a superclass, and both methods use the instanceof
operator to decide whether two objects are equal. This is
problematic since it is important to ensure those two equal
methods are symmetrical, i.e., a.equals(b) == b.equals(a). If B
is a subtype of A, then there is a good chance that this method's
equivalence connection is not symmetric. A's equals method
verifies that the argument is an instance of A, and B's equals
method verifies that the argument is an instance of B.

SonarQube static analysis tool (Sonar) [13] targets some of the
previously mentioned issues, as shown in Table 1. However, it
also targets other method overriding related issues of Java, list-
ing them as rules [14]. We present the most important ones. An
issue will be raised when these rules are violated. a) while not
mandatory, using the @Override annotation on compliant
methods improves readability by making it explicit that meth-
ods are overridden. According to this rule, @Override should
be used to override and implement methods; b) In JUnit testing,
to make sure that the test cases are set up and cleaned up con-
sistently, the overriding implementations of setUp and
tearDown methods should call the parent implementations ex-
plicitly because those two methods provide some shared logic
that is called before all test cases. This logic may change over
the lifetime of your codebase; c) a record class has an array field
and is not overriding equals, hashcode, or toString methods.

LISTING 1
Method Overriding Versus Method Hiding

Automated checker for detecting methods hiding in Java programs

B. Problem Statement
The issue of defining a static method in a subclass that has the
same signature as a static method in the superclass is known as
method hiding. Here, the superclass method is hidden by the
subclass method. It is important to avoid method hiding because
it can lead to confusion and unexpected behavior, especially
when programmers mistakenly expect method overriding.
Listing 1 presents simple Java code for method overriding
versus method hiding.

LISTING 1
METHOD OVERRIDING VERSUS METHOD HIDING

1 class SuperClass {
2 public static void methodHiding() {
3 System.out.println("methodHiding (SuperClass)");
4 }
5 public void methodOverriding() {
6 System.out.println("methodOverriding (SuperClass)");
7 }
8 }
9 class HidingVsOverriding extends SuperClass {
10 public static void methodHiding() {
11 System.out.println("Method Hiding (SubClass)");
12 }
13 public void methodOverriding() {
14 System.out.println("Method Overriding (SubClass)");
15 }
16 }
17 public class MainClass {
18 public static void main(String[] args) {
19 SuperClass bs3 = new HidingVsOverriding();
20 bs3.methodOverriding();
21 bs3.methodHiding();
22 }
23 }

--
Results:
Method Overriding (SubClass)
Method Hiding (SuperClass)

As we can see here, method hiding may create confusion. It may
become a source of a programming error when a static method
is called using an instance of the subclass (an object) because,
in this case, an inexperienced or incautious programmer may
expect dynamic binding of the call to a method implementation
defined in the dynamic type of the object (the subclass).
However, even though some of the IDEs today provide hints
that an instance should not call static methods and attributes,
rather it should be called by the class (because static methods
and attributes belong to the class and not to an instance), we
have to assume that some people have nothing more than their
compiler and a simple text editor, which will not catch such
issues.

II.RELATED WORKS

No automated static analysis tool available for free can find
methods hiding problems within Java programs [4]. However,
some static analysis tools target various issues regarding the
method overriding mechanism, which is very similar to the
method hiding’s problem. In this section, we present them.

PMD source code analyzer [9] targets the problem of useless
overriding methods [10]. The related checker only raises an
issue when an overridden method does not do any more than

the method it overrides, marking it as useless. SB targets
various issues related to method overriding in Java [11]. We
will go through them in detail. The first one is when there is a
call for an overridable method that performs a security check.
This is considered an issue because the overridden method may
compromise it and omit the checks. We have implemented this
checker, in our previous work [12].
Due to the similarity of the upcoming SB’s rules, we will
explain them by grouping them into two groups. The first is
related explicitly to how equals, compareTo, and toString
methods are overridden. SB raises an issue when a) the
hashCode method is not being overridden by the class
overriding the equals method. This is an issue because,
according to the contract of those two methods, equal objects
should have equal hashcodes (i.e., calling
the hashCode method on each of the two objects must produce
the same integer result). b) a class defines a covariant version
of the equals method. c) a class defines a covariant version of
compareTo method. The last two rules state that the parameters
of equals and compareTo methods must have type
java.lang.Object otherwise, it is considered a bug d) a class
defines a toString method that is not actually the one in the
java.lang.Object class. The latter is probably what the
programmer intended. The second rules group targets different
overriding related issues. Those rules will raise an issue e) when
a method overrides a method included in an Adapter class that
implements a listener defined in the java.awt.event or
javax.swing.event package. SB considers this an issue because
this method will not be called when an event occurs. f) when an
overriding method changes the superclass contract related to the
Liskov Substitution Principle defined in a superclass. This is an
issue since a subclass instance can be cast and handled as an
instance of the superclass. g) when a class overrides an equals
method in a superclass, and both methods use the instanceof
operator to decide whether two objects are equal. This is
problematic since it is important to ensure those two equal
methods are symmetrical, i.e., a.equals(b) == b.equals(a). If B
is a subtype of A, then there is a good chance that this method's
equivalence connection is not symmetric. A's equals method
verifies that the argument is an instance of A, and B's equals
method verifies that the argument is an instance of B.

SonarQube static analysis tool (Sonar) [13] targets some of the
previously mentioned issues, as shown in Table 1. However, it
also targets other method overriding related issues of Java, list-
ing them as rules [14]. We present the most important ones. An
issue will be raised when these rules are violated. a) while not
mandatory, using the @Override annotation on compliant
methods improves readability by making it explicit that meth-
ods are overridden. According to this rule, @Override should
be used to override and implement methods; b) In JUnit testing,
to make sure that the test cases are set up and cleaned up con-
sistently, the overriding implementations of setUp and
tearDown methods should call the parent implementations ex-
plicitly because those two methods provide some shared logic
that is called before all test cases. This logic may change over
the lifetime of your codebase; c) a record class has an array field
and is not overriding equals, hashcode, or toString methods.

Automated checker for detecting
method-hiding in Java programs

INFOCOMMUNICATIONS JOURNAL

JUNE 2024 • VOLUME XVI • NUMBER 2 21

Automated checker for detecting methods hiding in Java programs

This is an issue because array fields are compared by their ref-
erence, and overriding equals is highly appreciated to achieve
the deep equality check. The same strategy applies to hash-
Code and toString methods; d) although overriding the clone
method without implementing the Cloneable interface can be
helpful if a programmer wants to control how subclasses clone
themselves, it's probably a mistake. So, this rule suggests that
classes that override clone should implement Cloneable and
call the super.clone method. e) a class implementing the inter-
face Cloneable but does not override the clone method is con-
sidered an issue because Cloneable is a marker interface that
defines the contract of the clone method, which is to create a
consistent copy of the instance. Since the compiler cannot en-
force the definitions of marker interfaces (because they have no
own API), when a class implements Cloneable but does not
override the clone method, it likely violates the contract for
Cloneable. Finally, f) the Object.finalize method should not be
overridden. Relying on overriding it to release resources or up-
date the program's state is highly discouraged because there is
no guarantee that this method will be called as soon as the last
references to the object are removed, which may lead to many
issues. Table 1 presents the summary of the previously ex-
plained related works.

TABLE 1

RELATED WORKS SUMMARY

The issue/rule PMD SB Sonar Ours

Useless overriding methods ✓ ✓
The methods that perform security
checks must be declared private or
final

 ✓

hashCode method is not being
overridden by the class that is
overriding the equals method

 ✓ ✓

A class defines a covariant version of
the compareTo method

 ✓

A class defines a covariant version of
the equals method

 ✓ ✓

A class defines a toString method that
is not actually the one in the
java.lang.Object class

 ✓

A class overrides a method
implemented in the superclass Adapter
wrongly

 ✓

Do not use the instanceof operator to
decide whether two objects are equal

 ✓ ✓

Method overrides should not change
contracts

 ✓ ✓

@Override annotation should be used
for overriding and implementing
methods

 ✓

Junit test cases should call super
metthods

 ✓

equals, hashcode, and toString
methods should be overridden in
records containing array field

 ✓

Classes that override clone should
implement Cloneable and call the
super.clone method

 ✓

“Cloneables” should implement clone ✓
The Object.finalize method should not
be overridden

 ✓

Never declare a class method that
hides a method declared in a
superclass or super interface

 ✓

Method hiding is considered as a weakness [4]. Moreover,
many state-of-the-art static analysis tools focus on various
issues regarding method overriding, which is the basis of
method hiding. Still, none of these tools focus on method
hiding. Our work sheds light on this problem and implements a
checker that raises an issue when finding one.

III. RESEARCH METHODOLOGY
 This section thoroughly describes our checker design process
and the steps involved in developing the custom test cases.

A. Checker design
Listing 2 presents the pseudocode of the implementation of our
checker named FindHidingMethod, using SB version 4.7.3. SB
is written mainly in Java, so we implemented our checker using
Java. The process starts by visiting each class in the program,
then getting a list of all its superclasses, i.e., the parent class,
grandparent class, etc., until reaching the last superclass, which
is always the Object class. For each of the visited classes, our
checker will check each of the methods and raise an issue when
it finds a hidden subclass. More specifically, an issue will be
raised when there is a subclass-superclass pair that includes
methods with the same name, both of which are static, non-
private, and not main (because it is an odd case of a static
method that may exist in a superclass-subclass pair). However,
the checker also considers the possibility of the method being a
constructor and some other odd cases where it will be excluded
(not reporting as an issue).
The checker has been developed successfully and has passed
our team's internal review and the SB tool’s public reviews. For
further information about the implementation coding, please
refer to the public review of our checker implementation on the
official website of the SB tool [15].

