INFOCOMMUNICATIONS JOURNAL

MTR Model-Based Testing Framework

MTR Model-Based Testing Framework

Gabor Arpad Németh and Mité Istvan Lugosi

Abstract—In this article we propose a novel, free and open-
source model-based testing framework for finite state machine
specifications. The various model handling and test generation
options make the framework suitable for testing complex
systems and provide a solid background for investigating
different automated test design methodologies. The complexity
and fault detection capabilities of the available algorithms
are investigated through analytical analyses and simulations
applying randomly injected faults.

Index Terms—model-based testing, conformance testing,
finite state machine, test generation algorithm

I. INTRODUCTION

In software development, testing is a critical, but often
resource-intensive process. Although test execution is auto-
mated in most big software companies, test design is typically
done manually, which — considering the rapidly changing
complex products — tends to be an ad-hoc, error-prone and
time-consuming approach. Model-based testing (MBT) turns
this costly and labour intensive task into an automated process.
In MBT, the requirements of the product are described as a
formal model and the test cases are derived automatically from
this model.

This article focuses on the MBT of Finite State Machine
(FSM) specifications [9], [18], [22], which have been exten-
sively used in different problem domains such as telecommuni-
cation software and protocols [16], [17], pattern matching [3],
hardware design [26], and embedded systems [8]. A number of
academic and commercial tools are developed to support MBT
[6], [19]. Commercial products for FSM-like specifications
include Conformiq Designer' and Reactis Tester?, but these are
not open-source. GrapWalker (GW)?, fMBT*, and Modbat® are
free and open-source FSM-based tools that are actively under
development. GW has an easy-to-use graphical user interface
(GUI), but test generation is mainly done by random traversals;
it lacks efficient systematic routing algorithms [30]. fMBT
generates test cases from converted Extended FSMs using
random and other heuristics to fulfill a given coverage (such as
permutations of consecutive elements). Modbat is specialized
to testing the application programming interface (API) of a
software [4], test cases can be generated by heuristic search.

In this article we present a new, free and open-source model-
based testing framework — called Model > Test > Relax

' Gabor Arpad Németh and Mité Istvan Lugosi are with the Department of
Computer Algebra, Faculty of Informatics, E6tvos Lordnd University, Buda-
pest, Hungary, (e-mail: nga@inf.elte.hu, mate.lugosi@gmail .com)

! Conformiq Designer, https://www.conformiq.com/products/

2 Reactis Tester, https://www.reactive-systems.com/products.msp

3 GraphWalker, https://graphwalker.github.io/

4 fMBT, https://github.com/intel/fMBT

* Modbat, https://gitlab.com/cartho/modbat

DOI: 10.36244/1CJ.2024.2.2

JUNE 2024 - vOLUME XVI ¢ NUMBER 2

(MTR) — for FSM specifications. With MTR the test engineer
can import specification models from GW, apply different
conversions on the model and generate tests. The variety
of systematic test generation algorithms and their different
settings provide the potential to the test engineer to balance
between quality aspects and the resources required for testing.
The body of the article is organized as follows. Section II
discusses related terms regarding FSMs and MBT. Section III
overviews the main functionalities of the MTR framework,
Section IV describes its working process. The different test
generation strategies are summarized in Section V, our new
algorithm created for N-Switch Coverage is also briefly dis-
cussed here. Section VI presents simulations for test generation
algorithms investigating the complexity of automated test
creation, the size and the fault coverage of the resulting test
suites. Possible future directions are discussed in Section VII,
the main results of the paper are concluded in Section VIII.

II. PRELIMINARIES
A. Finite State Machines

A Mealy Finite State Machine (FSM) M is a quadruple
M = (1,0,5,T) where I, O, S and T are the finite and
non-empty sets of input symbols, output symbols, states and
transitions between states, respectively. Each transition ¢ € T'
is a quadruple t = (s;,%,0,s%), where s; € S is the start
state, ¢ € I is an input symbol, o € O is an output symbol
and s; € S is the next state. The number of states, inputs and
transitions are denoted by n, p and m, respectively.

An FSM can be represented with a state transition graph,
which is a directed labeled graph whose nodes and edges
correspond to the states and transitions, respectively. Each
edge is labeled with the input and the output, written as i/o,
associated with the transition.

FSM M is deterministic, if for each (s;,1) state-input pair
there exists at most one transition in 7', otherwise it is non-
deterministic. If there is at least one transition ¢ € T for all
state-input pairs, the machine is said to be completely specified,
otherwise it is partially specified. In case of deterministic
FSMs the output and the next state of a transition can be given
as a function of the start state and the input of a transition,
where \: S x I — O denotes the output function and §:
S x I — S denotes the next state function. Let us extend
0 and A from input symbols to finite input sequences I* as

follows: for a state s;, an input sequence x = 41,...,%
takes the machine successively to states s;j11 = d(sj,1;),
7 = 1,...,k with the final state d(s;,2) = sk41, and
produces an output sequence \(s1,x) = o1,...,0k, Where

0j = A(s;,45), 5 =1,..., k. An FSM M is strongly connected
iff for each pair of states (s; , s;), there exists an input
sequence which takes M from s; to s;.

11

mailto:nga%40inf.elte.hu?subject=
mailto:mate.lugosi%40gmail.com?subject=
https://www.conformiq.com/products/
https://www.reactive-systems.com/products.msp
https://graphwalker.github.io/
https://github.com/intel/fMBT
https://gitlab.com/cartho/modbat
https://doi.org/10.36244/ICJ.2024.2.2

INFOCOMMUNICATIONS JOURNAL

MTR Model-Based Testing Framework

Two states, s; and s; of FSM M are distinguishable, iff
there exists an x € I* input sequence — called a separating
sequence — that produces different output for these states, i.e.:
A(sj,) # A(si, x). Otherwise states s; and s; are equivalent.
A machine is reduced, if no two states are equivalent.

