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usually not part of the process, but it is possible through an 
extension of the beamforming method. MUSIC is a relatively 
fast and simple method for locating sound sources. It is based 
on the separation of the cross-spectral matrix of the received 
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and its extended non-linear version for tracking moving sound 
sources. We evaluate the performance of these methods by 
simulations in the MATLAB environment and measurements 
with unmanned aerial vehicles (UAV). DOA estimations and 
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is shown to be significantly more problematic in the latter 
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and discuss possibilities for developing a more robust distance 
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observed errors and discuss possibilities for developing a 
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I. INTRODUCTION 
HE position and trajectory of moving objects can be 
estimated using numerous remote sensing technologies, 

including optical and heat cameras or radar. If the object emits 
sound, it can also be localized by means of an acoustical sensor, 
i.e., an array of microphones. The latter approach also has its 
own advantages and drawbacks, and favorable environmental 
conditions for working reliably. Our objective is to estimate the 
positions of moving sound sources and track them accurately 
utilizing an acoustical camera. We implement an algorithm in 
the MATLAB environment for this task and test it by means of 
both simulations and measurements. 
 The MUSIC algorithm is discussed extensively in the 
literature. The paper by Xenaki et al. in 2014 [1] details MUSIC 
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alongside conventional and more modern methods and 
compares them in two-dimensional simulations. Gupta and Kar 
created a version of the algorithm that is suitable for DOA 
estimation of coherent sources [2]. Yaning et al. improved the 
method by decreasing the computational complexity [3]. In 
general, beamforming algorithms are utilized in various fields, 
e.g. mining [4], detecting weak signals underwater [5], room 
acoustics and teleconference systems [6], navigation systems 
etc. 
 Estimating the position of sound sources usually only covers 
the approximation of the direction. For full 3D localization, the 
distance also needs to be estimated, which is a relatively novel 
concept in the field of acoustical beamforming. Cai et al. 
proposed a three-dimensional sound field reconstruction 
method which combines the use of beamforming and a 
binocular camera [7]. Valin et al. devised a 3D localization 
method for a video conference application which worked for up 
to 3 meters of distance [8]. In 2022, Merino-Martínez et al. 
presented a distance estimation that is based on asynchronous 
measurements with the same microphone array at multiple 
locations, which works for a quasi-stationary sound field [9]. 
Sarradj used a gridless version of orthogonal beamforming for 
3D source-mapping to improve the resolution and reduce the 
computational cost [10]. Liaquat et al. developed a three-
dimensional localization method for a low number of 
microphones [11]. In contrast, our goal is to devise a purely 
acoustical method that exploits beamforming with a grid for 
locating moving sources in a wider range of distances. We use 
the approach together with a 48-channel microphone array. 
 First, we discuss the basics of beamforming, its most 
important principles and concepts. After that, we move on to 
the MUSIC algorithm, briefly introducing the formulation used 
in our implementation, addressing its benefits and shortcomings 
compared to other beamforming methods. An overview of the 
extension of some beamforming concepts that make distance 
estimation possible is presented next, before moving on to the 
Kalman filter and its use in tracking moving sound sources. We 
conclude the article with presenting our findings from 
simulations and measurements and evaluating the performance 
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of the proposed algorithm, while looking for potential future 
improvements.

II. THE BASICS OF BEAMFORMING

The two main tasks that need to be solved using microphone 
arrays and beamforming algorithms are acoustical focusing and 
source localization. Acoustical focusing is based on the Delay-
and-Sum method (Figure 1). The received signals of the 
microphones in the array (which are assumed to be 
omnidirectional) are amplified and delayed separately, resulting 
in the amplification of sound waves arriving from the focal
direction. Due to the phase relations of the original signals, the 
sum of these “steered” signals has a higher amplitude in case of
waves arriving from the focal direction [12]. Thus, even though 
the individual microphones have spherical characteristics, the 
array can have a highly selective directivity that can be designed 
to suit our needs. The directional characteristics can be further 
improved (e.g., by the suppression of sidelobes) by individually 
modifying the amplifications and the delays of the received 
signals. It is possible to focus on different directions virtually,
by applying different delays on the signals, without physically 
rotating the array.

                                  Fig. 1. The Delay-and-Sum method. 

The other main task, source localization is solved by means 
of beamforming algorithms. A group of virtual source points is 
selected in three-dimensional space, making up the acoustical
canvas (also called the scanning grid). By simulating sound 
propagation from all these virtual source points to the sensors 
of the array, the location where the similarity of the real 
(measured) and theoretical (simulated) sound fields is maximal, 
gives an estimated position. Focusing and source localization 
can be performed separately, but using them together is 
advantageous for the direction of arrival estimation of sound 
sources. By focusing on the virtual source positions one-by-
one, an amplitude-like information representing the likelihood 
of the presence of a sound source at the given coordinate can be 
attained for each point of the grid using a beamforming 
algorithm. Thus, an amplitude map (or sound map) is attained,
and we can estimate the direction of the source as the point on 
the canvas having the highest amplitude (likelihood). This way, 
source localization boils down to finding local maxima on 
sound maps (Figure 2). 

Fig. 2. Sound map created using a beamforming algorithm in a spherical 
coordinate system, with the azimuth denoted with Phi and the elevation denoted 
with Theta, having a phase domain of [-90°,90°] and [0°,90°], respectively.
Source localization boils down to looking for local maxima on sound maps.

The points of the acoustical canvas are usually placed along 
an imaginary flat or spherical surface. The microphones of the 
array are most often in a cross, rectangular grid, circle, or 
spiral/multi-spiral formation. The distance between the array 
and the canvas is the focal distance, which can be taken as either 
finite or infinite (Figure 3). With an infinite focal distance, only 
the directions of the virtual source positions matter, and the 
wavefronts are assumed to be flat. The latter assumption holds 
only if the size of the array is negligible compared to the 
distance of the source, and hence the angles of incidence are 
roughly the same for each microphone. The received signals of 
the microphones also have the same amplitude and only differ 
in their phase. With a finite focal distance, the exact positions 
of the virtual sources must be defined, and spherical wavefronts 
are assumed. The received signals of the microphones differ in 
amplitude, phase, and angle of incidence.

                                Fig. 3. Infinite and finite focal distance. 

Beamforming algorithms in general can be used both in time 
domain and in frequency domain, and we chose the latter 
approach for our research. A narrow band is selected from the 
frequency spectra of short time windows of the received 
microphone signals, and the energy contained in this narrow 
band is the amplitude-like information calculated for each point 
of the acoustical canvas. Choosing the correct center frequency 
of the band is essential, because too low frequencies result in 
blurred amplitude maps, while at too high frequencies the 
principle of spatial sampling is violated, resulting in phantom 
sources at incorrect positions. This frequency 𝑓𝑓 must satisfy 
𝑓𝑓 < 𝑐𝑐

2𝑑𝑑 (1)
where c is the speed of the sound and d is the distance between 
adjacent microphones (which, in our case, are placed evenly).
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gives an estimated position. Focusing and source localization 
can be performed separately, but using them together is 
advantageous for the direction of arrival estimation of sound 
sources. By focusing on the virtual source positions one-by-
one, an amplitude-like information representing the likelihood 
of the presence of a sound source at the given coordinate can be 
attained for each point of the grid using a beamforming 
algorithm. Thus, an amplitude map (or sound map) is attained,
and we can estimate the direction of the source as the point on 
the canvas having the highest amplitude (likelihood). This way, 
source localization boils down to finding local maxima on 
sound maps (Figure 2). 

Fig. 2. Sound map created using a beamforming algorithm in a spherical 
coordinate system, with the azimuth denoted with Phi and the elevation denoted 
with Theta, having a phase domain of [-90°,90°] and [0°,90°], respectively.
Source localization boils down to looking for local maxima on sound maps.