LISTING 2
THE PSEUDOCODE OF OUR CHECKER

 1 procedure FindHidingMethod(aClass) is
 2 foreach method in declared methods of class aClass loop
 3 if method is static and non-private and not SpecialCase then
 4 foreach superClass in superclasses of aClass loop
 5 foreach superMethod in declared methods of class superClass loop
 6 if signature(method) = signature(superMethod) then
 7 report
 8 end if
 9 end loop
10 end loop
11 end if
12 end loop
13 end

14 function SpecialCase(method) is
15 return method is "non-private void main (String[])"
16 or method is “non-private void main()"
17 or method is a constructor
18 or method is static_initializer_block
19 or method is a generated method
20 end

Automated checker for detecting methods hiding in Java programs

This is an issue because array fields are compared by their ref-
erence, and overriding equals is highly appreciated to achieve
the deep equality check. The same strategy applies to hash-
Code and toString methods; d) although overriding the clone
method without implementing the Cloneable interface can be
helpful if a programmer wants to control how subclasses clone
themselves, it's probably a mistake. So, this rule suggests that
classes that override clone should implement Cloneable and
call the super.clone method. e) a class implementing the inter-
face Cloneable but does not override the clone method is con-
sidered an issue because Cloneable is a marker interface that
defines the contract of the clone method, which is to create a
consistent copy of the instance. Since the compiler cannot en-
force the definitions of marker interfaces (because they have no
own API), when a class implements Cloneable but does not
override the clone method, it likely violates the contract for
Cloneable. Finally, f) the Object.finalize method should not be
overridden. Relying on overriding it to release resources or up-
date the program's state is highly discouraged because there is
no guarantee that this method will be called as soon as the last
references to the object are removed, which may lead to many
issues. Table 1 presents the summary of the previously ex-
plained related works.

TABLE 1

RELATED WORKS SUMMARY

The issue/rule PMD SB Sonar Ours

Useless overriding methods ✓ ✓
The methods that perform security
checks must be declared private or
final

 ✓

hashCode method is not being
overridden by the class that is
overriding the equals method

 ✓ ✓

A class defines a covariant version of
the compareTo method

 ✓

A class defines a covariant version of
the equals method

 ✓ ✓

A class defines a toString method that
is not actually the one in the
java.lang.Object class

 ✓

A class overrides a method
implemented in the superclass Adapter
wrongly

 ✓

Do not use the instanceof operator to
decide whether two objects are equal

 ✓ ✓

Method overrides should not change
contracts

 ✓ ✓

@Override annotation should be used
for overriding and implementing
methods

 ✓

Junit test cases should call super
metthods

 ✓

equals, hashcode, and toString
methods should be overridden in
records containing array field

 ✓

Classes that override clone should
implement Cloneable and call the
super.clone method

 ✓

“Cloneables” should implement clone ✓
The Object.finalize method should not
be overridden

 ✓

Never declare a class method that
hides a method declared in a
superclass or super interface

 ✓

Method hiding is considered as a weakness [4]. Moreover,
many state-of-the-art static analysis tools focus on various
issues regarding method overriding, which is the basis of
method hiding. Still, none of these tools focus on method
hiding. Our work sheds light on this problem and implements a
checker that raises an issue when finding one.

III. RESEARCH METHODOLOGY
 This section thoroughly describes our checker design process
and the steps involved in developing the custom test cases.

A. Checker design
Listing 2 presents the pseudocode of the implementation of our
checker named FindHidingMethod, using SB version 4.7.3. SB
is written mainly in Java, so we implemented our checker using
Java. The process starts by visiting each class in the program,
then getting a list of all its superclasses, i.e., the parent class,
grandparent class, etc., until reaching the last superclass, which
is always the Object class. For each of the visited classes, our
checker will check each of the methods and raise an issue when
it finds a hidden subclass. More specifically, an issue will be
raised when there is a subclass-superclass pair that includes
methods with the same name, both of which are static, non-
private, and not main (because it is an odd case of a static
method that may exist in a superclass-subclass pair). However,
the checker also considers the possibility of the method being a
constructor and some other odd cases where it will be excluded
(not reporting as an issue).
The checker has been developed successfully and has passed
our team's internal review and the SB tool’s public reviews. For
further information about the implementation coding, please
refer to the public review of our checker implementation on the
official website of the SB tool [15].

LISTING 2
THE PSEUDOCODE OF OUR CHECKER

 1 procedure FindHidingMethod(aClass) is
 2 foreach method in declared methods of class aClass loop
 3 if method is static and non-private and not SpecialCase then
 4 foreach superClass in superclasses of aClass loop
 5 foreach superMethod in declared methods of class superClass loop
 6 if signature(method) = signature(superMethod) then
 7 report
 8 end if
 9 end loop
10 end loop
11 end if
12 end loop
13 end

14 function SpecialCase(method) is
15 return method is "non-private void main (String[])"
16 or method is “non-private void main()"
17 or method is a constructor
18 or method is static_initializer_block
19 or method is a generated method
20 end

Automated checker for detecting methods hiding in Java programs

This is an issue because array fields are compared by their ref-
erence, and overriding equals is highly appreciated to achieve
the deep equality check. The same strategy applies to hash-
Code and toString methods; d) although overriding the clone
method without implementing the Cloneable interface can be
helpful if a programmer wants to control how subclasses clone
themselves, it's probably a mistake. So, this rule suggests that
classes that override clone should implement Cloneable and
call the super.clone method. e) a class implementing the inter-
face Cloneable but does not override the clone method is con-
sidered an issue because Cloneable is a marker interface that
defines the contract of the clone method, which is to create a
consistent copy of the instance. Since the compiler cannot en-
force the definitions of marker interfaces (because they have no
own API), when a class implements Cloneable but does not
override the clone method, it likely violates the contract for
Cloneable. Finally, f) the Object.finalize method should not be
overridden. Relying on overriding it to release resources or up-
date the program's state is highly discouraged because there is
no guarantee that this method will be called as soon as the last
references to the object are removed, which may lead to many
issues. Table 1 presents the summary of the previously ex-
plained related works.

TABLE 1

RELATED WORKS SUMMARY

The issue/rule PMD SB Sonar Ours

Useless overriding methods ✓ ✓
The methods that perform security
checks must be declared private or
final

 ✓

hashCode method is not being
overridden by the class that is
overriding the equals method

 ✓ ✓

A class defines a covariant version of
the compareTo method

 ✓

A class defines a covariant version of
the equals method

 ✓ ✓

A class defines a toString method that
is not actually the one in the
java.lang.Object class

 ✓

A class overrides a method
implemented in the superclass Adapter
wrongly

 ✓

Do not use the instanceof operator to
decide whether two objects are equal

 ✓ ✓

Method overrides should not change
contracts

 ✓ ✓

@Override annotation should be used
for overriding and implementing
methods

 ✓

Junit test cases should call super
metthods

 ✓

equals, hashcode, and toString
methods should be overridden in
records containing array field

 ✓

Classes that override clone should
implement Cloneable and call the
super.clone method

 ✓

“Cloneables” should implement clone ✓
The Object.finalize method should not
be overridden

 ✓

Never declare a class method that
hides a method declared in a
superclass or super interface

 ✓

Method hiding is considered as a weakness [4]. Moreover,
many state-of-the-art static analysis tools focus on various
issues regarding method overriding, which is the basis of
method hiding. Still, none of these tools focus on method
hiding. Our work sheds light on this problem and implements a
checker that raises an issue when finding one.

III. RESEARCH METHODOLOGY
 This section thoroughly describes our checker design process
and the steps involved in developing the custom test cases.

A. Checker design
Listing 2 presents the pseudocode of the implementation of our
checker named FindHidingMethod, using SB version 4.7.3. SB
is written mainly in Java, so we implemented our checker using
Java. The process starts by visiting each class in the program,
then getting a list of all its superclasses, i.e., the parent class,
grandparent class, etc., until reaching the last superclass, which
is always the Object class. For each of the visited classes, our
checker will check each of the methods and raise an issue when
it finds a hidden subclass. More specifically, an issue will be
raised when there is a subclass-superclass pair that includes
methods with the same name, both of which are static, non-
private, and not main (because it is an odd case of a static
method that may exist in a superclass-subclass pair). However,
the checker also considers the possibility of the method being a
constructor and some other odd cases where it will be excluded
(not reporting as an issue).
The checker has been developed successfully and has passed
our team's internal review and the SB tool’s public reviews. For
further information about the implementation coding, please
refer to the public review of our checker implementation on the
official website of the SB tool [15].