An FSM M has a reset message, if there exists a special
input symbol r € [that takes the machine from any state
back to the s¢ initial state: 3r € I : Vs; : 0(s;,7) = So.
The reset is reliable if it is guaranteed to work properly
in any implementation machine Impl of M; otherwise it
is unreliable. A machine with reset capability is strongly
connected, iff each state s; € S is reachable from s.

The Extended Finite State Machine (EFSM) is an extension
of the FSM formalism with variables, actions and guarding
conditions over variables.

B. Model-based testing

o observed
- Implementation output
SpecificationFSM M FSM Impl (SUT) Comparator

Test suite
testcase 1 ... festcasen

(a) Test generation

Verdict

expected output

(b) Conformance testing

Figure 1. FSM model-based test generation and testing

The process of FSM model-based test generation is illus-
trated in Figure 1(a): From the requirements, an FSM M
specification model is created. Test cases — which are the pairs
of input sequences and expected output sequences of M — are
generated automatically from this model. A set of test cases
forms a test suite. The resulting test suite can be applied to
the System Under Test (SUT) which can be considered as
an I'mpl implementation machine of specification M with an
unknown internal structure, thus one can only observe its out-
put responses upon a given input sequence — see Figure 1(b).
Conformance testing checks if the observed output sequences
of Impl are equivalent to the expected output sequences
derived from M - i.e. it determines if Impl conforms to M.

Note that to connect the specification model to an actual
SUT, a source code, called adaptation code needs to be
created, that adapts the specification model to the SUT®. The
adaptation code implements each element of the specification
model as keywords. Such keywords are created for each
transition of the specification model. Utilizing the adaptation
code, one can transform abstract test cases into executable
ones to effectively test the SUT.

C. FSM Fault Models

Fault models describe the assumptions of the test engineer
about the implementation machine (s)he is about to test. For

°Sometimes it is also referred as “glue code” as it glues the model and SUT
together. In some cases — based on the abstraction level of the specification
model and the applied testing tools — this adaptation code can be partially or
completely generated.

12

completely specified, deterministic FSMs the following three
types of faults were proposed [10]:
I. Output fault: for a given state-input pair, FSM Impl
produces an output that differs from the one specified
in machine M.
II. Transfer fault: for a given state-input pair, Impl goes into
a state that differs from the one specified in M.
III. Missing state or extra state
For non-deterministic and partially defined FSMs, the fault
model above was extended with the following [7]:
IV. Missing or additional transitions
A usual assumption made in literature is that the faults do
not increase the number of the states of the machine [18], thus
the fault models of Chow [10] and Bochmann et al. [7] are
typically restricted to output and transfer faults [18].

III. OVERVIEW OF THE MODEL > TEST > RELAX
FRAMEWORK

N -
’ Config profiles —){ Config file J [CMD Line Arg
parser Parser |

JSON Parser
Import-Export

Random model generator

Controller

(CLI, Python API) Test generation methods

Expression parser,
interpreter

RW, WRW, AS, TT, ATS, ATT, HSI, H, N-SC

Data structure
Model conversions

v
Graphviz ﬁ

Figure 2. High level overview of Model > Test > Relax framework

FSM, EFSM

D
‘ Logs Iﬁ‘ Test suite ﬁ ‘SimulationCSV

Figure 2 presents a high level overview of the architecture
of the Model > Test > Relax (MTR) model-based
testing framework’. The user can import existing FSM or
EFSM models or generate random ones, and can also make
conversions on models (see Section IV-A). A wide range of
algorithms can be utilized for test suite generation (see Section
V) and an interface file can also be created that can be used
as a skeleton for adaptation code creation (see Section IV-C).
The parameters of the tool can be set by Command Line
Interface (CLI) or by configuration profiles. Note that three
different configuration profiles are delivered with the frame-
work, optimized for testing, research and education purposes,
respectively. Besides the generated test suite, the tool provides
the following files to evaluate the results:

o logs: Six verbosity levels can be selected.

o CSV file: Comma-separated values summarize the main
parameters of the model, in addition to the parameters
and the results of the selected test generation algorithm.

o Graphviz® file: The models and the results of the applied
test generation method can be visualized using this file.

The framework was implemented in C++ using the
LEMON? library.

7 Model » Test » Relaz. https://modeltestrelax.org/, https://gitlab.inf elte.
hu/nga/ModelTestRelax

8 Graphviz. Graph visualization software. https://graphviz.org/

?Library for Efficient Modeling and Optimization in Networks (LEMON),
http://lemon.cs.elte.hu

JUNE 2024 - vOLUME XVI ¢ NUMBER 2

https://modeltestrelax.org/
https://gitlab.inf.elte.hu/nga/ModelTestRelax
https://gitlab.inf.elte.hu/nga/ModelTestRelax
https://graphviz.org/
http://lemon.cs.elte.hu

INFOCOMMUNICATIONS JOURNAL

IV. WORKING PROCESS OF THE
MODEL > TEST > RELAX FRAMEWORK

A. Model making and manipulations

1) Model import: The specification model is defined in a
JSON'® format that is similar'' to the one used by Graph-
Walker (GW). Thus, the user is able to create a model in the
GUI of GW Studio and import it to our framework.

2) Model generation: 1t is possible to generate random
FSMs with different parameters for simulation purposes.

3) Model conversions and manipulations: MTR provides
the following conversion options to manipulate models:

Actions

i=1

b =false
a/2 Condition

i<3
oPric=
i={+1)

a/0 b=lb

ns
(nyb=false;i=3)

Nz g
(ngb=alse:i=3)

Figure 3. EFSM — FSM model conversion

o EFSM — FSM model conversion: For each possible state-

variable value combination (that can be reached within

the EFSM from the initial state considering the actions
and guarding conditions of transitions'?) a distinct state

will be created in the converted FSM — see Figure 3.