The points of the acoustical canvas are usually placed along 
an imaginary flat or spherical surface. The microphones of the 
array are most often in a cross, rectangular grid, circle, or 
spiral/multi-spiral formation. The distance between the array 
and the canvas is the focal distance, which can be taken as either 
finite or infinite (Figure 3). With an infinite focal distance, only 
the directions of the virtual source positions matter, and the 
wavefronts are assumed to be flat. The latter assumption holds 
only if the size of the array is negligible compared to the 
distance of the source, and hence the angles of incidence are 
roughly the same for each microphone. The received signals of 
the microphones also have the same amplitude and only differ 
in their phase. With a finite focal distance, the exact positions 
of the virtual sources must be defined, and spherical wavefronts 
are assumed. The received signals of the microphones differ in 
amplitude, phase, and angle of incidence.

                                Fig. 3. Infinite and finite focal distance. 

Beamforming algorithms in general can be used both in time 
domain and in frequency domain, and we chose the latter 
approach for our research. A narrow band is selected from the 
frequency spectra of short time windows of the received 
microphone signals, and the energy contained in this narrow 
band is the amplitude-like information calculated for each point 
of the acoustical canvas. Choosing the correct center frequency 
of the band is essential, because too low frequencies result in 
blurred amplitude maps, while at too high frequencies the 
principle of spatial sampling is violated, resulting in phantom 
sources at incorrect positions. This frequency 𝑓𝑓 must satisfy 
𝑓𝑓 < 𝑐𝑐

2𝑑𝑑 (1)
where c is the speed of the sound and d is the distance between 
adjacent microphones (which, in our case, are placed evenly).
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III. MUSIC
Beamforming is used for estimating the source distribution 

vector (𝐪𝐪), which is done making use of the vector of the 
received signals (𝐩𝐩) and a sensing matrix (𝐒𝐒). The vectors 𝐪𝐪
and 𝐩𝐩 both contain information in the frequency domain, i.e.,
every element of the vector is the complex amplitude of a 
component of the emitted or received signal at a given 
frequency, during a short time window. The number of 
elements in 𝐪𝐪 equals the number of virtual source positions on 
the acoustical canvas, while 𝐩𝐩 has as many elements as the 
number of microphones in the array. The sensing matrix 
connects the two vectors as follows:
𝐩𝐩 = 𝐒𝐒𝒒𝒒. (2)
The elements of 𝐒𝐒 can be calculated in 3D space as
𝐒𝐒(𝑖𝑖, 𝑗𝑗) = 𝑒𝑒−j𝑘𝑘𝑑𝑑𝑖𝑖,𝑗𝑗 1

𝑑𝑑𝑖𝑖,𝑗𝑗
, (3)

where j is the imaginary unit, 𝑘𝑘 is the wavenumber (ratio of the 
angular frequency and the speed of sound), and 𝑑𝑑𝑖𝑖,𝑗𝑗 is the
distance between the 𝑖𝑖-th microphone and the 𝑗𝑗-th point of the 
canvas.

A very important concept for several beamforming 
algorithms is the cross-spectral matrix (CSM), which is the 
spectral cross-correlation between the received signals of the
microphones. The CSM can be estimated with the received 
signal in the frequency domain:

𝐆𝐆 = 𝐏𝐏𝐏𝐏H

𝑁𝑁 , (4)

Here, the 𝐏𝐏 matrix consists of the 𝐩𝐩 vectors of the received 
signals from the last 𝑁𝑁 number of time windows, that is, the 
estimated CSM is the average cross-correlation between the 
microphones during the most recent blocks.

MUSIC is a linear algebraic method that is based on the 
separation of the cross-spectral matrix of the received signals
into signal and noise subspaces through eigenvalue 
decomposition [13]. The eigenvectors corresponding to the 
largest eigenvalues span the signal subspace, and the rest span
the noise subspace. Then, the eigenvectors of the noise 
subspace 𝐔𝐔n, and the sensing matrix 𝐒𝐒 can be used for
estimating the direction of the sound source. The computation 
is made by means of (4) [1],[2],[14],[15]:

𝐏𝐏MUSIC(𝑗𝑗) = 1
𝐬𝐬(𝑗𝑗)H𝐔𝐔n𝐔𝐔nH𝐬𝐬(𝑗𝑗) (5)

where 𝐬𝐬(𝑗𝑗) is the 𝑗𝑗-th column of the sensing matrix. 
The advantages of the MUSIC algorithm are the higher 

resolution compared to conventional beamforming methods 
achieved without considerably larger computational cost and its 
relatively high noise tolerance. Its disadvantage is that the 
number of sources must be estimated beforehand. It is also 
important to mention that the algorithm only works if the 
sources are uncorrelated. 

IV. DISTANCE ESTIMATION

It is important to choose the correct focal distance during 
acoustical focusing, because the clarity of the sound map 
greatly depends on it. The greater the difference between the 
distance of the source and the focal distance, the more blurred 
the image gets, therefore we can only estimate the position of 
the observed object with greater variance and uncertainty. This

can be used to our advantage, because by extending the 
acoustical canvas into three dimensions and having virtual 
source positions at different distances, we are able to estimate
the distance of the sound source on top of its direction.

Figure 4 shows the dependence of the amplitude map on the 
focal distance. In this simulation, the array consists of 48 
microphones in a cross formation, the distance between the 
adjacent sensors is 6 cm, which means that with the speed of 
sound assumed to be around 340 m/s the upper frequency limit 
of spatial overlap is slightly over 2.8 kHz as per equation (1).
The canvas consists of 91 × 181 points placed evenly on a
quarter of an imaginary spherical surface, whose radius varies.
Narrow band beamforming is performed with the center
frequency being 2500 Hz. There is one source 5 m from the 
centre of the microphone array that emits Gaussian white noise. 
We assume the ambient background noise to be negligible, so 
that the signal-to-noise ratio is high. As expected, the quality of 
the image becomes higher when the focal distance is closer to 
the real distance of the source. As the focal distance becomes 
less accurate, the peak on the image is more spread out, the 
sidelobes due to the cross arrangement of the microphones are 
more prominent, and the level of the background is higher 
relative to the peak.

Fig. 4. Amplitude map of the same source distribution with different focal 
distances. The results of MUSIC beamforming are divided by their maxima in 
each case, and their logarithms are plotted as a two-dimensional function of the 
direction. 

Extending the acoustical canvas into three dimensions can be 
done in different ways. One possible approach is to make an 
initial direction estimation on a primary canvas in the usual way 
discussed above. After the direction is determined, a secondary 
canvas is created, in which the virtual source positions are along 
a straight line in the estimated direction, but at different 
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distances, thus creating a discretized line as the canvas
(Figure 5). We apply beamforming on this secondary canvas, 
and the point corresponding to the local maximum of the
secondary sound map gives the estimated distance of the 
source. The advantage of this method is that it allows for
placing the points on the second canvas very densely without 
increasing the computational cost significantly.

Fig. 5. Extending the initial canvas into three dimensions by multiplying the 
coordinates of the point that corresponds to the estimated direction.

Figure 6 shows a typical result of a distance estimation (after 
a successful direction estimation), where one source is located
at 5 meters distance, the other is at 50 m. The secondary 
canvases are made up of 4500 points each, which are placed 
densely between 0.01 and 1000 m in a partially logarithmic 
manner (uniform between 0.01 m and 0.1 m, then uniform with 
a different resolution between 0.1 m and 1 m, and so on). The
maxima are at 4.98 m and 49.4 m, respectively, which are the 
estimated distances. The peak corresponding to the farther 
source is less sharp than the one to the closer source, because 
the longer the focal distance, the more similar the situation 
becomes to infinite focal distance in the sense that the
wavefronts arriving at the microphones are closer to planar. 
This means that the farther a source is from the array, the more 
difficult and inaccurate its distance estimation becomes.