LISTING 2
THE PSEUDOCODE OF OUR CHECKER

 1 procedure FindHidingMethod(aClass) is
 2 foreach method in declared methods of class aClass loop
 3 if method is static and non-private and not SpecialCase then
 4 foreach superClass in superclasses of aClass loop
 5 foreach superMethod in declared methods of class superClass loop
 6 if signature(method) = signature(superMethod) then
 7 report
 8 end if
 9 end loop
10 end loop
11 end if
12 end loop
13 end

14 function SpecialCase(method) is
15 return method is "non-private void main (String[])"
16 or method is “non-private void main()"
17 or method is a constructor
18 or method is static_initializer_block
19 or method is a generated method
20 end

Automated checker for detecting methods hiding in Java programs

This is an issue because array fields are compared by their ref-
erence, and overriding equals is highly appreciated to achieve
the deep equality check. The same strategy applies to hash-
Code and toString methods; d) although overriding the clone
method without implementing the Cloneable interface can be
helpful if a programmer wants to control how subclasses clone
themselves, it's probably a mistake. So, this rule suggests that
classes that override clone should implement Cloneable and
call the super.clone method. e) a class implementing the inter-
face Cloneable but does not override the clone method is con-
sidered an issue because Cloneable is a marker interface that
defines the contract of the clone method, which is to create a
consistent copy of the instance. Since the compiler cannot en-
force the definitions of marker interfaces (because they have no
own API), when a class implements Cloneable but does not
override the clone method, it likely violates the contract for
Cloneable. Finally, f) the Object.finalize method should not be
overridden. Relying on overriding it to release resources or up-
date the program's state is highly discouraged because there is
no guarantee that this method will be called as soon as the last
references to the object are removed, which may lead to many
issues. Table 1 presents the summary of the previously ex-
plained related works.

TABLE 1

RELATED WORKS SUMMARY

The issue/rule PMD SB Sonar Ours

Useless overriding methods ✓ ✓
The methods that perform security
checks must be declared private or
final

 ✓

hashCode method is not being
overridden by the class that is
overriding the equals method

 ✓ ✓

A class defines a covariant version of
the compareTo method

 ✓

A class defines a covariant version of
the equals method

 ✓ ✓

A class defines a toString method that
is not actually the one in the
java.lang.Object class

 ✓

A class overrides a method
implemented in the superclass Adapter
wrongly

 ✓

Do not use the instanceof operator to
decide whether two objects are equal

 ✓ ✓

Method overrides should not change
contracts

 ✓ ✓

@Override annotation should be used
for overriding and implementing
methods

 ✓

Junit test cases should call super
metthods

 ✓

equals, hashcode, and toString
methods should be overridden in
records containing array field

 ✓

Classes that override clone should
implement Cloneable and call the
super.clone method

 ✓

“Cloneables” should implement clone ✓
The Object.finalize method should not
be overridden

 ✓

Never declare a class method that
hides a method declared in a
superclass or super interface

 ✓

Method hiding is considered as a weakness [4]. Moreover,
many state-of-the-art static analysis tools focus on various
issues regarding method overriding, which is the basis of
method hiding. Still, none of these tools focus on method
hiding. Our work sheds light on this problem and implements a
checker that raises an issue when finding one.

III. RESEARCH METHODOLOGY
 This section thoroughly describes our checker design process
and the steps involved in developing the custom test cases.

A. Checker design
Listing 2 presents the pseudocode of the implementation of our
checker named FindHidingMethod, using SB version 4.7.3. SB
is written mainly in Java, so we implemented our checker using
Java. The process starts by visiting each class in the program,
then getting a list of all its superclasses, i.e., the parent class,
grandparent class, etc., until reaching the last superclass, which
is always the Object class. For each of the visited classes, our
checker will check each of the methods and raise an issue when
it finds a hidden subclass. More specifically, an issue will be
raised when there is a subclass-superclass pair that includes
methods with the same name, both of which are static, non-
private, and not main (because it is an odd case of a static
method that may exist in a superclass-subclass pair). However,
the checker also considers the possibility of the method being a
constructor and some other odd cases where it will be excluded
(not reporting as an issue).
The checker has been developed successfully and has passed
our team's internal review and the SB tool’s public reviews. For
further information about the implementation coding, please
refer to the public review of our checker implementation on the
official website of the SB tool [15].

LISTING 2
THE PSEUDOCODE OF OUR CHECKER

 1 procedure FindHidingMethod(aClass) is
 2 foreach method in declared methods of class aClass loop
 3 if method is static and non-private and not SpecialCase then
 4 foreach superClass in superclasses of aClass loop
 5 foreach superMethod in declared methods of class superClass loop
 6 if signature(method) = signature(superMethod) then
 7 report
 8 end if
 9 end loop
10 end loop
11 end if
12 end loop
13 end

14 function SpecialCase(method) is
15 return method is "non-private void main (String[])"
16 or method is “non-private void main()"
17 or method is a constructor
18 or method is static_initializer_block
19 or method is a generated method
20 end

TABLE I
Related works summary

LISTING 2
The pseudocode of our checker

Automated checker for detecting
method-hiding in Java programs

JUNE 2024 • VOLUME XVI • NUMBER 222

INFOCOMMUNICATIONS JOURNAL

Automated checker for detecting methods hiding in Java programs

Complexity Analysis: SB static analysis tool, which we built our
checker under, inspects the Java byte code for different
programming vulnerabilities and weaknesses. Since the
bytecode of the subclass does not contain the bytecode of any
methods of the superclass (i.e., inherited methods), we had to
analyze all the superclasses. The latter leads to O(n) complexity

(where n is the number of superclasses), then goes over each of
the methods, leading to a second loop with O(m) complexity
(where m is the number of methods in each class). Combined
together, it gives O(n*m), i.e., a quadratic time complexity.
However, we do not generate the bytecode for each method
every time we check for the vulnerability of that method; rather,
we call a built-in method of the SB tool’s environment, called
visitClassContext [15], only once for the class. It scans all the
methods and information related to the class. This balances out
the double loop, producing an efficient checker (i.e., with linear
complexity).

An Exception to Rule 06. Methods MET07-J: According to the
SEI CERT Oracle Coding Standard for Java web page, which
includes a description of the targeted issue of this paper, there
is a case that should not be considered a violation of this rule,
i.e., it should not be counted as a method hiding issue. This
exception only applies when an API's hidden methods are
called; in this scenario, all calls to hidden methods make use of
qualified names or method invocation expressions that clearly
indicate which particular method is being called [3]. The
previously mentioned exception case has not been considered
through our checker’s implementation for two reasons:

1) When there is a method hiding in a program, it is

considered unsafe, regardless of whether the related static
method is being called.

2) The produced Java byte codes for calling a static method
using a class name and calling it using a class instance are
the same. Since SB uses bytecode to inspect the flaws in
programs, any checker built under SB is not able to
differentiate these two as well. More specifically, when
using an instance variable for calling a static method, the
JVM smartly fixes it when producing the bytecode. It
makes it seem like the calling was happening on the class
name. See Listing 3, where both invocation types (from
lines 10 and 15) produce the bytecode invokestatic.

 Therefore, whenever there are two identical static methods in
any superclass-subclass pair, our checker will raise an issue and
report the second method as a bug, no matter if any of the
methods are being called or not (or whether they are called on
a fully qualified name (class name) or an instance). This,
however, can be considered a limitation of our implementation,
and it may be addressed by implementing a checker under a
static analysis tool that inspects the program source code
instead of the bytecode (for example, under PMD Source Code
Analyzer).

Note: Checkers implemented under SB may interact with the
SB framework and be able to use its properties using either the

3 TP is the number of flawed constructs that are detected correctly by our
checker, while FP is the number of unflawed constructs that are mistakenly
reported by the checker.

OpcodeStackDetector abstract class or the Detector Interface.
However, the previously explained scenario also made us
decide to choose the Detector interface, which is a lower level
since using the OpcodeStackDetector will only add extra
complexity to our program.

B. Custom test cases’ design
 To assess our generated checker and attain thorough
coverage of the problem being studied. The following points are
covered by the test cases that our team has built:

1) Flawed and unflawed: To assess our checker
performance in both true positive (TP) and false
positive (FP) aspects 3, we designed non-compliant
(NC), flawed test cases, and compliant (C), unflawed
test cases.

2) Unambiguous: the test cases are written in a clear and
concise way, leaving no room for misinterpretation.

3) Validated expectations: every test case has a
predetermined expected result.

4) Test objective: every test case has a distinct goal that
identifies the precise component of the problem being
investigated.

5) Independence: We created separate test cases to isolate
and identify problems more effectively.

As a result, we produced 11 C and 9 NC test cases. Next, we go
into detail on the design of these test cases.

NC test cases: These are the flawed constructs. These test
scenarios are considered insecure and involve real issues, so our
checker should report them. We could cover every scenario in
which methods in Java applications might be hidden by creating
nine NC test cases.

C test cases: These are the unflawed constructs, i.e., include
safe coding scenarios to test if our checker successfully ignores
them. To cover all possible scenarios, we have designed eleven
test cases.

You can check the test cases from the public review of our
checker implementation on the official website of the SB tool
[15]. The word good is used in the file name and/or method
name of the C test cases, while the word bad is used in the NC
test cases.

Automated checker for detecting methods hiding in Java programs

Complexity Analysis: SB static analysis tool, which we built our
checker under, inspects the Java byte code for different
programming vulnerabilities and weaknesses. Since the
bytecode of the subclass does not contain the bytecode of any
methods of the superclass (i.e., inherited methods), we had to
analyze all the superclasses. The latter leads to O(n) complexity

(where n is the number of superclasses), then goes over each of
the methods, leading to a second loop with O(m) complexity
(where m is the number of methods in each class). Combined
together, it gives O(n*m), i.e., a quadratic time complexity.
However, we do not generate the bytecode for each method
every time we check for the vulnerability of that method; rather,
we call a built-in method of the SB tool’s environment, called
visitClassContext [15], only once for the class. It scans all the
methods and information related to the class. This balances out
the double loop, producing an efficient checker (i.e., with linear
complexity).