The conversion results in the well-known state explosion

problem [18], but one can limit the range of variables.

FSM test generation methods can be applied on the

converted model and the adaptation keywords need to be

implemented only once for each transition of the EFSM
specification (parameterized by variables)'3.

Fartially specified — completely specified conversion:

For each undefined state and input symbol pair a loop

transition is added without an output symbol.

o State minimization: Helps the design phase of the formal
specification by converting non-reduced machines into
reduced ones merging equivalent states.

o Add/remove reset: Add/remove reliable or unreliable reset

transitions to the model in one step.

Error injection: Model-based mutation testing (MBMT)

[5] can be applied by injecting given number of random

transfer, output, missing or additional transition faults to

the model. With this functionality one can investigate
the fault detection capabilities of different test genera-

19 JSON. https://www.json.org/

"'"There are some differences in the model handling of GW and MTR as GW
does not follow the (E)FSM formalism completely. Thus, some conversion is
required if one would like to import the model of GW into MTR, but this is
described in detail in the ”5.1.2. Editing models using GraphWalker Studio”
section of MTR User Guide.

21f some states cannot be reached — thus they are not added to the converted
model — then MTR displays a warning message.

3 Note that an application example (Openlddict) is delivered with MTR
that tests the main functionalities of the Oauth 2.0 [2] protocol using an EFSM
model and shows how the EFSM — FSM conversion and the testing on the
converted model works.

JUNE 2024 - vOLUME XVI ¢ NUMBER 2

MTR Model-Based Testing Framework

tion methods with simulations that apply the test suites
generated from unmodified models to modified models.

B. Test generation

The framework contains numerous algorithms for test suite
derivation with varying complexities and fault coverages en-
abling the test engineer to find an appropriate trade-off be-
tween resources allocated for the generation and execution of
tests and the quality of the SUT. The available methods are
described in Section V.

C. Test execution

MTR generates an interface file that contains the elements
of the model and can be used when writing the adaptation
code. The adaptation code should contain the following steps:

e STEP 1: Parse the next element of the test suite — that
consists of an input/output list — generated by MTR.

o« STEP 2: Execute actions corresponding to the given
element of the input list.

o STEP 3: Check the result with assert if it corresponds to
the one that can be expected from the given element of
the output list.

Note that sample test projects are also delivered with the
framework!# which can be utilized as a base to understand the
modelling and adaptation code creation processes before one
creates an own test project. Each project contains the following
parts:

o An FSM or EFSM model that describes the specification

of the SUT.

e An adaptation code which implements each element of
the specification model.

o A SUT that is provided by an external link.

Also note that MTR provides an option to export the

generated test suites into GW and thus write the corresponding
adaptation code there.

V. TEST GENERATION ALGORITHMS

Table I summarizes the available test generation algorithms
in MTR and their main properties. A brief description is given
for all algorithms in the following subsections and simulation
results are presented in Section VI.

A. Random Walk (RW)

Random Walk (RW) starts from the initial state of the
machine and in each step a transition leading from the current
state is selected randomly and traversed entering a new state.
The former step is executed until a given stop condition —
the preset percentage of states or transitions have been visited
— is fulfilled. MTR also provides an option to set selection
probabilities for each transition of the model.

Although RW is unsuitable for the functional testing of
large-scale software (as the length of the test sequence is
not bounded and thus can be much longer than the optimal
solution) and for regression testing (due to the randomness of
transition traversals), it can be useful for exploratory testing
of a new functionality.

4These projects can be accessed in folder sample_models / applications

13

https://www.json.org/

INFOCOMMUNICATIONS JOURNAL

MTR Model-Based Testing Framework

TABLE1
THE MAIN ASPECTS OF TEST GENERATION ALGORITHMS

Complexity of test Complexity of test
generation suite

Structure of Coverage and other

Model test suite notes

[e |

Given percentage

RW FSM/ Not bounded Not bounded 1 test sequence -
EFSM of state/transition
coverage (based on
stop condition).
AS FSM O(n?) o(m) 1 test sequence 100% state cover-
age
TT FSM o(n3 + m) O(m) 1 test sequence 100% ~ state and
transition coverage.
Guarantees to find
output faults.
ATS FSM ATS()3 (standard): ATS0: O(m). 1 test sequence 1(){]‘/?. state and
om3 + m), ATSa/x (it subpartey | mansition coverage.
ATSa/x _(iterative): O(n - m), h) Guarantees to find
O(n(n” 4+ m)), n<2-n output faults.
n<2-n
ATT FSM O(m(n3 +m)) o(m?2) 1 test sequence 100% ~ state and
(with subparts) transition coverage.
Guarantees to find
output faults.
O+1 : O+1 Structured test Guarantees to dis-
HSI FSM ot . n?) o t1n?) suite with mul- cover output and
tiple fest se- transfer faults and
quences 6 extra states.
: : Structured test Guarantees to dis-
H FSM ot . n?) o tlm?) suite with mul- cover output and
tiple test se- transfer faults and
quences 0 extra states. Im-
provement of the
HSI-method
Nse [EM [OUN & 1) | OGN 1) - | estsequence fovers Al b
(k+1)(N+1) N1 ogically ~possible,
m consecutive N + 1
0. transitions.

B. All-State (AS)

The All-State (AS) test generation method produces a test
sequence that visits every state of a deterministic, strongly
connected'® FSM at least once. It applies the Nearest Neigh-
bour (NN) heuristic [15] which searches in each step for the
closest unvisited state until such state exists.

The AS test generation has O(n?) time complexity, the
length of the generated test sequence is O(m).

C. Transition Tour (TT)

The Transition Tour (TT) [23] algorithm generates the short-
est test sequence that visits all transitions of a deterministic,
strongly connected'® FSM at least once, then returns to the
initial state.