Fig. 6. Distance estimation with one source being at 5 meters (left) and the other 
being at 50 meters (right).

V. KALMAN FILTER

The Kalman filter estimates the state of temporally dynamic
systems [16] (possible alternatives include Particle Filters,
Dynamic Data Reconciliation and Double Exponential 
Smoothing predictors). In this case, the dynamic system is a
moving sound source, and its state is its position and velocity,
which can be predictively tracked. Not only the current 
measurements, but the earlier states of the system are also taken 
into consideration by the algorithm. This characteristic gives 

the filter higher accuracy compared to methods that only take 
the present state into account and opens the possibility of 
predicting the movement of the source. The traditional Kalman 
filter is an optimal estimator of linear systems, and it can be 
extended for nonlinear systems as well.

The Kalman filter starts from a state and an output equation, 
which are used in discrete time in our case:
𝐱𝐱(𝑛𝑛 + 1) = 𝐹𝐹(𝑥𝑥(𝑛𝑛), 𝑢𝑢(𝑛𝑛), 𝑛𝑛), (6)
𝐲𝐲(𝑛𝑛) = 𝐹𝐹(𝑥𝑥(𝑛𝑛), 𝑢𝑢(𝑛𝑛), 𝑛𝑛). (7)
Assuming that the system is linear and time-invariant, the state 
equation takes on the following form:
𝐱𝐱(𝑛𝑛 + 1) = 𝐀𝐀𝐱𝐱(𝑛𝑛) + 𝐁𝐁𝐁𝐁(𝑛𝑛) + 𝐰𝐰(𝑛𝑛). (8)
Here 𝐱𝐱(𝑛𝑛) is the state vector in the 𝑛𝑛-th sampling moment, a
vector which has six elements in three dimensions, those 
corresponding to the position (𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 coordinates) and 
velocity (𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦, and 𝑣𝑣𝑧𝑧) of the sound source. The position can
be measured by means of beamforming algorithms. 𝐁𝐁(𝑛𝑛) is the
input excitation vector, 𝐀𝐀 and 𝐁𝐁 are system matrices, and 𝐰𝐰(𝑛𝑛)
is the process noise on the input that represents the inaccuracies 
of the model.

The output vector 𝐲𝐲(𝑛𝑛)is defined by equation (9) in the linear 
and time-invariant case:
𝐲𝐲(𝑛𝑛) = 𝐂𝐂𝐱𝐱(𝑛𝑛) + 𝐃𝐃𝐁𝐁(𝑛𝑛) + 𝐯𝐯(𝑛𝑛), (9)
where 𝐂𝐂 and 𝐃𝐃 are system matrices (𝐃𝐃 is negligible here
because the input does not affect the output directly in our case),
and 𝐯𝐯(𝑛𝑛) is the noise vector on the measurements. The two 
noise vectors 𝐰𝐰(𝑛𝑛) and 𝐯𝐯(𝑛𝑛) are uncorrelated and normally 
distributed, with their expected value being zero and their 
covariance matrices being 𝐐𝐐𝑛𝑛 and 𝐑𝐑𝑛𝑛, respectively.

The first step is an a-priori estimation of the state and output 
vectors for the n+1-th sampling moment (where the “-“ upper
index denotes that the estimation is a-priori):
𝐱𝐱− = 𝐀𝐀�̃�𝐱(𝑛𝑛) + 𝐁𝐁𝐁𝐁(𝑛𝑛), (10)
�̃�𝐲(𝑛𝑛) = 𝐂𝐂𝐱𝐱−. (11)
The difference between the measurement 𝐲𝐲(𝑛𝑛) and the 
estimation �̃�𝐲(𝑛𝑛):
𝐝𝐝(𝑛𝑛) = 𝐲𝐲(𝑛𝑛) − �̃�𝐲(𝑛𝑛). (12)
This difference can be used for an a-posteriori estimation
(where the “+” upper index denotes that the estimation is a-
posteriori):
�̃�𝐱(𝑛𝑛 + 1) = 𝐱𝐱+ = 𝐱𝐱− + 𝐊𝐊𝐧𝐧𝐝𝐝(𝑛𝑛), (13)
where 𝐊𝐊𝑛𝑛 is the Kalman gain matrix. The optimal gain 𝐊𝐊𝑛𝑛 can
be found as:
𝐏𝐏𝑛𝑛

− = 𝐀𝐀𝐏𝐏𝑛𝑛−1𝐀𝐀T + 𝐐𝐐𝑛𝑛, (14)
𝐏𝐏𝑛𝑛

+ = (𝐈𝐈 − 𝐊𝐊𝑛𝑛𝐂𝐂)𝐏𝐏𝑛𝑛
−1(𝐈𝐈 − 𝐊𝐊𝑛𝑛𝐂𝐂)T + 𝐊𝐊𝑛𝑛𝐑𝐑𝑛𝑛𝐊𝐊𝑛𝑛

T =
= (𝐏𝐏𝑛𝑛

−1 + 𝐂𝐂T𝐑𝐑𝑛𝑛
−1𝐂𝐂)−1 =

= (𝐈𝐈 − 𝐊𝐊𝑛𝑛𝐂𝐂)𝐏𝐏𝑛𝑛
−, (15)

𝐊𝐊𝑛𝑛 = 𝐏𝐏𝑛𝑛
−𝐂𝐂T(𝐂𝐂𝐏𝐏𝑛𝑛

−𝐂𝐂T + 𝐑𝐑𝑛𝑛)−1 = 𝐏𝐏𝑛𝑛
+𝐂𝐂T𝐑𝐑𝑛𝑛

−1. (16)
𝐏𝐏𝑛𝑛

− and 𝐏𝐏𝑛𝑛
+ are the covariance matrices of the a-priori and a-

posteriori state vectors, respectively.
While the above method is optimal for the estimation of the 

state of linear systems, observed systems are often nonlinear in 
real life. In our implementation, the model for the state vector 
is linear, but the output measurement 𝐲𝐲(𝑛𝑛) is given in spherical 
coordinates, therefore, it is necessary to extend the Kalman
filter algorithm for tackling such problems. One such extension 
is called Unscented Kalman Filter (UKF) [17].
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With UKF, the first step is the calculation of 𝐱𝐱− and 𝐏𝐏𝑛𝑛
−

using equations (10) and (14), respectively. Next, we create 2𝑁𝑁
sigma points around 𝐱𝐱−, where N is the number of dimensions
in the state space:
𝐱𝐱𝑖𝑖

σ∗, 𝐱𝐱𝑁𝑁+𝑖𝑖
σ∗ = 𝐱𝐱n ± 𝛔𝛔i, 𝑖𝑖 = 1 … 𝑁𝑁, (17)

where 𝛔𝛔𝑖𝑖 is the i-th row of the matrix √𝑁𝑁𝐏𝐏𝑛𝑛−. This way, the
statistical average and variance of the sigma points have the 
same values as the state vector and its covariance matrix (and 
this is why these sigma points are named after the Greek letter 
that denotes the deviation). The nonlinear output equation (7) is 
applied on these sigma points, and the obtained points (𝐲𝐲𝑖𝑖

σ) have
an average of �̃�𝐲. The covariance and cross-correlation matrices 
are calculated using equations (18) and (19):
𝐏𝐏yy = 1

2𝑁𝑁 ∑ (𝐲𝐲𝑖𝑖
σ − �̃�𝐲)(𝐲𝐲𝑖𝑖

σ − �̃�𝐲)T2𝑁𝑁
𝑖𝑖=1 , (18)

𝐏𝐏xy = 1
2𝑁𝑁 ∑ (𝐱𝐱𝑖𝑖

σ∗ − 𝐱𝐱−)(𝐲𝐲𝑖𝑖
σ − �̃�𝐲)T2𝑁𝑁

𝑖𝑖=1 . (19)
The Kalman gain matrix is found as
𝐊𝐊n = 𝐏𝐏xy𝐏𝐏yy

−1. (20)
This correction matrix can now be used for estimating the state 
vector and its covariance while taking current measurements 
and previous states into account:
𝐱𝐱𝑛𝑛+1 = �̃�𝐱+ = 𝐱𝐱− + 𝐊𝐊𝑛𝑛(𝐲𝐲𝑛𝑛 − �̃�𝐲), (21)
𝐏𝐏𝑛𝑛+1 = 𝐏𝐏+ = 𝐏𝐏− + 𝐊𝐊𝑛𝑛(𝐏𝐏yy + 𝐑𝐑)𝐊𝐊𝑛𝑛

T. (22)

VI. SIMULATION EXAMPLE

In this section we test the proposed methods of moving sound 
source localization with distance estimation by a simulation 
example.