An Exception to Rule 06. Methods MET07-J: According to the
SEI CERT Oracle Coding Standard for Java web page, which
includes a description of the targeted issue of this paper, there
is a case that should not be considered a violation of this rule,
i.e., it should not be counted as a method hiding issue. This
exception only applies when an API's hidden methods are
called; in this scenario, all calls to hidden methods make use of
qualified names or method invocation expressions that clearly
indicate which particular method is being called [3]. The
previously mentioned exception case has not been considered
through our checker’s implementation for two reasons:

1) When there is a method hiding in a program, it is

considered unsafe, regardless of whether the related static
method is being called.

2) The produced Java byte codes for calling a static method
using a class name and calling it using a class instance are
the same. Since SB uses bytecode to inspect the flaws in
programs, any checker built under SB is not able to
differentiate these two as well. More specifically, when
using an instance variable for calling a static method, the
JVM smartly fixes it when producing the bytecode. It
makes it seem like the calling was happening on the class
name. See Listing 3, where both invocation types (from
lines 10 and 15) produce the bytecode invokestatic.

 Therefore, whenever there are two identical static methods in
any superclass-subclass pair, our checker will raise an issue and
report the second method as a bug, no matter if any of the
methods are being called or not (or whether they are called on
a fully qualified name (class name) or an instance). This,
however, can be considered a limitation of our implementation,
and it may be addressed by implementing a checker under a
static analysis tool that inspects the program source code
instead of the bytecode (for example, under PMD Source Code
Analyzer).

Note: Checkers implemented under SB may interact with the
SB framework and be able to use its properties using either the

3 TP is the number of flawed constructs that are detected correctly by our
checker, while FP is the number of unflawed constructs that are mistakenly
reported by the checker.

OpcodeStackDetector abstract class or the Detector Interface.
However, the previously explained scenario also made us
decide to choose the Detector interface, which is a lower level
since using the OpcodeStackDetector will only add extra
complexity to our program.

B. Custom test cases’ design
 To assess our generated checker and attain thorough
coverage of the problem being studied. The following points are
covered by the test cases that our team has built:

1) Flawed and unflawed: To assess our checker
performance in both true positive (TP) and false
positive (FP) aspects 3, we designed non-compliant
(NC), flawed test cases, and compliant (C), unflawed
test cases.

2) Unambiguous: the test cases are written in a clear and
concise way, leaving no room for misinterpretation.

3) Validated expectations: every test case has a
predetermined expected result.

4) Test objective: every test case has a distinct goal that
identifies the precise component of the problem being
investigated.

5) Independence: We created separate test cases to isolate
and identify problems more effectively.

As a result, we produced 11 C and 9 NC test cases. Next, we go
into detail on the design of these test cases.

NC test cases: These are the flawed constructs. These test
scenarios are considered insecure and involve real issues, so our
checker should report them. We could cover every scenario in
which methods in Java applications might be hidden by creating
nine NC test cases.

C test cases: These are the unflawed constructs, i.e., include
safe coding scenarios to test if our checker successfully ignores
them. To cover all possible scenarios, we have designed eleven
test cases.

You can check the test cases from the public review of our
checker implementation on the official website of the SB tool
[15]. The word good is used in the file name and/or method
name of the C test cases, while the word bad is used in the NC
test cases.

Automated checker for detecting methods hiding in Java programs

Complexity Analysis: SB static analysis tool, which we built our
checker under, inspects the Java byte code for different
programming vulnerabilities and weaknesses. Since the
bytecode of the subclass does not contain the bytecode of any
methods of the superclass (i.e., inherited methods), we had to
analyze all the superclasses. The latter leads to O(n) complexity

(where n is the number of superclasses), then goes over each of
the methods, leading to a second loop with O(m) complexity
(where m is the number of methods in each class). Combined
together, it gives O(n*m), i.e., a quadratic time complexity.
However, we do not generate the bytecode for each method
every time we check for the vulnerability of that method; rather,
we call a built-in method of the SB tool’s environment, called
visitClassContext [15], only once for the class. It scans all the
methods and information related to the class. This balances out
the double loop, producing an efficient checker (i.e., with linear
complexity).

An Exception to Rule 06. Methods MET07-J: According to the
SEI CERT Oracle Coding Standard for Java web page, which
includes a description of the targeted issue of this paper, there
is a case that should not be considered a violation of this rule,
i.e., it should not be counted as a method hiding issue. This
exception only applies when an API's hidden methods are
called; in this scenario, all calls to hidden methods make use of
qualified names or method invocation expressions that clearly
indicate which particular method is being called [3]. The
previously mentioned exception case has not been considered
through our checker’s implementation for two reasons:

1) When there is a method hiding in a program, it is

considered unsafe, regardless of whether the related static
method is being called.

2) The produced Java byte codes for calling a static method
using a class name and calling it using a class instance are
the same. Since SB uses bytecode to inspect the flaws in
programs, any checker built under SB is not able to
differentiate these two as well. More specifically, when
using an instance variable for calling a static method, the
JVM smartly fixes it when producing the bytecode. It
makes it seem like the calling was happening on the class
name. See Listing 3, where both invocation types (from
lines 10 and 15) produce the bytecode invokestatic.

 Therefore, whenever there are two identical static methods in
any superclass-subclass pair, our checker will raise an issue and
report the second method as a bug, no matter if any of the
methods are being called or not (or whether they are called on
a fully qualified name (class name) or an instance). This,
however, can be considered a limitation of our implementation,
and it may be addressed by implementing a checker under a
static analysis tool that inspects the program source code
instead of the bytecode (for example, under PMD Source Code
Analyzer).

Note: Checkers implemented under SB may interact with the
SB framework and be able to use its properties using either the

3 TP is the number of flawed constructs that are detected correctly by our
checker, while FP is the number of unflawed constructs that are mistakenly
reported by the checker.

OpcodeStackDetector abstract class or the Detector Interface.
However, the previously explained scenario also made us
decide to choose the Detector interface, which is a lower level
since using the OpcodeStackDetector will only add extra
complexity to our program.

B. Custom test cases’ design
 To assess our generated checker and attain thorough
coverage of the problem being studied. The following points are
covered by the test cases that our team has built:

1) Flawed and unflawed: To assess our checker
performance in both true positive (TP) and false
positive (FP) aspects 3, we designed non-compliant
(NC), flawed test cases, and compliant (C), unflawed
test cases.

2) Unambiguous: the test cases are written in a clear and
concise way, leaving no room for misinterpretation.

3) Validated expectations: every test case has a
predetermined expected result.

4) Test objective: every test case has a distinct goal that
identifies the precise component of the problem being
investigated.

5) Independence: We created separate test cases to isolate
and identify problems more effectively.

As a result, we produced 11 C and 9 NC test cases. Next, we go
into detail on the design of these test cases.

NC test cases: These are the flawed constructs. These test
scenarios are considered insecure and involve real issues, so our
checker should report them. We could cover every scenario in
which methods in Java applications might be hidden by creating
nine NC test cases.

C test cases: These are the unflawed constructs, i.e., include
safe coding scenarios to test if our checker successfully ignores
them. To cover all possible scenarios, we have designed eleven
test cases.

You can check the test cases from the public review of our
checker implementation on the official website of the SB tool
[15]. The word good is used in the file name and/or method
name of the C test cases, while the word bad is used in the NC
test cases.

Automated checker for detecting methods hiding in Java programs

Complexity Analysis: SB static analysis tool, which we built our
checker under, inspects the Java byte code for different
programming vulnerabilities and weaknesses. Since the
bytecode of the subclass does not contain the bytecode of any
methods of the superclass (i.e., inherited methods), we had to
analyze all the superclasses. The latter leads to O(n) complexity

(where n is the number of superclasses), then goes over each of
the methods, leading to a second loop with O(m) complexity
(where m is the number of methods in each class). Combined
together, it gives O(n*m), i.e., a quadratic time complexity.
However, we do not generate the bytecode for each method
every time we check for the vulnerability of that method; rather,
we call a built-in method of the SB tool’s environment, called
visitClassContext [15], only once for the class. It scans all the
methods and information related to the class. This balances out
the double loop, producing an efficient checker (i.e., with linear
complexity).

An Exception to Rule 06. Methods MET07-J: According to the
SEI CERT Oracle Coding Standard for Java web page, which
includes a description of the targeted issue of this paper, there
is a case that should not be considered a violation of this rule,
i.e., it should not be counted as a method hiding issue. This
exception only applies when an API's hidden methods are
called; in this scenario, all calls to hidden methods make use of
qualified names or method invocation expressions that clearly
indicate which particular method is being called [3]. The
previously mentioned exception case has not been considered
through our checker’s implementation for two reasons:

1) When there is a method hiding in a program, it is

considered unsafe, regardless of whether the related static
method is being called.

2) The produced Java byte codes for calling a static method
using a class name and calling it using a class instance are
the same. Since SB uses bytecode to inspect the flaws in
programs, any checker built under SB is not able to
differentiate these two as well. More specifically, when
using an instance variable for calling a static method, the
JVM smartly fixes it when producing the bytecode. It
makes it seem like the calling was happening on the class
name. See Listing 3, where both invocation types (from
lines 10 and 15) produce the bytecode invokestatic.

 Therefore, whenever there are two identical static methods in
any superclass-subclass pair, our checker will raise an issue and
report the second method as a bug, no matter if any of the
methods are being called or not (or whether they are called on
a fully qualified name (class name) or an instance). This,
however, can be considered a limitation of our implementation,
and it may be addressed by implementing a checker under a
static analysis tool that inspects the program source code
instead of the bytecode (for example, under PMD Source Code
Analyzer).