The problem of creating the test sequence above was re-
duced to the Directed Chinese Postman Problem (DCPP) [12]
with unit costs for the edges of graph G' (where G corresponds
to specification machine M). The related algorithm [12], [20],
[25] consists of the following two parts:

I. Augmenting the original graph G by duplicating some

edges to make it Eulerian graph Gg.
II. Finding an Euler tour over G .

The time complexity of TT test generation and the length
of the resulting test sequence is O(n® 4+ m) and O(m), re-
spectively. The generated test sequence guarantees to discover
all output faults, but does not guarantee to find transfer faults.

D. All-Transition-State (ATS)

The All-Transition-State (ATS) algorithm [31] creates a test
suite for deterministic, strongly connected'® FSMs that fulfills
the first two formal conditions of the ATS criteria [13]:

ISTf reset transitions exist, MTR applies them in the test suite only if the
strongly connected assumption cannot be fullfilled without them.

14

I. For all ¢ transitions: The test suite should cover at least
one walk that contains ¢ and then reaches all states of M.

II. There has to be at least one walk to all states which does
not include transition t (if feasible).

The ATS algorithm uses a preamble part responsible for
traversing all transitions of FSM M first, then a postamble
part responsible for traversing all states of M to fulfill both
conditions, but on different graphs. These different graphs
include the state transition graph of the specification FSM M
and its subgraphs, where some ¢ transitions are filtered out.
The preamble part is realized using the TT algorithm without
returning to the initial state at the end and the postamble part
applies the NN heuristic [15] which searches in each step for
the closest unvisited state until such state exists.

There are 3 different versions of the ATS algorithm:

1. Standard version (ATSO0),
2. Iterative version without iteration limit (ATSa),
3. Iterative version with iteration limit (ATSx).

The three versions of the algorithm differ in how condition
II can be fulfilled. The user has the choice to find a trade-
off between coverage and the overall length of the test suite.
ATSO0 has a total complexity of O(n® 4+ m) and an O(m)
overall length for the test suite [31]. ATSa and ATSx have a
total complexity of O(n(n3 4+ m)), where n < 2-n and the
total length of the resulting test suite is O(n - m) [31]. The
generated test sequence guarantees to discover all output faults
and to find most of transfer faults [31].

E. All-Transition-Transition (ATT)

This algorithm is the naive implementation of the first two
conditions of the All-Transition-Transition (ATT) criteria [13]:
I. For all ¢ transitions: The test suite should cover at least
one walk that contains ¢ and then reaches all transitions
of the FSM.
II. There has to be at least one walk to all transitions which
does not include transition ¢ (if feasible).

For condition I, the ATT algorithm uses a preamble part that
traverses all transitions of the FSM, then a postamble part that
traverses all transitions of the machine again. Condition II can
be fulfilled in a similar way, but the preamble part is applied
on different filtered graphs of the specification.

The complexity of ATT test generation and the length of
the test sequence is O(m - (n3+m)) and O(m?), respectively.

F. Harmonized State Identifiers (HSI)

In this algorithm, the Harmonized State Identifiers (HSI)
state verification method [21], [27] is applied to create a struc-
tured test suite for reduced, deterministic, strongly connected
FSMs with reliable reset'® capability [29]. The algorithm
contains the following main parts:

o A state cover set (SCS) Q = {qo,-..,qn—1} that is used

for reaching all states; the problem was reduced to create
a spanning tree from the s¢ initial state.

I61f the model has unreliable resets, then MTR generates a distinct test suite
first, that checks if all reset transitions are implemented in the SUT properly.

JUNE 2024 - vOLUME XVI ¢ NUMBER 2

INFOCOMMUNICATIONS JOURNAL

o A separating family of sequences of Z responsible for
verifying end states. The Z set is a collection of sets
Zj,j = 0,...,n — 1 of sequences (one set for each
state) where for every non-identical pair of states s;, s;
there exists a separating sequence. In our implementation,
the Z set is represented with a spanning forest over an
auxiliary state pair graph, the edges of which are directed
to state pairs that have a separating input.

Based on the parts discussed above, the algorithm consists
of two stages. The first stage identifies all states of the FSM
and the second stage checks all remaining transitions. The
resulting algorithm is the generalization of the W [10] and Wp
[14] methods and it guarantees to find all output and transfer
faults of FSM I'mpl.

The total length of the resulting test suite and the complexity
of test generation is O(p - n®) [29]. By extending the method
above it will also guarantee to find 6 given number of extra
states in the implementation, resulting O (p?*'-n?) complexity.

G. H-method

The H-method [11] creates a test suite for reduced, de-
terministic, strongly connected FSMs with reliable reset!S.
The resulting test suite guarantees to discover all output and
transfer faults and preset # number of extra states in Impl.

Just like the HSI-method, the H-method also uses a) SCS
to travel to states that need to be verified. It also uses Har-
monized State Identifiers for state identification and transition
checking, but instead of using predetermined state identifiers,
it selects the appropriate ones on-the-fly, thus shortening the
test suite.

The algorithm consists of 4 stages:

o STAGE 1: Let the test suite be the SCS sequences,
extended by every possible § + 1 long permutation of
the input symbols.

o STAGE 2: For each two sequences u and v of the SCS
@, check if the test suite has sequences uw and vw such
that w distinguishes the states d(so,u) and d(sg,v). If
there are no such sequences, select an appropriate w and
add uvw and vw to the test suite.

o STAGE 3: For each sequence uc« where w is in the SCS
Q, and « is a sequence of the input symbols with a length
up to #+1, and a v sequence which is also in the SCS @),
check if the test suite has sequences uaw and vw such
that w distinguishes the states d(so, ucr) and (s, v). If
there are no such sequences, select an appropriate w and
add woaw and vw to the test suite.

o STAGE 4 (if @ > 0): For each sequence ua where u is
in the SCS @, and « is a sequence of the input symbols
with a length up to # 4 1, and for each uf where [is
a prefix of «, check if the test suite has sequences uaw
and ufw such that w distinguishes the states d(sg, ua)
and (s, uf3). If there are no such sequences, select an
appropriate w and add uaw and ufw to the test suite.