During the simulations, the array consists of 48 microphones
placed in a cross arrangement, and the distance between 
neighboring ones is 6 cm. This means that the upper frequency 
limit for the spatial overlap is the same as in section IV. The 
primary canvas consists of 20000 virtual source positions 
distributed evenly on a rectangular area, 15 m from the array
(Figure 7). The secondary canvas lies along the initially 
estimated direction and consists of 4500 points distributed in a 
partially logarithmic manner between 0.01 and 1000 m. There 
is one simulated point source in the space that emits filtered
white noise and moves along a straight line with constant 
velocity (1, 5, or 10 m/s), parallel to the plane of the sensor
array, constantly at either 5, 25 or 50 m (where this distance is 
from the plane of the array). The SNR is 10 dB, and the time 
windows are 50 ms long (the SNR here means the ratio of the 
variances of the “useful” white noise emitted by the source, and 
the background white noise).

Fig. 7. The canvas (red), the microphone array (blue) and the sound source 
(green) in the simulation example. The source moves along a straight line with 
constant velocity.

The presented simulation covers both direction and distance 
estimation. Direction estimation is successful using the MUSIC 
algorithm, and the accuracy is further increased by the Kalman
filter. Distance estimation is more difficult (because the main 
lobe of the beamforming is relatively wider along the secondary 
canvas, thus resulting in an estimation that varies more around 
the actual distance), but still successful in this simulation 
example (Figure 8). For farther sources, the method is less 
accurate, because when the size of the microphone array is 
much smaller than the distance of the source, the wavefronts are 
closer to planar and slight changes in distance result in only 
negligible changes in the angles of incidence. This can be 
evaluated by investigating the variance of the estimated 
distance, and this variance is proportionately greater for farther 
sources. In all three cases, the full 3D position estimation of 
MUSIC serves as the measurement data for the Kalman filter,
and when its parameters are tuned properly, the estimation
fluctuates considerably less around the correct distance (the 
MSE of beamforming is greater than the MSE of the Kalman
filter, in most cases by roughly 120-150%, 50-100% and 20-
60% for 5, 25 and 50 m, respectively). Thus, this example 
serves as a promising starting point when proving the adequacy 
of the distance estimation algorithm.

Fig. 8. Direction and distance estimation of a moving sound source using
MUSIC and the Kalman filter; the distances are 5, 25 and 50 meters.

VII. OUTDOOR MEASUREMENTS

The validity of the algorithms was proven by simulations, and 
we demonstrate their results by processing measurements that 
are closer to real life situations in this section. We performed 
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estimation. Direction estimation is successful using the MUSIC 
algorithm, and the accuracy is further increased by the Kalman
filter. Distance estimation is more difficult (because the main 
lobe of the beamforming is relatively wider along the secondary 
canvas, thus resulting in an estimation that varies more around 
the actual distance), but still successful in this simulation 
example (Figure 8). For farther sources, the method is less 
accurate, because when the size of the microphone array is 
much smaller than the distance of the source, the wavefronts are 
closer to planar and slight changes in distance result in only 
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this is why these sigma points are named after the Greek letter 
that denotes the deviation). The nonlinear output equation (7) is 
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VI. SIMULATION EXAMPLE

In this section we test the proposed methods of moving sound 
source localization with distance estimation by a simulation 
example.

During the simulations, the array consists of 48 microphones
placed in a cross arrangement, and the distance between 
neighboring ones is 6 cm. This means that the upper frequency 
limit for the spatial overlap is the same as in section IV. The 
primary canvas consists of 20000 virtual source positions 
distributed evenly on a rectangular area, 15 m from the array
(Figure 7). The secondary canvas lies along the initially 
estimated direction and consists of 4500 points distributed in a 
partially logarithmic manner between 0.01 and 1000 m. There 
is one simulated point source in the space that emits filtered
white noise and moves along a straight line with constant 
velocity (1, 5, or 10 m/s), parallel to the plane of the sensor
array, constantly at either 5, 25 or 50 m (where this distance is 
from the plane of the array). The SNR is 10 dB, and the time 
windows are 50 ms long (the SNR here means the ratio of the 
variances of the “useful” white noise emitted by the source, and 
the background white noise).

Fig. 7. The canvas (red), the microphone array (blue) and the sound source 
(green) in the simulation example. The source moves along a straight line with 
constant velocity.

The presented simulation covers both direction and distance 
estimation. Direction estimation is successful using the MUSIC 
algorithm, and the accuracy is further increased by the Kalman
filter. Distance estimation is more difficult (because the main 
lobe of the beamforming is relatively wider along the secondary 
canvas, thus resulting in an estimation that varies more around 
the actual distance), but still successful in this simulation 
example (Figure 8). For farther sources, the method is less 
accurate, because when the size of the microphone array is 
much smaller than the distance of the source, the wavefronts are 
closer to planar and slight changes in distance result in only 
negligible changes in the angles of incidence. This can be 
evaluated by investigating the variance of the estimated 
distance, and this variance is proportionately greater for farther 
sources. In all three cases, the full 3D position estimation of 
MUSIC serves as the measurement data for the Kalman filter,
and when its parameters are tuned properly, the estimation
fluctuates considerably less around the correct distance (the 
MSE of beamforming is greater than the MSE of the Kalman
filter, in most cases by roughly 120-150%, 50-100% and 20-
60% for 5, 25 and 50 m, respectively). Thus, this example 
serves as a promising starting point when proving the adequacy 
of the distance estimation algorithm.

Fig. 8. Direction and distance estimation of a moving sound source using
MUSIC and the Kalman filter; the distances are 5, 25 and 50 meters.
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array, constantly at either 5, 25 or 50 m (where this distance is 
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estimation. Direction estimation is successful using the MUSIC 
algorithm, and the accuracy is further increased by the Kalman
filter. Distance estimation is more difficult (because the main 
lobe of the beamforming is relatively wider along the secondary 
canvas, thus resulting in an estimation that varies more around 
the actual distance), but still successful in this simulation 
example (Figure 8). For farther sources, the method is less 
accurate, because when the size of the microphone array is 
much smaller than the distance of the source, the wavefronts are 
closer to planar and slight changes in distance result in only 
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evaluated by investigating the variance of the estimated 
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MUSIC serves as the measurement data for the Kalman filter,
and when its parameters are tuned properly, the estimation
fluctuates considerably less around the correct distance (the 
MSE of beamforming is greater than the MSE of the Kalman
filter, in most cases by roughly 120-150%, 50-100% and 20-
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distributed evenly on a rectangular area, 15 m from the array
(Figure 7). The secondary canvas lies along the initially 
estimated direction and consists of 4500 points distributed in a 
partially logarithmic manner between 0.01 and 1000 m. There 
is one simulated point source in the space that emits filtered
white noise and moves along a straight line with constant 
velocity (1, 5, or 10 m/s), parallel to the plane of the sensor
array, constantly at either 5, 25 or 50 m (where this distance is 
from the plane of the array). The SNR is 10 dB, and the time 
windows are 50 ms long (the SNR here means the ratio of the 
variances of the “useful” white noise emitted by the source, and 
the background white noise).