Note: Checkers implemented under SB may interact with the
SB framework and be able to use its properties using either the

3 TP is the number of flawed constructs that are detected correctly by our
checker, while FP is the number of unflawed constructs that are mistakenly
reported by the checker.

OpcodeStackDetector abstract class or the Detector Interface.
However, the previously explained scenario also made us
decide to choose the Detector interface, which is a lower level
since using the OpcodeStackDetector will only add extra
complexity to our program.

B. Custom test cases’ design
 To assess our generated checker and attain thorough
coverage of the problem being studied. The following points are
covered by the test cases that our team has built:

1) Flawed and unflawed: To assess our checker
performance in both true positive (TP) and false
positive (FP) aspects 3, we designed non-compliant
(NC), flawed test cases, and compliant (C), unflawed
test cases.

2) Unambiguous: the test cases are written in a clear and
concise way, leaving no room for misinterpretation.

3) Validated expectations: every test case has a
predetermined expected result.

4) Test objective: every test case has a distinct goal that
identifies the precise component of the problem being
investigated.

5) Independence: We created separate test cases to isolate
and identify problems more effectively.

As a result, we produced 11 C and 9 NC test cases. Next, we go
into detail on the design of these test cases.

NC test cases: These are the flawed constructs. These test
scenarios are considered insecure and involve real issues, so our
checker should report them. We could cover every scenario in
which methods in Java applications might be hidden by creating
nine NC test cases.

C test cases: These are the unflawed constructs, i.e., include
safe coding scenarios to test if our checker successfully ignores
them. To cover all possible scenarios, we have designed eleven
test cases.

You can check the test cases from the public review of our
checker implementation on the official website of the SB tool
[15]. The word good is used in the file name and/or method
name of the C test cases, while the word bad is used in the NC
test cases.

Automated checker for detecting
method-hiding in Java programs

INFOCOMMUNICATIONS JOURNAL

JUNE 2024 • VOLUME XVI • NUMBER 2 23

Automated checker for detecting methods hiding in Java programs

LISTING 3
THE PRODUCED BYTECODE OF CALLING A STATIC METHOD USING A CLASS

INSTANCE AND A CLASS-QUALIFIED NAME

1 Invocation.java
2
3 class Super {
4 public static void staticMethod() {
5 }
6 }
7 public class Invocation {
8 public void invocationOnInstance() {
9 Super sup = new Super();
10 sup.staticMethod();
11 }
12
13 public void invocationOnClass() {
14 Super sup = new Super();
15 Super.staticMethod();
16 }
17 }

Compiled from "Invocation.java"

public class Invocation {
public Invocation();
Code:

 0: aload_0
 1: invokespecial #1 // Method java/lang/Object."<init>":()V
 4: return

public void invocationOnInstance();
Code:

 0: new #7 // class Super
 3: dup
 4: invokespecial #9 // Method Super."<init>":()V
 7: astore_1
 8: aload_1
 9: pop
 10: invokestatic #10 // Method Super.staticMethod:()V
 13: return

public void invocationOnClass();
Code:

 0: new #7 // class Super
 3: dup
 4: invokespecial #9 // Method Super."<init>":()V
 7: astore_1
 8: invokestatic #10 // Method Super.staticMethod:()V
 11: return
}

IV. RESULTS AND DISCUSSION

This section presents our checker's analysis results of both
bug types. The first type is intentional bugs; the custom test
cases that have been explained in the previous section, while
the second are real-world bugs.

A. Analyzing the custom test cases
For evaluation purposes, our team designed custom test cases.
They have been explained in detail in Section 3.2. We used
three metrics to represent our checker’s performance in
identifying methods hiding issues in Java programs. Formulas
1 through 3 present these metrics respectively. To calculate the
metrics values, we first ran our checker on the test cases and
then computed the number of TP and FP.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁⁄ (1)

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐹𝐹𝐹𝐹 𝐶𝐶⁄ (2)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇 (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)⁄ (3)

Higher recall and precision values, while a lower value of false
alarm rate indicates better performance. All values fall in the
interval [0, 1].

Table 2 presents the results of running our checker on the
custom test cases. It achieved optimal performance results.

TABLE 2
ASSESSMENT RESULTS OF ANALYZING CUSTOM TEST CASES

Metrics Values

NC test cases 9
C test cases 11
TP 9
FP 0
Recall 1.00
False alarm rate 0.00
Precision 1.00

B. Analyzing real-world software
We analyzed seven different pieces of software to determine
how well our checker performed in identifying the target bug of
this paper in real-world software. The software are: SB itself,
maven-javadoc-plugin [17], mybatis-3 [18], spark [19],
cayenne [20], Apache Hadoop [21], and Apache Dubbo [22] (In
Table 3, they have been renamed to P1 through P7,
respectively). Hence, we could only use the precision metric
here because it is not straightforward to calculate the number of
NC and C constructs when it comes to real-world software.

The analyzed software has been chosen arbitrarily from the
GitHub web page. Out of 30 projects, the presented ones
include method-hiding weaknesses. This indicates the
popularity of this issue; it appears in 23% of the arbitrarily
chosen projects. Table 3 presents the results, which revealed
that our checker gave the highest possible precision for the
analyzed programs. The numbers of TP and FP have been
decided by manually reviewing the output report of the checker.
You can check the second author's GitHub repository to find
the reports of running the checker on the presented software
[23].

TABLE 3
ASSESSMENT RESULTS OF ANALYZING THE REAL-WORLD

SOFTWARE

METRICS P1 P2 P3 P4 P5 P6 P7
TP 4 2 6 38 2 35 6
FP 0 0 0 0 0 0 0
PRECISION 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Automated checker for detecting methods hiding in Java programs

LISTING 3
THE PRODUCED BYTECODE OF CALLING A STATIC METHOD USING A CLASS

INSTANCE AND A CLASS-QUALIFIED NAME

1 Invocation.java
2
3 class Super {
4 public static void staticMethod() {
5 }
6 }
7 public class Invocation {
8 public void invocationOnInstance() {
9 Super sup = new Super();
10 sup.staticMethod();
11 }
12
13 public void invocationOnClass() {
14 Super sup = new Super();
15 Super.staticMethod();
16 }
17 }

Compiled from "Invocation.java"

public class Invocation {
public Invocation();
Code:

 0: aload_0
 1: invokespecial #1 // Method java/lang/Object."<init>":()V
 4: return

public void invocationOnInstance();
Code:

 0: new #7 // class Super
 3: dup
 4: invokespecial #9 // Method Super."<init>":()V
 7: astore_1
 8: aload_1
 9: pop
 10: invokestatic #10 // Method Super.staticMethod:()V
 13: return

public void invocationOnClass();
Code:

 0: new #7 // class Super
 3: dup
 4: invokespecial #9 // Method Super."<init>":()V
 7: astore_1
 8: invokestatic #10 // Method Super.staticMethod:()V
 11: return
}

IV. RESULTS AND DISCUSSION

This section presents our checker's analysis results of both
bug types. The first type is intentional bugs; the custom test
cases that have been explained in the previous section, while
the second are real-world bugs.

A. Analyzing the custom test cases
For evaluation purposes, our team designed custom test cases.
They have been explained in detail in Section 3.2. We used
three metrics to represent our checker’s performance in
identifying methods hiding issues in Java programs. Formulas
1 through 3 present these metrics respectively. To calculate the
metrics values, we first ran our checker on the test cases and
then computed the number of TP and FP.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁⁄ (1)

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐹𝐹𝐹𝐹 𝐶𝐶⁄ (2)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇 (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)⁄ (3)

Higher recall and precision values, while a lower value of false
alarm rate indicates better performance. All values fall in the
interval [0, 1].

Table 2 presents the results of running our checker on the
custom test cases. It achieved optimal performance results.

TABLE 2
ASSESSMENT RESULTS OF ANALYZING CUSTOM TEST CASES

Metrics Values

NC test cases 9
C test cases 11
TP 9
FP 0
Recall 1.00
False alarm rate 0.00
Precision 1.00

B. Analyzing real-world software
We analyzed seven different pieces of software to determine
how well our checker performed in identifying the target bug of
this paper in real-world software. The software are: SB itself,
maven-javadoc-plugin [17], mybatis-3 [18], spark [19],
cayenne [20], Apache Hadoop [21], and Apache Dubbo [22] (In
Table 3, they have been renamed to P1 through P7,
respectively). Hence, we could only use the precision metric
here because it is not straightforward to calculate the number of
NC and C constructs when it comes to real-world software.

The analyzed software has been chosen arbitrarily from the
GitHub web page. Out of 30 projects, the presented ones
include method-hiding weaknesses. This indicates the
popularity of this issue; it appears in 23% of the arbitrarily
chosen projects. Table 3 presents the results, which revealed
that our checker gave the highest possible precision for the
analyzed programs. The numbers of TP and FP have been
decided by manually reviewing the output report of the checker.
You can check the second author's GitHub repository to find
the reports of running the checker on the presented software
[23].