The complexity of the test generation and the resulting test

suite is O(p?*! - n?) [28].

Note that although the original paper [11] mentioned that

the length of the test suite depends on the order in which

JUNE 2024 - vOLUME XVI ¢ NUMBER 2

MTR Model-Based Testing Framework

transitions are checked, no corresponding method is described
for this. MTR proposes different strategies for processing
transitions. We found that the most effective solution is that
when the transitions are sorted by input symbols that produce
the most diverse output symbols (i.e. the algorithm prefers
input symbols in processing that are able to separate more
states), the results presented in Section VI apply this approach.

H. N-Switch Coverage (N-SC)

N-Switch Coverage (N-SC) [10] covers all topologically
possible, consecutive N + 1 transitions of reduced, deter-
ministic, strongly connected FSMs. Note that article [10]
only introduced the criteria that need to be fulfilled, but no
corresponding algorithm had been given and to the best of
our knowledge there still hasn’t been published any.

Thus, we created a new heuristic algorithm for N-SC, that
takes NV and a k iteration limit (scaling from 0 to V) as input
parameters and briefly works as follows:

STEP 1: Initialization:

o Set test sequence ts as empty: ts := {}.

o Set current state to the initial state: s. := sg.

o Create an ordered list L = (y...(x for all possible,
consecutive N + 1 transitions (including loop transitions)
in FSM M. Mark all ¢;...(x € L elements as uncovered.

o Initialize the next element of L to be covered: (" := {}.

STEP 2: Covering N + 1 transitions: Repeat until all
elements of L are marked as covered:

o STEP 2.1: Select an (, element of L that is marked as
uncovered and for which its s, start state is the nearest'’
from the s, current state: (" := (.

- If s. # s,: Add the s, — s, path into ts. 5. := s,,.

o STEP 2.2: Add the next transition ¢ = (s;,4,0,s;) of ("
to ts. Set s, to the end state of t: s, := s;.

o STEP 2.3: Check if (" is covered:

- If yes:

* STEP 2.3.1: Mark the element in L corresponding
to (" as covered.

* STEP 2.3.2: Check with k iteration limit if a (; ele-
ment of L marked as uncovered is partially covered
with the last & steps, i.e. the first k& elements of ;
is covered with the last k transitions in ts:

- If yes: (™ := (; and continue with STEP 2.2.
- Otherwise: continue with STEP 2.
— If no:
+ Continue with STEP 2.2

Note that by changing iteration limit %k, one can create a
trade-off between the length of the resulting test sequence and
the test generation time.

List L contains maximum O(m™*1) elements each one
with a length of N + 1, thus the length of the resulting
test sequence is O((N + 1) - m™¥*1). STEP 2 iterates over
all elements of L and for each element, STEP 2.2 adds test
sequences with N + 1 length. STEP 2.3.2 checks partially
covered elements with O(m*(N+1)) worst case complexity,

7This can be found by breadth-first search from s..

15

INFOCOMMUNICATIONS JOURNAL

MTR Model-Based Testing Framework

resulting in O((N + 1) - mF+1)-(N+1)) test generation com-
plexity'8

VI. SIMULATION RESULTS

The simulations were executed on servers running an
Ubuntu 22.04.2 LTS operating system with 4 GB memory
and one core of a shared AMD EPYC 7763 64-core CPU
with 2445 MHz clock frequency.

Strongly connected, reduced, completely specified, deter-
ministic random FSMs with reliable reset capability were
generated with MTR in different Scenarios to investigate the
performance of the algorithms — see Table II.

TABLE I
INVESTIGATED SCENARIOS

Number of states
ID min. | max. | size of | Density | [O] simulation
step /1] ‘ ‘ goal ’
Scenario 1 5 2000 5 5 10 complexity
Scenario 2 5 100 5 5 2 fault cov.
Scenario 3 5 100 5 5 10 fault cov.

A. Complexity investigations

105 I | | I
10° Wi AL
! e 4-0-0-0
%\ | - ';::::: o:uaD°°°°a°°°
c
§ 10" ’.r;
g
g:, A e i f’" " fmﬁ kﬁqﬁfy&ﬂ"‘yﬁ\%
S cAT Aen et AL
210 - -\i,{, 4 “',\ 2 pqn,,,,ﬁun,\yi" J" i W
a ‘3‘9}'
103 B ‘ —-RW-transition - - AS #ATS0 + HSI +1-5C| +
% 1 ~-RW-state -0 TT-~ATT #H #2-SC
107° | | |
0 500 1000 1500 2000

Number of states

Figure 4. Scenario 1: Test generation time

o
3

: m{fpﬁ"w”’ ’l’r}w .‘é.'t""é'%

yoa@&a@&ﬁ@booﬂaooﬂﬂﬂu

e

'¢ao°°¢

S

.o.o.o-o-o

Test sequence length
o

o
)

| 1
I =-RW-transition = - AS *¢:ATS0 ++HS| +1-SC

3 f ~-RW-state

‘ ©TT-~ATT #H -2-SC
10° ? i | |
0 500 1000 1500 2000
Number of states
Figure 5. Scenario 1: Test sequence length
81n case of completely specified, deterministic FSMs, L contains

O(pN+t1) elements, thus the complexity of the test sequence and test
generation is O((N+1)-pN 1) and O((N+1)-pk+1-(N+1)) respectively.

16

Scenario 1 investigates the time required for test generation
and the overall length of the test sequences in function of the
number of states in the specification machine.