Fig. 7. The canvas (red), the microphone array (blue) and the sound source 
(green) in the simulation example. The source moves along a straight line with 
constant velocity.

The presented simulation covers both direction and distance 
estimation. Direction estimation is successful using the MUSIC 
algorithm, and the accuracy is further increased by the Kalman
filter. Distance estimation is more difficult (because the main 
lobe of the beamforming is relatively wider along the secondary 
canvas, thus resulting in an estimation that varies more around 
the actual distance), but still successful in this simulation 
example (Figure 8). For farther sources, the method is less 
accurate, because when the size of the microphone array is 
much smaller than the distance of the source, the wavefronts are 
closer to planar and slight changes in distance result in only 
negligible changes in the angles of incidence. This can be 
evaluated by investigating the variance of the estimated 
distance, and this variance is proportionately greater for farther 
sources. In all three cases, the full 3D position estimation of 
MUSIC serves as the measurement data for the Kalman filter,
and when its parameters are tuned properly, the estimation
fluctuates considerably less around the correct distance (the 
MSE of beamforming is greater than the MSE of the Kalman
filter, in most cases by roughly 120-150%, 50-100% and 20-
60% for 5, 25 and 50 m, respectively). Thus, this example 
serves as a promising starting point when proving the adequacy 
of the distance estimation algorithm.

Fig. 8. Direction and distance estimation of a moving sound source using
MUSIC and the Kalman filter; the distances are 5, 25 and 50 meters.
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we demonstrate their results by processing measurements that 
are closer to real life situations in this section. We performed 
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outdoor measurements as part of a larger project, where the 
position of unmanned aerial vehicles (rotary wing drones) was
estimated by means of different principles. Because the drones 
were emitting sound, the acoustical method was viable. The two 
drones measured were of types Secop X8 and Tarot 680.

The microphone array used for the measurements consisted 
of 48 condenser microphones, placed in the same cross 
formation as in the previous simulations, stuck firmly in 
appropriately sized holes on a wooden plank. The array was
connected to a PC through an analog/digital converter that 
sampled all channels simultaneously at rate of 48 kHz. A web
camera was placed on the top of the wooden plank. Video 
capturing was made time-synchronized with the microphone
array recordings. Hence, the video recordings of the movement 
of the drones could be fitted onto the sound maps, so that 
adequacy of DOA estimations could be confirmed visually.

Direction estimation using MUSIC and Kalman filter is 
successful in most of the time windows (one snapshot of each 
of the two drones is seen in Figure 9). The closer the drone is to 
the microphone array, and the louder its emitted sound is 
compared to the background noise, the more accurate the 
estimation becomes. The algorithm, however, does not give a 
correct estimation in every single time window, as there are a 
few moments when a strong background disturbance or ground 
reflection falsifies the result. Distance estimation, on the other 
hand, is unsuccessful. For Secopx8 we can give a rough 
estimation around 10 m (which is not nearly accurate enough), 
but for Tarot680, the estimated distance changes too erratically 
between time windows to accurately represent the actual 
distance of the drone.

Fig. 9. Direction and distance estimation of Secopx8 (left) and Tarot680 (right).

VIII. COMPARISON AND DIFFERENCES

The beamforming algorithm was capable of estimating 
direction both in simulations and measurements, but distance 
estimation was only successful in case of the simulation 
example. To ensure that the approach works for outdoor 
measurements, it is important to identify the critical differences, 
parameters, and conditions we neglected during the simulation 
that need to be accounted for in a more robust algorithm.
Potential critical differences worth investigating include:

• The nature of the sound source. The simulated source
is assumed to be a point source, it emits filtered white

noise, with a spherical directivity. None of these three 
assumptions are true for an unmanned aerial vehicle.

• The nature of the background noise. In the simulation,
we assumed additive white noise; however, in real
measurements, the noise has a fluctuating amplitude
and a time-variant spectrum.

• The presence of ground reflections was neglected in
the simulation.

• The trajectory and velocity of the source. Drones did
not move along a straight line with constant velocity.

So far, we have investigated the emitted sound and the effect of
the center frequency (introduced in section II.), and ground 
reflections.

In the previous simulation, the sound source emitted filtered
white noise. Because it is a wideband signal, many choices are 
possible under the upper frequency limit of spatial overlap for 
the narrow band detection. However, the noise emitted by a
drone has strong tonal components, i.e., the energy in small 
time windows is concentrated around harmonically related
spectral peaks. As the angular velocities of the rotors vary in 
time, the frequencies of the dominant spectral peaks also 
change. Therefore, in each time window, the analysis frequency 
should be fit onto the blade passing frequency or one of its 
overtones. Therefore, the performance of the distance 
estimation algorithm is expected to depend heavily on the 
frequency band.

In the next simulation, the sound source emits a signal that is 
a sum of sine waves, with a fundamental frequency of 300 Hz
and overtones at its multiples up until 2100 Hz, with steadily 
decreasing amplitudes. The source moves along a straight line 
with constant velocity, 5 meters from the microphone array 
(that is placed in the same cross formation as before). The 
signal-to-noise ratio is set to 10 dB. Figure 10 shows the result 
of distance estimation depending on the analysis frequency (the 
analyzed narrow band is extracted with a 3rd order 20 Hz wide 
bandpass filter). As expected, when the analysis frequency is 
exactly the frequency of the overtone, the estimation is 
successful, and as we move farther, the variance of the result 
increases. At 1500 Hz, there are only minimal deviations from 
5 m (at most 0.3 m), but at 1520 Hz, the algorithm is less 
accurate (the maximal deviation reaches 1 m). At 1540 Hz,
40 Hz from the overtone, the estimation is too unstable to be 
useful, even though direction estimation still works for most of 
the simulation. This means that distance estimation is more 
sensitive to the choice of the narrow frequency band analyzed
in comparison to direction estimation.
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negligible changes in the angles of incidence. This can be 
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distance, and this variance is proportionately greater for farther 
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MSE of beamforming is greater than the MSE of the Kalman
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using equations (10) and (14), respectively. Next, we create 2𝑁𝑁
sigma points around 𝐱𝐱−, where N is the number of dimensions
in the state space:
𝐱𝐱𝑖𝑖

σ∗, 𝐱𝐱𝑁𝑁+𝑖𝑖
σ∗ = 𝐱𝐱n ± 𝛔𝛔i, 𝑖𝑖 = 1 … 𝑁𝑁, (17)

where 𝛔𝛔𝑖𝑖 is the i-th row of the matrix √𝑁𝑁𝐏𝐏𝑛𝑛−. This way, the
statistical average and variance of the sigma points have the 
same values as the state vector and its covariance matrix (and 
this is why these sigma points are named after the Greek letter 
that denotes the deviation). The nonlinear output equation (7) is 
applied on these sigma points, and the obtained points (𝐲𝐲𝑖𝑖

σ) have
an average of �̃�𝐲. The covariance and cross-correlation matrices 
are calculated using equations (18) and (19):
𝐏𝐏yy = 1

2𝑁𝑁 ∑ (𝐲𝐲𝑖𝑖
σ − �̃�𝐲)(𝐲𝐲𝑖𝑖

σ − �̃�𝐲)T2𝑁𝑁
𝑖𝑖=1 , (18)

𝐏𝐏xy = 1
2𝑁𝑁 ∑ (𝐱𝐱𝑖𝑖

σ∗ − 𝐱𝐱−)(𝐲𝐲𝑖𝑖
σ − �̃�𝐲)T2𝑁𝑁

𝑖𝑖=1 . (19)
The Kalman gain matrix is found as
𝐊𝐊n = 𝐏𝐏xy𝐏𝐏yy

−1. (20)
This correction matrix can now be used for estimating the state 
vector and its covariance while taking current measurements 
and previous states into account:
𝐱𝐱𝑛𝑛+1 = �̃�𝐱+ = 𝐱𝐱− + 𝐊𝐊𝑛𝑛(𝐲𝐲𝑛𝑛 − �̃�𝐲), (21)
𝐏𝐏𝑛𝑛+1 = 𝐏𝐏+ = 𝐏𝐏− + 𝐊𝐊𝑛𝑛(𝐏𝐏yy + 𝐑𝐑)𝐊𝐊𝑛𝑛

T. (22)

VI. SIMULATION EXAMPLE

In this section we test the proposed methods of moving sound 
source localization with distance estimation by a simulation 
example.