TABLE 3
ASSESSMENT RESULTS OF ANALYZING THE REAL-WORLD

SOFTWARE

METRICS P1 P2 P3 P4 P5 P6 P7
TP 4 2 6 38 2 35 6
FP 0 0 0 0 0 0 0
PRECISION 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Automated checker for detecting methods hiding in Java programs

LISTING 3
THE PRODUCED BYTECODE OF CALLING A STATIC METHOD USING A CLASS

INSTANCE AND A CLASS-QUALIFIED NAME

1 Invocation.java
2
3 class Super {
4 public static void staticMethod() {
5 }
6 }
7 public class Invocation {
8 public void invocationOnInstance() {
9 Super sup = new Super();
10 sup.staticMethod();
11 }
12
13 public void invocationOnClass() {
14 Super sup = new Super();
15 Super.staticMethod();
16 }
17 }

Compiled from "Invocation.java"

public class Invocation {
public Invocation();
Code:

 0: aload_0
 1: invokespecial #1 // Method java/lang/Object."<init>":()V
 4: return

public void invocationOnInstance();
Code:

 0: new #7 // class Super
 3: dup
 4: invokespecial #9 // Method Super."<init>":()V
 7: astore_1
 8: aload_1
 9: pop
 10: invokestatic #10 // Method Super.staticMethod:()V
 13: return

public void invocationOnClass();
Code:

 0: new #7 // class Super
 3: dup
 4: invokespecial #9 // Method Super."<init>":()V
 7: astore_1
 8: invokestatic #10 // Method Super.staticMethod:()V
 11: return
}

IV. RESULTS AND DISCUSSION

This section presents our checker's analysis results of both
bug types. The first type is intentional bugs; the custom test
cases that have been explained in the previous section, while
the second are real-world bugs.

A. Analyzing the custom test cases
For evaluation purposes, our team designed custom test cases.
They have been explained in detail in Section 3.2. We used
three metrics to represent our checker’s performance in
identifying methods hiding issues in Java programs. Formulas
1 through 3 present these metrics respectively. To calculate the
metrics values, we first ran our checker on the test cases and
then computed the number of TP and FP.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁⁄ (1)

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐹𝐹𝐹𝐹 𝐶𝐶⁄ (2)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇 (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)⁄ (3)

Higher recall and precision values, while a lower value of false
alarm rate indicates better performance. All values fall in the
interval [0, 1].

Table 2 presents the results of running our checker on the
custom test cases. It achieved optimal performance results.

TABLE 2
ASSESSMENT RESULTS OF ANALYZING CUSTOM TEST CASES

Metrics Values

NC test cases 9
C test cases 11
TP 9
FP 0
Recall 1.00
False alarm rate 0.00
Precision 1.00

B. Analyzing real-world software
We analyzed seven different pieces of software to determine
how well our checker performed in identifying the target bug of
this paper in real-world software. The software are: SB itself,
maven-javadoc-plugin [17], mybatis-3 [18], spark [19],
cayenne [20], Apache Hadoop [21], and Apache Dubbo [22] (In
Table 3, they have been renamed to P1 through P7,
respectively). Hence, we could only use the precision metric
here because it is not straightforward to calculate the number of
NC and C constructs when it comes to real-world software.

The analyzed software has been chosen arbitrarily from the
GitHub web page. Out of 30 projects, the presented ones
include method-hiding weaknesses. This indicates the
popularity of this issue; it appears in 23% of the arbitrarily
chosen projects. Table 3 presents the results, which revealed
that our checker gave the highest possible precision for the
analyzed programs. The numbers of TP and FP have been
decided by manually reviewing the output report of the checker.
You can check the second author's GitHub repository to find
the reports of running the checker on the presented software
[23].

TABLE 3
ASSESSMENT RESULTS OF ANALYZING THE REAL-WORLD

SOFTWARE

METRICS P1 P2 P3 P4 P5 P6 P7
TP 4 2 6 38 2 35 6
FP 0 0 0 0 0 0 0
PRECISION 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Automated checker for detecting methods hiding in Java programs

LISTING 3
THE PRODUCED BYTECODE OF CALLING A STATIC METHOD USING A CLASS

INSTANCE AND A CLASS-QUALIFIED NAME

1 Invocation.java
2
3 class Super {
4 public static void staticMethod() {
5 }
6 }
7 public class Invocation {
8 public void invocationOnInstance() {
9 Super sup = new Super();
10 sup.staticMethod();
11 }
12
13 public void invocationOnClass() {
14 Super sup = new Super();
15 Super.staticMethod();
16 }
17 }

Compiled from "Invocation.java"

public class Invocation {
public Invocation();
Code:

 0: aload_0
 1: invokespecial #1 // Method java/lang/Object."<init>":()V
 4: return

public void invocationOnInstance();
Code:

 0: new #7 // class Super
 3: dup
 4: invokespecial #9 // Method Super."<init>":()V
 7: astore_1
 8: aload_1
 9: pop
 10: invokestatic #10 // Method Super.staticMethod:()V
 13: return

public void invocationOnClass();
Code:

 0: new #7 // class Super
 3: dup
 4: invokespecial #9 // Method Super."<init>":()V
 7: astore_1
 8: invokestatic #10 // Method Super.staticMethod:()V
 11: return
}

IV. RESULTS AND DISCUSSION

This section presents our checker's analysis results of both
bug types. The first type is intentional bugs; the custom test
cases that have been explained in the previous section, while
the second are real-world bugs.

A. Analyzing the custom test cases
For evaluation purposes, our team designed custom test cases.
They have been explained in detail in Section 3.2. We used
three metrics to represent our checker’s performance in
identifying methods hiding issues in Java programs. Formulas
1 through 3 present these metrics respectively. To calculate the
metrics values, we first ran our checker on the test cases and
then computed the number of TP and FP.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁⁄ (1)

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐹𝐹𝐹𝐹 𝐶𝐶⁄ (2)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇 (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)⁄ (3)

Higher recall and precision values, while a lower value of false
alarm rate indicates better performance. All values fall in the
interval [0, 1].

Table 2 presents the results of running our checker on the
custom test cases. It achieved optimal performance results.

TABLE 2
ASSESSMENT RESULTS OF ANALYZING CUSTOM TEST CASES

Metrics Values

NC test cases 9
C test cases 11
TP 9
FP 0
Recall 1.00
False alarm rate 0.00
Precision 1.00

B. Analyzing real-world software
We analyzed seven different pieces of software to determine
how well our checker performed in identifying the target bug of
this paper in real-world software. The software are: SB itself,
maven-javadoc-plugin [17], mybatis-3 [18], spark [19],
cayenne [20], Apache Hadoop [21], and Apache Dubbo [22] (In
Table 3, they have been renamed to P1 through P7,
respectively). Hence, we could only use the precision metric
here because it is not straightforward to calculate the number of
NC and C constructs when it comes to real-world software.

The analyzed software has been chosen arbitrarily from the
GitHub web page. Out of 30 projects, the presented ones
include method-hiding weaknesses. This indicates the
popularity of this issue; it appears in 23% of the arbitrarily
chosen projects. Table 3 presents the results, which revealed
that our checker gave the highest possible precision for the
analyzed programs. The numbers of TP and FP have been
decided by manually reviewing the output report of the checker.
You can check the second author's GitHub repository to find
the reports of running the checker on the presented software
[23].

TABLE 3
ASSESSMENT RESULTS OF ANALYZING THE REAL-WORLD

SOFTWARE

METRICS P1 P2 P3 P4 P5 P6 P7
TP 4 2 6 38 2 35 6
FP 0 0 0 0 0 0 0
PRECISION 1.0 1.0 1.0 1.0 1.0 1.0 1.0

TABLE II
Assessment Results of Analyzing Custom Test Cases

TABLE III
Assessment Results of Analyzing the Real-World Software

LISTING 3
The produced bytecode of calling a Static Method using

a class instance and a class-qualified name

Automated checker for detecting methods hiding in Java programs

LISTING 3
THE PRODUCED BYTECODE OF CALLING A STATIC METHOD USING A CLASS

INSTANCE AND A CLASS-QUALIFIED NAME

1 Invocation.java
2
3 class Super {
4 public static void staticMethod() {
5 }
6 }
7 public class Invocation {
8 public void invocationOnInstance() {
9 Super sup = new Super();
10 sup.staticMethod();
11 }
12
13 public void invocationOnClass() {
14 Super sup = new Super();
15 Super.staticMethod();
16 }
17 }

Compiled from "Invocation.java"

public class Invocation {
public Invocation();
Code:

 0: aload_0
 1: invokespecial #1 // Method java/lang/Object."<init>":()V
 4: return

public void invocationOnInstance();
Code:

 0: new #7 // class Super
 3: dup
 4: invokespecial #9 // Method Super."<init>":()V
 7: astore_1
 8: aload_1
 9: pop
 10: invokestatic #10 // Method Super.staticMethod:()V
 13: return

public void invocationOnClass();
Code:

 0: new #7 // class Super
 3: dup
 4: invokespecial #9 // Method Super."<init>":()V
 7: astore_1
 8: invokestatic #10 // Method Super.staticMethod:()V
 11: return
}

IV. RESULTS AND DISCUSSION

This section presents our checker's analysis results of both
bug types. The first type is intentional bugs; the custom test
cases that have been explained in the previous section, while
the second are real-world bugs.

A. Analyzing the custom test cases
For evaluation purposes, our team designed custom test cases.
They have been explained in detail in Section 3.2. We used
three metrics to represent our checker’s performance in
identifying methods hiding issues in Java programs. Formulas
1 through 3 present these metrics respectively. To calculate the
metrics values, we first ran our checker on the test cases and
then computed the number of TP and FP.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁⁄ (1)

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐹𝐹𝐹𝐹 𝐶𝐶⁄ (2)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇 (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)⁄ (3)

Higher recall and precision values, while a lower value of false
alarm rate indicates better performance. All values fall in the
interval [0, 1].

Table 2 presents the results of running our checker on the
custom test cases. It achieved optimal performance results.