Figure 4 shows the test generation time for RW (both with
100% state and 100% transition coverage), AS, TT, ATS
(with ATSO standard version), ATT, HSI (with ¢ = 0), H
(with @ = 0), 1-SC (with £ = 1) and 2-SC (with k = 2)
algorithms'®. Figure 5 shows the overall length of the resulting
test sequences for the same settings.

As expected, the test generation time of 1-SC, 2-SC and
ATT is the longest. The complexity of TT and ATSO test
generation is around the cubic function of the number of the
states. The test generation complexity is less than the theoretic
cubic upper limit in case of the HSI and the H method because
each member of the separating family of sequences typically
consists of a test sequence with a length of 1 or 2 instead of
the theoretical worst case of n — 1 length. The H performs
better as it is an improvement of the HSI. AS solves a much
easier problem to visit all states with NN that is reflected in
its complexity. The test generation time of RW is the least
as it only selects a transition randomly and checks the stop
condition at each step.

The length of the test suite is the shortest in case of AS, that
only visit states with NN. The size of the test suite is a linear
function of the number of states in case of TT and ATS0. The
ones generated by the HSI and H are significantly bigger as
in this case the test suite systematically checks all states and
verifies the end states of the remaining transitions, although
they are much shorter than the theoretic upper limit due to
the reason discussed previously. Its size is between 1-SC and
2-SC and the improvement of the H over HSI can be clearly
seen. The ATT performs the worst as in each step it tries to
create a transition adjacent walk before visiting all transitions.

B. Fault coverage investigations

sttt ey

o TT

®ATSO

" sATT
HSI/HA-SC/2-SC

Number of faults detected

10 20 30 40 50 60 70 80 90 100
Number of states

Figure 6. Scenario 2: Number of discovered faults

In Scenarios 2 and 3 the fault coverage of test suites gen-
erated by different algorithms is investigated with randomly
injected transfer faults?®. Each data point in these scenarios

I9ATT runs out memory above 1050 states, 2-SC is investigated only up
to 1025 states as its execution time grows rapidly.

20Transfer faults are selected for investigations because of the reasons
described in Section II-C and the fact that output faults are guaranteed to
be found by algorithms that traverse all transitions of the specification FSM.

JUNE 2024 - vOLUME XVI ¢ NUMBER 2

INFOCOMMUNICATIONS JOURNAL

1000; {Etea o =i ap et it et o e S otua s >3 - 5 —
gy V. L e e ? S
g - ST T o®

.9 o

8

g 990[.o

g ;

© K

£ ¢ oTT

El |

8 %80 +ATSO
2 *=ATT
z HSVH/1-8C/2-SC
5

z

970+ ¢

960 1 1 1 1 1 1 1 1 1 I}
10 20 30 40 50 60 70 80 90 100

Number of states

Figure 7. Scenario 3: Number of discovered faults

is obtained by 1000 simulation runs; in each simulation a
single transition fault is injected into a distinct random FSM
with given parameters and it is observed how many times
from these 1000 distinct cases do the algorithms discover the
fault. The results for FSMs with 2 and 10 output symbols
are presented in Figures 6 and 7, respectively?'. As expected
H, HSI, 1-SC and 2-SC discovered all 1000 transfer faults
regardless of the number of states. The ATSO and ATT
algorithms perform just a little worse and TT gives results that
can still be acceptable depending on the application domain.
In Scenario 3 there are more possible output symbols than
in Scenario 2, thus the fault coverage of the test generation
algorithms increases, but the trends are similar.

C. SIP UAC registration example

Simulations were also performed to investigate the overall
length and the fault coverage of the generated test suites for the
specification machine presented in Figure 8 which describes
the SIP (Session Initiation Protocol) [1] registration process
of the User Agent Client?”.

NotRegistered)

404 Not Found \400 Invalid Request
/ USER.notd

USER.init
/REGISTER

403 Forbidden
/ USER notd

401 Unauthorized
/REGISTER

423 Interval Too Brief
/REGISTER

AwaitRegResponse
Response timeout / REGIS TERC—————

200 0K
/ USER.done

Registration timeout
/REGISTER

Response timeout
/USER.done | / USER.done

USER exit
/REGISTER

AwaitDeregResponse

Figure 8. FSM for the registration process of the SIP user agent client

The overall length of the test sequence generated by AS,
TT, ATSO, ATT, HSI (with § = 0), H (with § = 0), 1-SC
(with £ = 1) and 2-SC (with k = 2) is 3, 19, 47, 65, 32, 32,
76 and 372 transitions, respectively.

2INote that the results of AS algorithm are not presented in the figures to
be able to discover the fault coverage of more robust algorithms precisely.
In Scenario 2 AS discovers only 85-184 faults at and below 20 states and
206-256 faults at and above 25 states. In Scenario 3 AS finds 136-222 faults
at and below 20 states and 202-261 faults at and above 25 states.

22Here only the signaling level was considered; a description about how
this FSM can be constructed from the related call-flows is presented in [24].

JUNE 2024 - vOLUME XVI ¢ NUMBER 2

MTR Model-Based Testing Framework

As the machine contains 4 states and 12 transitions, 12 (4—
1) = 36 diverse transition faults are possible. Thus, 36 faulty
models were created and the fault coverage of the different
test suites was investigated. The AS and TT were able to find
6 and 33 faults, respectively. The ATSO, ATT, HSI, H, 1-SC
and 2-SC were able to discover all 36 possible faults.

VII. FUTURE WORKS

We have the following plans for future MTR enhancements.

First, we would like to introduce incremental test generation
algorithms which identify the effects of changes in the test
suite derived from a previous system specification and only
update those parts that are necessary. Thus, test generation
time can be significantly reduced and different testing goals
(such as regression testing, sanity testing) can be clearly
isolated from each other.