During the simulations, the array consists of 48 microphones
placed in a cross arrangement, and the distance between 
neighboring ones is 6 cm. This means that the upper frequency 
limit for the spatial overlap is the same as in section IV. The 
primary canvas consists of 20000 virtual source positions 
distributed evenly on a rectangular area, 15 m from the array
(Figure 7). The secondary canvas lies along the initially 
estimated direction and consists of 4500 points distributed in a 
partially logarithmic manner between 0.01 and 1000 m. There 
is one simulated point source in the space that emits filtered
white noise and moves along a straight line with constant 
velocity (1, 5, or 10 m/s), parallel to the plane of the sensor
array, constantly at either 5, 25 or 50 m (where this distance is 
from the plane of the array). The SNR is 10 dB, and the time 
windows are 50 ms long (the SNR here means the ratio of the 
variances of the “useful” white noise emitted by the source, and 
the background white noise).

Fig. 7. The canvas (red), the microphone array (blue) and the sound source 
(green) in the simulation example. The source moves along a straight line with 
constant velocity.

The presented simulation covers both direction and distance 
estimation. Direction estimation is successful using the MUSIC 
algorithm, and the accuracy is further increased by the Kalman
filter. Distance estimation is more difficult (because the main 
lobe of the beamforming is relatively wider along the secondary 
canvas, thus resulting in an estimation that varies more around 
the actual distance), but still successful in this simulation 
example (Figure 8). For farther sources, the method is less 
accurate, because when the size of the microphone array is 
much smaller than the distance of the source, the wavefronts are 
closer to planar and slight changes in distance result in only 
negligible changes in the angles of incidence. This can be 
evaluated by investigating the variance of the estimated 
distance, and this variance is proportionately greater for farther 
sources. In all three cases, the full 3D position estimation of 
MUSIC serves as the measurement data for the Kalman filter,
and when its parameters are tuned properly, the estimation
fluctuates considerably less around the correct distance (the 
MSE of beamforming is greater than the MSE of the Kalman
filter, in most cases by roughly 120-150%, 50-100% and 20-
60% for 5, 25 and 50 m, respectively). Thus, this example 
serves as a promising starting point when proving the adequacy 
of the distance estimation algorithm.

Fig. 8. Direction and distance estimation of a moving sound source using
MUSIC and the Kalman filter; the distances are 5, 25 and 50 meters.

VII. OUTDOOR MEASUREMENTS

The validity of the algorithms was proven by simulations, and 
we demonstrate their results by processing measurements that 
are closer to real life situations in this section. We performed 
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Fig. 10. Direction and distance estimation at different analysis frequencies of 
a simulated harmonic sound. 

A more realistic sound source is incorporated into the 
simulation by using the sound extracted from a real recording 
of a moving Secop X8 drone, i.e., the sound signal received by 
one of the microphones in the array. In this particular 
recording, an overtone is present fluctuating around 640 − 
650 Hz, so the analysis frequency is chosen as 640 Hz. In 
Figure 11 the comparison between the simulated drone sound 
and the real outdoor measurements can be seen. The simulated 
drone sound yields a worse result than the harmonic signal 
(probably due to the fluctuating frequency of the overtone), 
but the distance estimation is still much more stable than that 
in the outdoor measurement. It is worth mentioning that the 
background noise in the measurements becomes part of the 
emitted sound of the source in the simulation, which makes the 
estimation easier. From these results we can conclude that 
accounting for the waveform of the emitted sound by correctly 
choosing the analysis frequency does improve distance 
estimation, but in itself it is not sufficient for arriving at 
accurate distance estimation. Further critical differences need 
to be investigated. 

Fig. 11. Comparison of distance estimation during a simulation and a 
measurement on the same analysis frequency.

During outdoor measurements, the environmental conditions 
are not ideal, and this includes the sound of the drones being 
reflected from different surfaces, for example from the ground. 
If the reflected sound is strong enough, there is a false local
maximum in its direction, which can impede correct 
localization. This issue was neglected in previous simulations, 
so it is worth evaluating how much negative effect ground 
reflections have on the performance of the distance estimation 
method.

The next measurement was carried out in a semi-anechoic 
chamber, with the same microphone array configuration as 
before. The sound source was the speaker of a stationary mobile 
phone, and the emitted sound was the same audio recording of 

the Secop X8 drone as in the previous simulation. The mobile 
phone was placed approximately 5 m from the microphone 
array, first on the reflective ground, to eliminate ground 
reflections, then on the top of a small table, around 46 cm from 
the ground, so that both direct and reflected sound waves can 
reach the microphones. In the former case, by placing the sound 
source as close as possible to the reflective floor, the difference 
between the distances of the actual and mirror sources to the 
same microphone is reduced close to zero, and thus the two
signal paths have negligible phase differences.

Figure 12 shows the result of distance estimation, both 
without and with ground reflections. When reflections are not 
present, the estimation can be considered successful, even 
though it fluctuates a bit around the real distance. The measured 
distance is closer than 5 m, because the wooden plank holding 
the microphones has a small angle of inclination, and the source 
was somewhat closer to the plane of the microphone array than 
5 m. When reflections are introduced, the peak of MUSIC 
beamforming on the secondary canvas becomes much flatter,
and its magnitude also decreases, therefore the estimated 
distance has a larger variance. In this case, distance estimation 
produces a completely unusable result, similar to outdoor 
measurements. This means that ground reflections are indeed a 
critical condition that need to be accounted for in the algorithm.

Fig. 12. Comparison of distance estimation during a measurement in a semi-
anechoic chamber, without (left) and with (right) ground reflections. The lower 
figures show the direct, not normalized output of MUSIC on the secondary 
canvas, as a function of the distance.

To conclude, even though full three-dimensional position 
estimation is proven possible during measurements, the method 
still needs further refinement. Even in almost ideal conditions, 
in a semi-anechoic chamber, the estimation is slightly 
inaccurate, and the algorithm is not robust enough to handle 
unfavorable environmental conditions. So far, the only 
measurement where distance estimation was successful took 
place in a controlled environment with little to no disturbances.

IX. CONCLUSION AND FUTURE PLANS

In this paper, we discussed the direction and distance 
estimation of sound sources using microphone arrays and 
beamforming algorithms. We chose the MUSIC algorithm for 
beamforming, which was extended by the Kalman filter method 
for tracking moving sound sources. During simulations and 
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outdoor measurements as part of a larger project, where the 
position of unmanned aerial vehicles (rotary wing drones) was
estimated by means of different principles. Because the drones 
were emitting sound, the acoustical method was viable. The two 
drones measured were of types Secop X8 and Tarot 680.

The microphone array used for the measurements consisted 
of 48 condenser microphones, placed in the same cross 
formation as in the previous simulations, stuck firmly in 
appropriately sized holes on a wooden plank. The array was
connected to a PC through an analog/digital converter that 
sampled all channels simultaneously at rate of 48 kHz. A web
camera was placed on the top of the wooden plank. Video 
capturing was made time-synchronized with the microphone
array recordings. Hence, the video recordings of the movement 
of the drones could be fitted onto the sound maps, so that 
adequacy of DOA estimations could be confirmed visually.