TABLE 2
ASSESSMENT RESULTS OF ANALYZING CUSTOM TEST CASES

Metrics Values

NC test cases 9
C test cases 11
TP 9
FP 0
Recall 1.00
False alarm rate 0.00
Precision 1.00

B. Analyzing real-world software
We analyzed seven different pieces of software to determine
how well our checker performed in identifying the target bug of
this paper in real-world software. The software are: SB itself,
maven-javadoc-plugin [17], mybatis-3 [18], spark [19],
cayenne [20], Apache Hadoop [21], and Apache Dubbo [22] (In
Table 3, they have been renamed to P1 through P7,
respectively). Hence, we could only use the precision metric
here because it is not straightforward to calculate the number of
NC and C constructs when it comes to real-world software.

The analyzed software has been chosen arbitrarily from the
GitHub web page. Out of 30 projects, the presented ones
include method-hiding weaknesses. This indicates the
popularity of this issue; it appears in 23% of the arbitrarily
chosen projects. Table 3 presents the results, which revealed
that our checker gave the highest possible precision for the
analyzed programs. The numbers of TP and FP have been
decided by manually reviewing the output report of the checker.
You can check the second author's GitHub repository to find
the reports of running the checker on the presented software
[23].

TABLE 3
ASSESSMENT RESULTS OF ANALYZING THE REAL-WORLD

SOFTWARE

METRICS P1 P2 P3 P4 P5 P6 P7
TP 4 2 6 38 2 35 6
FP 0 0 0 0 0 0 0
PRECISION 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Automated checker for detecting methods hiding in Java programs

LISTING 3
THE PRODUCED BYTECODE OF CALLING A STATIC METHOD USING A CLASS

INSTANCE AND A CLASS-QUALIFIED NAME

1 Invocation.java
2
3 class Super {
4 public static void staticMethod() {
5 }
6 }
7 public class Invocation {
8 public void invocationOnInstance() {
9 Super sup = new Super();
10 sup.staticMethod();
11 }
12
13 public void invocationOnClass() {
14 Super sup = new Super();
15 Super.staticMethod();
16 }
17 }

Compiled from "Invocation.java"

public class Invocation {
public Invocation();
Code:

 0: aload_0
 1: invokespecial #1 // Method java/lang/Object."<init>":()V
 4: return

public void invocationOnInstance();
Code:

 0: new #7 // class Super
 3: dup
 4: invokespecial #9 // Method Super."<init>":()V
 7: astore_1
 8: aload_1
 9: pop
 10: invokestatic #10 // Method Super.staticMethod:()V
 13: return

public void invocationOnClass();
Code:

 0: new #7 // class Super
 3: dup
 4: invokespecial #9 // Method Super."<init>":()V
 7: astore_1
 8: invokestatic #10 // Method Super.staticMethod:()V
 11: return
}

IV. RESULTS AND DISCUSSION

This section presents our checker's analysis results of both
bug types. The first type is intentional bugs; the custom test
cases that have been explained in the previous section, while
the second are real-world bugs.

A. Analyzing the custom test cases
For evaluation purposes, our team designed custom test cases.
They have been explained in detail in Section 3.2. We used
three metrics to represent our checker’s performance in
identifying methods hiding issues in Java programs. Formulas
1 through 3 present these metrics respectively. To calculate the
metrics values, we first ran our checker on the test cases and
then computed the number of TP and FP.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁⁄ (1)

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐹𝐹𝐹𝐹 𝐶𝐶⁄ (2)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇 (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)⁄ (3)

Higher recall and precision values, while a lower value of false
alarm rate indicates better performance. All values fall in the
interval [0, 1].

Table 2 presents the results of running our checker on the
custom test cases. It achieved optimal performance results.

TABLE 2
ASSESSMENT RESULTS OF ANALYZING CUSTOM TEST CASES

Metrics Values

NC test cases 9
C test cases 11
TP 9
FP 0
Recall 1.00
False alarm rate 0.00
Precision 1.00

B. Analyzing real-world software
We analyzed seven different pieces of software to determine
how well our checker performed in identifying the target bug of
this paper in real-world software. The software are: SB itself,
maven-javadoc-plugin [17], mybatis-3 [18], spark [19],
cayenne [20], Apache Hadoop [21], and Apache Dubbo [22] (In
Table 3, they have been renamed to P1 through P7,
respectively). Hence, we could only use the precision metric
here because it is not straightforward to calculate the number of
NC and C constructs when it comes to real-world software.

The analyzed software has been chosen arbitrarily from the
GitHub web page. Out of 30 projects, the presented ones
include method-hiding weaknesses. This indicates the
popularity of this issue; it appears in 23% of the arbitrarily
chosen projects. Table 3 presents the results, which revealed
that our checker gave the highest possible precision for the
analyzed programs. The numbers of TP and FP have been
decided by manually reviewing the output report of the checker.
You can check the second author's GitHub repository to find
the reports of running the checker on the presented software
[23].

TABLE 3
ASSESSMENT RESULTS OF ANALYZING THE REAL-WORLD

SOFTWARE

METRICS P1 P2 P3 P4 P5 P6 P7
TP 4 2 6 38 2 35 6
FP 0 0 0 0 0 0 0
PRECISION 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Automated checker for detecting
method-hiding in Java programs

JUNE 2024 • VOLUME XVI • NUMBER 224

INFOCOMMUNICATIONS JOURNAL

Automated checker for detecting methods hiding in Java programs

V. CONCLUSION
With the help of the SpotBugs static analysis tool, we have
created and implemented a new checker called
"FindHidingMethod" that can identify the issue of method
hiding in Java programs. Our approach has been evaluated, and
the results revealed that it was very precise when detecting
related issues in the analyzed test cases and real-world
programs.

REFERENCES
[1] M. Ufuk., Review of some recent European cybersecurity research and
Innovation Projects, Infocommunications Journal, Vol. XIV, pp. 70–78,
2022, doi: 10.36244/ICJ.2022.4.10.
[2] Java Documentation, Overriding and hiding methods, accessed on
December 2023,
https://docs.oracle.com/javase/tutorial/java/IandI/override.html
[3] Java Language Specification, Inheritance, Overriding, and Hiding,
accessed on December 2023,
https://docs.oracle.com/javase/specs/jls/se21/html/jls-8.html#jls-8.4.8
[4] SEI CERT Oracle Coding Standard for Java, MET07-J. Never declare a
class method that hides a method declared in a superclass or super interface,
accessed on December 2023,
https://wiki.sei.cmu.edu/confluence/display/java/MET07-
J+Never+declare+a+class+method+that+hides+a+method+declared+in+a+
superclass+or+superinterface
[5] B. Chess and J. West, Secure Programming with Static Analysis,
Addison-Wesley, USA,2007.
[6] M. Alqaradaghi, G. Morse and T. K., Detecting security vulnerabilities
with static analysis – a case study, Pollack Periodica, Vol. 17, pp. 1–7, 2021,
doi.org/10.1556/606.2021.00454.
[7] TIOBE Index for October, accessed on October 2023,
https://www.tiobe.com/tiobe-index
[8] SpotBugs, Find Bugs in Java Programs, accessed on December 2023,
https://spotbugs.github.io/
[9] PMD Source Code Analyzer., accessed on December 2023,
https://pmd.github.io/
[10] Useless Overriding Method, accessed on December 2023,
https://docs.pmdcode.org/latest/pmd_rules_java_design.html#uselessoverri
dingmethod
[11] SpotBugs Bug Description, accessed on July 2024,
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html
[12] M. Alqaradagh, M.Z.I. Nazir, and T. Kozsik, Design and Implement an
Accurate Automated Static Analysis Checker to Detect Insecure Use of
SecurityManager. Computers, 12(12), p.247.
Computers 2023, 12(12),247; doi.org/10.3390/computers12120247
[13] SonarQube Static Code Analysis Tool., accessed on December 2023,
https://www.sonarsource.com/products/sonarqube/
[14] Sonar rules, Java static analysis, accessed on January 2024,
https://rules.sonarsource.com/java/
[15] M.Z.I. Nazir, Public Review of MET07-J Checker, accessed on
December 2023, https://github.com/spotbugs/spotbugs/pull/2467
[16] visitClassContext method, accessed on July 2024,
https://github.com/spotbugs/spotbugs/blob/cc2bad5559f662dd997059606a
bc9d7e659f2a45/spotbugs/src/main/java/edu/umd/cs/findbugs/Detector.jav
a#L36
[17] maven-javadoc-plugin, Apache Maven Javadoc Plugin., accessed on
December 2023, https://github.com/apache/maven-javadoc-plugin
[18] mybatis-3, MyBatis SQL mapper framework for Java, accessed on
January 2024, https://github.com/mybatis/mybatis-3
[19] Apache Spark - A unified analytics engine for large-scale data
processing, accessed on December 2023, https://github.com/apache/spark
[20] cayenne, Mirror of Apache Cayenne, accessed on January 2024,
https://github.com/apache/cayenne
[21] Apache Hadoop, accessed on January 2024,
https://github.com/apache/hadoop
[22] Apache Dubbo, The Java implementation of Apache Dubbo. An RPC
and microservice framework, accessed on January 2024,
https://github.com/apache/dubbo
[23] M. Alqaradaghi, Running FindHidingMethod checker on real-world
software, accessed on January 2024, https://github.com/Midya-

ELTE/Running-FindHidingMethod-checker-on-real-world-
software/tree/main

M. Z. I. Nazir was born in Lahore,
Pakistan, in 2001. He received the B.Sc.
degree in informatics from ELTE, Eötvös
Loránd University, Budapest, Hungary,
in 2023. Currently, he is studying M.Sc.
informatics at Technical University
Munich. He worked previously at
different companies in Hungary. On

microservices at Ericsson, on networks at Thermofisher, and on
file transfer at CERN.