We also plan to extend our framework to handle Commu-
nicating Finite State Machine models and timers which are
essential in reliable communication protocols.

As a long term goal, we would like to apply some upper
level logic which based on input data — the structure of the
specification model, the problem domain, the testing goals and
the resources allocated for testing — can automatically propose
a test suite that best suits the needs of the test engineer.

VIII. CONCLUSION

In the current article, we introduced a novel model-based
testing framework that can be used in the systematic testing
of complex software in diverse problem domains such as
infocommunications. The framework offers a wide range of
model conversion and test generation options.

The test criteria and test coverage can be fine-tuned by
selecting a given test generation algorithm and its parameters.
The related algorithms were summarized, and a new heuristic
test generation algorithm for the N-Switch Coverage Criteria
[10] has also been presented. The complexity of test generation
and the size of the resulting test suite for the implemented test
generation algorithms were investigated via analytical worst
case complexity calculations and by empirical analyses. The
fault coverage of the generated tests was also observed by sim-
ulations. The results let the test engineer find an appropriate
trade-off between sources allocated for test execution and the
coverage of tests depending on testing goals.

ACKNOWLEDGEMENTS

The first author was supported by the project “Software
and Data-Intensive Services” Nr. 2019-1.3.1-KK-2019-00011
financed by the Hungarian National Institute of Science and
Innovation.

The authors would like to thank the students who took part
in implementation of the following part of the framework:
Zsolt Csaky for EFSM handling and EFSM — FSM transfor-
mation, Tédor David Nyeste for H and HSI-methods, Tomas
Varga for N-SC test generation. The authors would also like
to express their gratitude to Levente Hunyadi for his valuable
technological advice.

17

INFOCOMMUNICATIONS JOURNAL

MTR Model-Based Testing Framework

REFERENCES

[11 RFC 3261: SIP: Session Initiation Protocol, 2002.
https://tools.ietf.org/html/rfc3261 Accessed: 2023-07-04.

[2] RFC 6749: The OAuth 2.0 Authorization Framework, 2012.
https://datatracker.ietf.org/doc/html/rfc6749 Accessed: 2024-01-09.

[3] Paul Ammann and Jeft Offutt. Introduction to Software Testing.
Cambridge University Press, New York, NY, USA, 2nd edition, 2016.
por: 10.1017/9781316771273.

[4] Cyrille Artho, Martina Seidl, Quentin Gros, Eun-Hye Choi, Takashi

Kitamura, Akira Mori, Rudolf Ramler, and Yoriyuki Yamagata.

Model-based testing of stateful APIs with Modbat. In Proc. 30th Int.

Conf. on Automated Software Engineering (ASE 2015), pages 858—

863, Lincoln, USA, 2015. IEEE. por: 10.1109/ASE.2015.95.

Fevzi Belli, Christof J. Budnik, Axel Hollmann, Tugkan Tuglular, and

W. Eric Wong. Model-based mutation testing—approach and case

studies. Science of Computer Programming, 120:25-48,2016.

por: 10.1016/j.scico.2016.01.003.

[6] Maicon Bernardino, Elder M. Rodrigues, Avelino F. Zorzo, and
Luciano Marchezan. Systematic mapping study on MBT: tools and
models. IET Software, 11(4):141-155,2017.
por: 10.1049/iet-sen.2015.0154.

[7] Gregor von Bochmann, Anindya Das, Rachida Dssouli, Martin
Dubuc, Abderrazak Ghedamsi, and Gang Luo. Fault Models in
Testing. In Proceedings of the IFIP TC6/WG6.1 Fourth International
Workshop on Protocol Test Systems IV, pages 17-30, Amsterdam, The
Netherlands, 1991. North-Holland Publishing Co.

[8] Eckard Bringmann and Andreas Krdmer. Model-based testing of
automotive systems. In Proceedings of the 2008 International Con-
ference on Software Testing, Verification, and Validation, ICST °08,
pages 485-493, Washington, DC, USA, 2008. IEEE Computer
Society. por: 10.1109/ICST.2008.45.

[9] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker,
and Alexander Pretschner (Eds.). Model-Based Testing of Reactive
Systems. Springer, 2005. por: 10.1007/b137241.

[10] T. Chow. Testing software design modelled by finite-state machines.
IEEE Transactions on Software Engineering, 4(3):178-187, May
1978. por: 10.1109/TSE.1978.231496.

[11] Rita Dorofeeva, Khaled El-Fakih, and Nina Yevtushenko. An
Improved Conformance Testing Method. In Farn Wang, editor,
Formal Techniques for Networked and Distributed Systems
— FORTE 2005, volume 3731 of Lecture Notes in Computer
Science, pages 204-218. Springer, Berlin, Heidelberg, 2005.
por: 10.1007/11562436_16.

[12] Jack Edmonds and Ellis L. Johnson. Matching, Euler tours and the
Chinese postman. Mathematical Programming, 5(1):88-124, 1973.
por: 10.1007/BF01580113.

[13] Istvan Forgdcs and Attila Kovécs. Practical Test Design. BCS, The
Chartered Institute for IT, 2019.

[14] S. Fujiwara, G. v. Bochmann, F. Khendec, M. Amalou, and A.
Ghedamsi. Test selection based on finite state model. /EEE
Transactions on Software Engineering, 17(6):591-603, 1991.
por: 10.1109/32.87284.

[15] Gregory Z. Gutin, Anders Yeo, and Alexey Zverovich. Traveling
salesman should not be greedy: domination analysis of greedy-type
heuristics for the TSP. Discret. Appl. Math., 117(1-3):81-86, 2002.
por: 10.1016/S0166-218X(01)00195-0.

[16] Drago Hercog. Protocol Specification and Design. In Communication
Protocols. Springer, Cham, 2020. por: 10.1007/978-3-030-50405-2_2.

[17] Gerard J. Holzmann. Design and Validation of Protocols. Prentice-
Hall, 1990.