Direction estimation using MUSIC and Kalman filter is 
successful in most of the time windows (one snapshot of each 
of the two drones is seen in Figure 9). The closer the drone is to 
the microphone array, and the louder its emitted sound is 
compared to the background noise, the more accurate the 
estimation becomes. The algorithm, however, does not give a 
correct estimation in every single time window, as there are a 
few moments when a strong background disturbance or ground 
reflection falsifies the result. Distance estimation, on the other 
hand, is unsuccessful. For Secopx8 we can give a rough 
estimation around 10 m (which is not nearly accurate enough), 
but for Tarot680, the estimated distance changes too erratically 
between time windows to accurately represent the actual 
distance of the drone.

Fig. 9. Direction and distance estimation of Secopx8 (left) and Tarot680 (right).

VIII. COMPARISON AND DIFFERENCES

The beamforming algorithm was capable of estimating 
direction both in simulations and measurements, but distance 
estimation was only successful in case of the simulation 
example. To ensure that the approach works for outdoor 
measurements, it is important to identify the critical differences, 
parameters, and conditions we neglected during the simulation 
that need to be accounted for in a more robust algorithm.
Potential critical differences worth investigating include:

• The nature of the sound source. The simulated source
is assumed to be a point source, it emits filtered white

noise, with a spherical directivity. None of these three 
assumptions are true for an unmanned aerial vehicle.

• The nature of the background noise. In the simulation,
we assumed additive white noise; however, in real
measurements, the noise has a fluctuating amplitude
and a time-variant spectrum.

• The presence of ground reflections was neglected in
the simulation.

• The trajectory and velocity of the source. Drones did
not move along a straight line with constant velocity.

So far, we have investigated the emitted sound and the effect of
the center frequency (introduced in section II.), and ground 
reflections.

In the previous simulation, the sound source emitted filtered
white noise. Because it is a wideband signal, many choices are 
possible under the upper frequency limit of spatial overlap for 
the narrow band detection. However, the noise emitted by a
drone has strong tonal components, i.e., the energy in small 
time windows is concentrated around harmonically related
spectral peaks. As the angular velocities of the rotors vary in 
time, the frequencies of the dominant spectral peaks also 
change. Therefore, in each time window, the analysis frequency 
should be fit onto the blade passing frequency or one of its 
overtones. Therefore, the performance of the distance 
estimation algorithm is expected to depend heavily on the 
frequency band.

In the next simulation, the sound source emits a signal that is 
a sum of sine waves, with a fundamental frequency of 300 Hz
and overtones at its multiples up until 2100 Hz, with steadily 
decreasing amplitudes. The source moves along a straight line 
with constant velocity, 5 meters from the microphone array 
(that is placed in the same cross formation as before). The 
signal-to-noise ratio is set to 10 dB. Figure 10 shows the result 
of distance estimation depending on the analysis frequency (the 
analyzed narrow band is extracted with a 3rd order 20 Hz wide 
bandpass filter). As expected, when the analysis frequency is 
exactly the frequency of the overtone, the estimation is 
successful, and as we move farther, the variance of the result 
increases. At 1500 Hz, there are only minimal deviations from 
5 m (at most 0.3 m), but at 1520 Hz, the algorithm is less 
accurate (the maximal deviation reaches 1 m). At 1540 Hz,
40 Hz from the overtone, the estimation is too unstable to be 
useful, even though direction estimation still works for most of 
the simulation. This means that distance estimation is more 
sensitive to the choice of the narrow frequency band analyzed
in comparison to direction estimation.
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A more realistic sound source is incorporated into the 
simulation by using the sound extracted from a real recording 
of a moving Secop X8 drone, i.e., the sound signal received by 
one of the microphones in the array. In this particular 
recording, an overtone is present fluctuating around 640 − 
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and the real outdoor measurements can be seen. The simulated 
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in the outdoor measurement. It is worth mentioning that the 
background noise in the measurements becomes part of the 
emitted sound of the source in the simulation, which makes the 
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To conclude, even though full three-dimensional position 
estimation is proven possible during measurements, the method 
still needs further refinement. Even in almost ideal conditions, 
in a semi-anechoic chamber, the estimation is slightly 
inaccurate, and the algorithm is not robust enough to handle 
unfavorable environmental conditions. So far, the only 
measurement where distance estimation was successful took 
place in a controlled environment with little to no disturbances.
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In this paper, we discussed the direction and distance 
estimation of sound sources using microphone arrays and 
beamforming algorithms. We chose the MUSIC algorithm for 
beamforming, which was extended by the Kalman filter method 
for tracking moving sound sources. During simulations and 

6

outdoor measurements as part of a larger project, where the 
position of unmanned aerial vehicles (rotary wing drones) was
estimated by means of different principles. Because the drones 
were emitting sound, the acoustical method was viable. The two 
drones measured were of types Secop X8 and Tarot 680.

The microphone array used for the measurements consisted 
of 48 condenser microphones, placed in the same cross 
formation as in the previous simulations, stuck firmly in 
appropriately sized holes on a wooden plank. The array was
connected to a PC through an analog/digital converter that 
sampled all channels simultaneously at rate of 48 kHz. A web
camera was placed on the top of the wooden plank. Video 
capturing was made time-synchronized with the microphone
array recordings. Hence, the video recordings of the movement 
of the drones could be fitted onto the sound maps, so that 
adequacy of DOA estimations could be confirmed visually.

Direction estimation using MUSIC and Kalman filter is 
successful in most of the time windows (one snapshot of each 
of the two drones is seen in Figure 9). The closer the drone is to 
the microphone array, and the louder its emitted sound is 
compared to the background noise, the more accurate the 
estimation becomes. The algorithm, however, does not give a 
correct estimation in every single time window, as there are a 
few moments when a strong background disturbance or ground 
reflection falsifies the result. Distance estimation, on the other 
hand, is unsuccessful. For Secopx8 we can give a rough 
estimation around 10 m (which is not nearly accurate enough), 
but for Tarot680, the estimated distance changes too erratically 
between time windows to accurately represent the actual 
distance of the drone.

Fig. 9. Direction and distance estimation of Secopx8 (left) and Tarot680 (right).

VIII. COMPARISON AND DIFFERENCES

The beamforming algorithm was capable of estimating 
direction both in simulations and measurements, but distance 
estimation was only successful in case of the simulation 
example. To ensure that the approach works for outdoor 
measurements, it is important to identify the critical differences, 
parameters, and conditions we neglected during the simulation 
that need to be accounted for in a more robust algorithm.
Potential critical differences worth investigating include:

• The nature of the sound source. The simulated source
is assumed to be a point source, it emits filtered white

noise, with a spherical directivity. None of these three 
assumptions are true for an unmanned aerial vehicle.

• The nature of the background noise. In the simulation,
we assumed additive white noise; however, in real
measurements, the noise has a fluctuating amplitude
and a time-variant spectrum.

• The presence of ground reflections was neglected in
the simulation.

• The trajectory and velocity of the source. Drones did
not move along a straight line with constant velocity.

So far, we have investigated the emitted sound and the effect of
the center frequency (introduced in section II.), and ground 
reflections.

In the previous simulation, the sound source emitted filtered
white noise. Because it is a wideband signal, many choices are 
possible under the upper frequency limit of spatial overlap for 
the narrow band detection. However, the noise emitted by a
drone has strong tonal components, i.e., the energy in small 
time windows is concentrated around harmonically related
spectral peaks. As the angular velocities of the rotors vary in 
time, the frequencies of the dominant spectral peaks also 
change. Therefore, in each time window, the analysis frequency 
should be fit onto the blade passing frequency or one of its 
overtones. Therefore, the performance of the distance 
estimation algorithm is expected to depend heavily on the 
frequency band.