M. Alqaradaghi was born in Baghdad,
Iraq. She received a B.Sc. degree in
Information Technology from the
Middle Technical University, Baghdad,
Iraq, in 2006 and an M.Sc. degree in
Computer Science from Sam
Higginbottom University, India, in
2015. She is now a Ph.D. candidate at
the Department of Programming

Languages and Compilers, ELTE, Eötvös Loránd University,
Budapest, Hungary. Her research focuses on finding security
vulnerabilities in Java code using static analysis tools. From
2015 to 2019, she worked as a Teaching Assistant at the
Northern Technical University, Kirkuk, Iraq. Since 2019, she
has been working as an instructor in the programming
languages lab in the Department of Programming Languages
and Compilers, ELTE.

T. Kozsik is currently an Associate
Professor with the Department of
Programming Languages and Compilers,
Eötvös Loránd University (ELTE). His
research interests include formal
verification, programming paradigms
(i.e., functional programming,
concurrent programming, and quantum
computing), static analysis, refactoring,

and domain-specific programming languages.

	 [1]	 M. Ufuk., Review of some recent European cybersecurity research
and Innovation Projects, Infocommunications Journal, Vol. XIV, pp.
70–78, 2022, doi: 10.36244/ICJ.2022.4.10.

	 [2]	 Java Documentation, Overriding and hiding methods, accessed on
December 2023, https://docs.oracle.com/javase/tutorial/java/IandI/
override.html

	 [3]	 Java Language Specification, Inheritance, Overriding, and Hiding,
accessed on December 2023, https://docs.oracle.com/javase/specs/jls/
se21/html/jls-8.html#jls-8.4.8

	 [4]	 SEI CERT Oracle Coding Standard for Java, MET07-J. Never declare
a class method that hides a method declared in a superclass or super
interface, accessed on December 2023,

	 	 https://wiki.sei.cmu.edu/confluence/display/java/MET07-J.+Never+
declare+a+class+method+that+hides+a+method+declared+in+a+sup
erclass+or+superinterface

	 [5]	 B. Chess and J. West, Secure Programming with Static Analysis,
Addison-Wesley, USA, 2007.

	 [6]	 M. Alqaradaghi, G. Morse and T. K., Detecting security vulnerabilities
with static analysis – a case study, Pollack Periodica, Vol. 17, pp. 1–7,
2021, doi: 10.1556/606.2021.00454.

	 [7]	 TIOBE Index for October, accessed on October 2023, https://www.
tiobe.com/tiobe-index

	 [8]	 SpotBugs, Find Bugs in Java Programs, accessed on December 2023,
https://spotbugs.github.io/

	 [9]	 PMD Source Code Analyzer., accessed on December 2023, https://
pmd.github.io/

	[10]	 Useless Overriding Method, accessed on December 2023, https://
pmd.github.io/pmd/pmd_rules_java.html

	[11]	 SpotBugs Bug Description, accessed on July 2024, https://spotbugs.
readthedocs.io/en/latest/bugDescriptions.html

	[12]	 M. Alqaradagh, M.Z.I. Nazir, and T. Kozsik, Design and Implement
an Accurate Automated Static Analysis Checker to Detect Insecure
Use of SecurityManager. Computers, 12(12), p. 247., Computers
2023, 12(12), 247; doi: 10.3390/computers12120247

	[13]	 SonarQube Static Code Analysis Tool., accessed on December 2023,
https://www.sonarsource.com/products/sonarqube/

	[14]	 Sonar rules, Java static analysis, accessed on January 2024, https://
rules.sonarsource.com/java/

	[15]	 M.Z.I. Nazir, Public Review of MET07-J Checker, accessed on
December 2023, https://github.com/spotbugs/spotbugs/pull/2467

	[16]	 visitClassContext method, accessed on July 2024,
		 h t t p s : / / g i t h u b . c o m / s p o t b u g s / s p o t b u g s / b l o b /

cc2bad5559f662dd997059606abc9d7e659f2a45/spotbugs/src/main/
java/edu/umd/cs/findbugs/Detector.java#L36

References

[17]	 maven-javadoc-plugin, Apache Maven Javadoc Plugin., accessed on
December 2023, https://github.com/apache/maven-javadoc-plugin

[18]	 mybatis-3, MyBatis SQL mapper framework for Java, accessed on
January 2024, https://github.com/mybatis/mybatis-3

[19]	 Apache Spark – A unified analytics engine for large-scale data
processing, accessed on December 2023, https://github.com/apache/
spark

[20]	 cayenne, Mirror of Apache Cayenne, accessed on January 2024,
https://github.com/apache/cayenne

[21] Apache Hadoop, accessed on January 2024, https://github.com/
apache/hadoop

[22]	 Apache Dubbo, The Java implementation of Apache Dubbo. An RPC
and microservice framework, accessed on January 2024, https://
github.com/apache/dubbo

[23]	 M. Alqaradaghi, Running FindHidingMethod checker on real-world
software, accessed on January 2024, https://github.com/Midya-ELTE/
Running-FindHidingMethod-checker-on-real-world-software/tree/
main

M. Z. I. Nazir was born in Lahore, Pakistan, in 2001.
He received the B.Sc. degree in informatics from
ELTE, Eötvös Loránd University, Budapest, Hungary,
in 2023. Currently, he is studying M.Sc. informatics at
Technical University Munich. He worked previously
at different companies in Hungary. On microservices
at Ericsson, on networks at Thermofisher, and on file
transfer at CERN.

M. Alqaradaghi was born in Baghdad, Iraq. She
received a B.Sc. degree in Information Technology
from the Middle Technical University, Baghdad, Iraq,
in 2006 and an M.Sc. degree in Computer Science
from Sam Higginbottom University, India, in 2015.
She is now a Ph.D. candidate at the Department of
Programming Languages and Compilers, ELTE,
Eötvös Loránd University, Budapest, Hungary. Her
research focuses on finding security vulnerabilities
in Java code using static analysis tools. From 2015

to 2019, she worked as a Teaching Assistant at the Northern Technical
University, Kirkuk, Iraq. Since 2019, she has been working as an instructor in
the programming languages lab in the Department of Programming Languages
and Compilers, ELTE.

T. Kozsik is currently an Associate Professor with
the Department of Programming Languages and
Compilers, Eötvös Loránd University (ELTE).
His research interests include formal verification,
programming paradigms (i.e., functional programming,
concurrent programming, and quantum computing),
static analysis, refactoring, and domain-specific
programming languages.

https://doi.org/10.36244/ICJ.2022.4.10
https://docs.oracle.com/javase/tutorial/java/IandI/override.html
https://docs.oracle.com/javase/tutorial/java/IandI/override.html
https://docs.oracle.com/javase/specs/jls/se21/html/jls-8.html#jls-8.4.8
https://docs.oracle.com/javase/specs/jls/se21/html/jls-8.html#jls-8.4.8
https://wiki.sei.cmu.edu/confluence/display/java/MET07-J.+Never+declare+a+class+method+that+hides+a+method+declared+in+a+superclass+or+superinterface
https://wiki.sei.cmu.edu/confluence/display/java/MET07-J.+Never+declare+a+class+method+that+hides+a+method+declared+in+a+superclass+or+superinterface
https://wiki.sei.cmu.edu/confluence/display/java/MET07-J.+Never+declare+a+class+method+that+hides+a+method+declared+in+a+superclass+or+superinterface
https://doi.org/10.1556/606.2021.00454
https://www.tiobe.com/tiobe-index
https://www.tiobe.com/tiobe-index
https://spotbugs.github.io/
https://pmd.github.io/
https://pmd.github.io/
https://pmd.github.io/pmd/pmd_rules_java.html
https://pmd.github.io/pmd/pmd_rules_java.html
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html
https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html
https://doi.org/10.3390/computers12120247
https://www.sonarsource.com/products/sonarqube/
https://rules.sonarsource.com/java/
https://rules.sonarsource.com/java/
https://github.com/spotbugs/spotbugs/pull/2467
https://github.com/spotbugs/spotbugs/blob/cc2bad5559f662dd997059606abc9d7e659f2a45/spotbugs/src/main/java/edu/umd/cs/findbugs/Detector.java#L36
https://github.com/spotbugs/spotbugs/blob/cc2bad5559f662dd997059606abc9d7e659f2a45/spotbugs/src/main/java/edu/umd/cs/findbugs/Detector.java#L36
https://github.com/spotbugs/spotbugs/blob/cc2bad5559f662dd997059606abc9d7e659f2a45/spotbugs/src/main/java/edu/umd/cs/findbugs/Detector.java#L36
https://github.com/apache/maven-javadoc-plugin
https://github.com/mybatis/mybatis-3
https://github.com/apache/spark
https://github.com/apache/spark
https://github.com/apache/cayenne
https://github.com/apache/hadoop
https://github.com/apache/hadoop
https://github.com/apache/dubbo
https://github.com/apache/dubbo
https://github.com/Midya-ELTE/Running-FindHidingMethod-checker-on-real-world-software/tree/main
https://github.com/Midya-ELTE/Running-FindHidingMethod-checker-on-real-world-software/tree/main
https://github.com/Midya-ELTE/Running-FindHidingMethod-checker-on-real-world-software/tree/main