[18] David Lee and Mihalis Yannakakis. Principles and Methods of
Testing Finite State Machines — A Survey. Proceedings of the IEEE,
84(8):1090-1123, 1996. por: 10.1109/5.533956.

[19] Wenbin Li, Franck Le Gall, and Naum Spaseski. A survey on model-
based testing tools for test case generation. In Tools and Methods of
Program Analysis, pages 77-89. Springer International Publishing,
2018. por: 10.1007/978-3-319-71734-0_7.

[5

—

18

[20] Y. Lin and Y. C. Zhao. A new algorithm for the directed chinese
postman problem. Computers and Operations Research, 15(6):577—
584, 1988. por: 10.1016/0305-0548(88)90053-6.

[21] Gang Luo, Alexandre Petrenko, and Gregor V. Bochmann. Selecting
Test Sequences for Partially-Specified Nondeterministic Finite
State Machines. In Proceedings of the IFIP WG6.1 7th International
Workshop on Protocol Test systems VI, pages 91-106. Springer, 1995.
por: 10.1007/978-0-387-34883-4_6.

[22] Matheus Monteiro Mariano, Erica Ferreira de Souza, André Takeshi
Endo, and Nandamudi Lankalapalli Vijaykumar. Comparing graph-
based algorithms to generate test cases from finite state machines.
Journal of Electronic Testing, 35(11-12):867-885, December 2019.
por: 10.1007/s10836-019-05844-6.

[23] S. Naito and M. Tsunoyama. Fault detection for sequential machines
by transition-tours. In Proceedings of the 11th IEEE Fault-Tolerant
Computing Conference (FTCS 1981), pages 238-243. IEEE Computer
Society Press, 1981.

[24] Gébor Arpad Németh and Péter S6tér. Teaching performance testing.
Teaching Mathematics and Computer Science, 19(1):17-33, 2021.
por: 10.5485/TMCS.2021.0518.

[25] S. C. Orloff. A Fundamental Problem in Vehicle Routing. Networks,
4:35-64, 1974. por: 10.1002/net.3230040105.

[26] Volnei A. Pedroni. Finite State Machines in Hardware. Theory and
Design (with VHDL and SystemVerilog). The MIT Press, London,
England, 2013. por: 10.7551/mitpress/9657.001.0001.

[27] Alexandre Petrenko, Nina Yevtushenko, Alexandre Lebedev,
and Anindya Das. Nondeterministic state machines in protocol
conformance testing. In Proceedings of the IFIP TC6/WG6.1 Sixth
International Workshop on Protocol Test Systems VI, pages 363-378,
NLD, 1993. North-Holland Publishing Co.

[28] M. Soucha and K. Bogdanov. SPYH-method: An improvement in
testing of finite-state machines. 2018 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW),
pages 194-203, July 2018. por: 10.1109/ICSTW.2018.00050.

[29] Mihalis Yannakakis and David Lee. Testing finite state machines:
Fault detection. Journal of Computer and System Sciences, 50(2):209—
227, 1995. por: 10.1006/jcss.1995.1019.

[30] Muhammad Nouman Zafar, Wasif Afzal, Eduard Enoiu, Athanasios
Stratis, Aitor Arrieta, and Goiuria Sagardui. Model-based testing
in practice: An industrial case study using GraphWalker. In /4th
Innovations in Software Engineering Conference, ISEC 2021, New
York, NY, USA, 2021. Association for Computing Machinery.
por: 10.1145/3452383.3452388.

[31] Gédbor Arpiad Németh and Maté Istvan Lugosi. Test generation
algorithm for the All-Transition-State criteria of Finite State
Machines. Infocommunications Journal, 13(3):56-65, 2021.
por: 10.36244/1CJ.2021.3.6.

Gébor Arpad Németh obtained his MSc in Electrical
Engineering and his PhD in Computer Science at the
Budapest University of Technology and Economics
(BME), Department of Telecommunication and Media
Informatics (TMIT) in 2007 and 2015, respectively.
He worked at Ericsson between 2011 and 2018 on a
performance testing tool used in the telecommunication
industry. Currently, he works at the E&6tvos Lordnd
University (ELTE) on topics related to software testing.

Maté Istvan Lugosi obtained his BSc in Computer
Science at Eotvos Lordnd University (ELTE) in 2021.
Currently, he works at Ericsson on embedded software
of microwave network devices. He studies in the
MSc program of Computer Science at ELTE in the
Cryptography specialization.

JUNE 2024 - vOLUME XVI ¢ NUMBER 2

https://tools.ietf.org/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc6749
https://doi.org/10.1017/9781316771273
https://doi.org/10.1109/ASE.2015.95
https://doi.org/10.1016/j.scico.2016.01.003
https://doi.org/10.1049/iet-sen.2015.0154
https://doi.org/10.1109/ICST.2008.45
https://doi.org/10.1007/b137241
https://doi.org/10.1109/TSE.1978.231496
https://doi.org/10.1007/11562436_16
https://doi.org/10.1007/BF01580113
https://doi.org/10.1109/32.87284
https://doi.org/10.1007/978-3-030-50405-2_2
https://doi.org/10.1109/5.533956
https://doi.org/10.1007/978-3-319-71734-0_7
https://doi.org/10.1016/0305-0548(88)90053-6
https://doi.org/10.1007/978-0-387-34883-4_6
https://doi.org/10.1007/s10836-019-05844-6
https://doi.org/10.5485/TMCS.2021.0518
https://doi.org/10.1002/net.3230040105
https://doi.org/10.7551/mitpress/9657.001.0001
https://doi.org/10.1109/ICSTW.2018.00050
https://doi.org/10.1006/jcss.1995.1019
https://doi.org/10.1145/3452383.3452388
https://doi.org/10.36244/ICJ.2021.3.6