In the next simulation, the sound source emits a signal that is 
a sum of sine waves, with a fundamental frequency of 300 Hz
and overtones at its multiples up until 2100 Hz, with steadily 
decreasing amplitudes. The source moves along a straight line 
with constant velocity, 5 meters from the microphone array 
(that is placed in the same cross formation as before). The 
signal-to-noise ratio is set to 10 dB. Figure 10 shows the result 
of distance estimation depending on the analysis frequency (the 
analyzed narrow band is extracted with a 3rd order 20 Hz wide 
bandpass filter). As expected, when the analysis frequency is 
exactly the frequency of the overtone, the estimation is 
successful, and as we move farther, the variance of the result 
increases. At 1500 Hz, there are only minimal deviations from 
5 m (at most 0.3 m), but at 1520 Hz, the algorithm is less 
accurate (the maximal deviation reaches 1 m). At 1540 Hz,
40 Hz from the overtone, the estimation is too unstable to be 
useful, even though direction estimation still works for most of 
the simulation. This means that distance estimation is more 
sensitive to the choice of the narrow frequency band analyzed
in comparison to direction estimation.

• The nature of the sound source. The simulated source is assumed 
to be a point source, it emits filtered white noise, with a spherical 
directivity. None of these three assumptions are true for an 
unmanned aerial vehicle.

• The nature of the background noise. In the simulation, we 
assumed additive white noise; however, in real measurements, 
the noise has a fluctuating amplitude and a time-variant spectrum.

• The presence of ground reflections was neglected in the 
simulation.

• The trajectory and velocity of the source. Drones did not move 
along a straight line with constant velocity.
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Fig. 10. Direction and distance estimation at different analysis frequencies of 
a simulated harmonic sound. 

A more realistic sound source is incorporated into the 
simulation by using the sound extracted from a real recording 
of a moving Secop X8 drone, i.e., the sound signal received by 
one of the microphones in the array. In this particular 
recording, an overtone is present fluctuating around 640 − 
650 Hz, so the analysis frequency is chosen as 640 Hz. In 
Figure 11 the comparison between the simulated drone sound 
and the real outdoor measurements can be seen. The simulated 
drone sound yields a worse result than the harmonic signal 
(probably due to the fluctuating frequency of the overtone), 
but the distance estimation is still much more stable than that 
in the outdoor measurement. It is worth mentioning that the 
background noise in the measurements becomes part of the 
emitted sound of the source in the simulation, which makes the 
estimation easier. From these results we can conclude that 
accounting for the waveform of the emitted sound by correctly 
choosing the analysis frequency does improve distance 
estimation, but in itself it is not sufficient for arriving at 
accurate distance estimation. Further critical differences need 
to be investigated. 

Fig. 11. Comparison of distance estimation during a simulation and a 
measurement on the same analysis frequency.

During outdoor measurements, the environmental conditions 
are not ideal, and this includes the sound of the drones being 
reflected from different surfaces, for example from the ground. 
If the reflected sound is strong enough, there is a false local
maximum in its direction, which can impede correct 
localization. This issue was neglected in previous simulations, 
so it is worth evaluating how much negative effect ground 
reflections have on the performance of the distance estimation 
method.

The next measurement was carried out in a semi-anechoic 
chamber, with the same microphone array configuration as 
before. The sound source was the speaker of a stationary mobile 
phone, and the emitted sound was the same audio recording of 

the Secop X8 drone as in the previous simulation. The mobile 
phone was placed approximately 5 m from the microphone 
array, first on the reflective ground, to eliminate ground 
reflections, then on the top of a small table, around 46 cm from 
the ground, so that both direct and reflected sound waves can 
reach the microphones. In the former case, by placing the sound 
source as close as possible to the reflective floor, the difference 
between the distances of the actual and mirror sources to the 
same microphone is reduced close to zero, and thus the two
signal paths have negligible phase differences.

Figure 12 shows the result of distance estimation, both 
without and with ground reflections. When reflections are not 
present, the estimation can be considered successful, even 
though it fluctuates a bit around the real distance. The measured 
distance is closer than 5 m, because the wooden plank holding 
the microphones has a small angle of inclination, and the source 
was somewhat closer to the plane of the microphone array than 
5 m. When reflections are introduced, the peak of MUSIC 
beamforming on the secondary canvas becomes much flatter,
and its magnitude also decreases, therefore the estimated 
distance has a larger variance. In this case, distance estimation 
produces a completely unusable result, similar to outdoor 
measurements. This means that ground reflections are indeed a 
critical condition that need to be accounted for in the algorithm.

Fig. 12. Comparison of distance estimation during a measurement in a semi-
anechoic chamber, without (left) and with (right) ground reflections. The lower 
figures show the direct, not normalized output of MUSIC on the secondary 
canvas, as a function of the distance.

To conclude, even though full three-dimensional position 
estimation is proven possible during measurements, the method 
still needs further refinement. Even in almost ideal conditions, 
in a semi-anechoic chamber, the estimation is slightly 
inaccurate, and the algorithm is not robust enough to handle 
unfavorable environmental conditions. So far, the only 
measurement where distance estimation was successful took 
place in a controlled environment with little to no disturbances.

IX. CONCLUSION AND FUTURE PLANS

In this paper, we discussed the direction and distance 
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beamforming algorithms. We chose the MUSIC algorithm for 
beamforming, which was extended by the Kalman filter method 
for tracking moving sound sources. During simulations and 
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To conclude, even though full three-dimensional position 
estimation is proven possible during measurements, the method 
still needs further refinement. Even in almost ideal conditions, 
in a semi-anechoic chamber, the estimation is slightly 
inaccurate, and the algorithm is not robust enough to handle 
unfavorable environmental conditions. So far, the only 
measurement where distance estimation was successful took 
place in a controlled environment with little to no disturbances.

IX. CONCLUSION AND FUTURE PLANS

In this paper, we discussed the direction and distance 
estimation of sound sources using microphone arrays and 
beamforming algorithms. We chose the MUSIC algorithm for 
beamforming, which was extended by the Kalman filter method 
for tracking moving sound sources. During simulations and 8

measurements, MUSIC was sufficient for direction estimation, 
and the Kalman filter improved the results further by smoothing 
out rapidly oscillating measurement data. However, distance 
estimation only worked initially during simulations.

Future goals are to investigate the critical differences 
between simulations and outdoor measurements, and to find the 
reason for the failure of the distance estimation algorithm. So 
far, we have investigated the waveform of the emitted sound 
and concluded that correctly choosing the analysis frequency
improves the estimation. We also performed a measurement in 
a semi-anechoic chamber, where the absence of ground 
reflections made distance estimation possible, but their
presence yielded similarly unstable estimations as those 
attained in case of outdoor measurements. These two conditions 
can be accounted for in the future by implementing an adaptive 
frequency tracking algorithm and using a method that is robust 
against ground reflections and correlated signals (for example
the SAMV method [18]).
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measurements, MUSIC was sufficient for direction estimation, 
and the Kalman filter improved the results further by smoothing 
out rapidly oscillating measurement data. However, distance 
estimation only worked initially during simulations.

Future goals are to investigate the critical differences 
between simulations and outdoor measurements, and to find the 
reason for the failure of the distance estimation algorithm. So 
far, we have investigated the waveform of the emitted sound 
and concluded that correctly choosing the analysis frequency
improves the estimation. We also performed a measurement in 
a semi-anechoic chamber, where the absence of ground 
reflections made distance estimation possible, but their
presence yielded similarly unstable estimations as those 
attained in case of outdoor measurements. These two conditions 
can be accounted for in the future by implementing an adaptive 
frequency tracking algorithm and using a method that is robust 
against ground reflections and correlated signals (for example
the SAMV method [18]).
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