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Abstract—In Industry 5.0, the scarcity of data on defec-
tive components in smart manufacturing leads to imbalanced
datasets. This imbalance poses a significant challenge to the
development of robust Machine Learning (ML) models, which
typically require a rich variety of data for effective training.
The imbalance not only restricts the models’ accuracy but also
their applicability in diverse industrial scenarios. To tackle this
issue, our research delves into the capabilities of Deep Generative
Models, with a special focus on Generative Adversarial Networks,
for the generation of synthetic data. This approach is aimed
at rectifying dataset imbalances, thereby enhancing the training
process of ML models. We demonstrate how synthetic data
can substantially bolster the performance and reliability of ML
models in industrial settings. Furthermore, the paper presents
an innovative MLOps pipeline and architecture, meticulously
designed to incorporate Deep Generative Models (DGMs) into
the entire ML development cycle. This solution is automated
and goes beyond mere automation; it is self-optimizing and
capable of making necessary corrections, specifically engineered
to address the dual challenges of data imbalance and scarcity,
thus enabling more precise and dependable ML applications in
smart manufacturing.

Index Terms—Deep Generative Models, MLOps, Generative
Adversarial Network, Industry 5.0, Synthetic Data Generation,
Imbalanced Datasets.

I. INTRODUCTION

THE integration of Machine Learning (ML) in industrial
environments leads to increased operational efficiency

and drives innovation in manufacturing processes and product
development. This synergy of ML and big data is at the
heart of Industry 5.0 [1]–[4], marking a shift towards more
intelligent, adaptable, and sustainable manufacturing [5]. Max-
imizing the potential of ML in industry, however, necessitates
addressing the unique challenges inherent in these settings.

In fact, imbalanced datasets – stemming from the scarcity
of data on faulty components, due to the high yield of
manufacturing processes [6] – present a significant challenge
for the effective adoption of ML in Industry 5.0 applications.
Most ML models assume the availability of extensive and
varied datasets but the imbalance often results in models that
are both limited and biased [7]. While Chaos Engineering,
more and more used in IT, is starting to be proposed in
industrial environments [8], manufacturing companies cannot
be expected to address this issue by purposely inducing
component failures or operational disruptions for the sake of
data generation – an understandably costly and risky endeavor.
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Instead, a more promising solution lies in the augmentation of
datasets through the generation of synthetic faulty component
data with Deep Generative Models (DGMs) [9].

DGMs have seen remarkable advances in recent years, and
have revolutionized the field of generative AI by effectively
learning to capture complex data distributions and imple-
menting high-fidelity sampling from them. In this context,
most modern approaches leveraging diffusion-based and flow-
based models have almost overnight become the most relevant
approaches in many use cases – starting from image and
video generation. However, Generative Adversarial Networks
(GANs) arguably remain the best approach for the generation
of tabular data [10]–[12], both in terms of sample fidelity and
of performance at the training and at the inference levels.

In addition, since manufacturing processes exhibit char-
acteristics that change over time, ML models need to be
continuously re-evaluated and periodically re-trained. The de-
ployment of a newly trained GAN typically results in enhanced
performance capabilities, necessitating the retraining of the
associated ML model with data generated by the improved
fresh GAN. This requirement underscores the need for a
more effective process management approach. By ensuring
that the ML model is trained with the most recent data, its
accuracy and applicability to the current manufacturing context
are maintained, thereby aligning with the evolving industrial
demands. On top of that, the progression of any ML project
from a proof of concept to production is often impeded by the
absence of DevOps and MLOps expertise [13].

This paper investigates the adoption of GAN-based syn-
thetic data generation and the realization of a robust MLOps
platform in the context of a real and challenging industrial
use case. We present a comprehensive solution specifically
designed for the gearbox assembly and testing line of the
Bonfiglioli EVO plant, but broadly applicable to any real-
world industrial use case. Our solution improves Bonfiglioli’s
production line by introducing an ML-based pre-testing phase,
that serves as an early filter to identify defects, thereby
conserving resources and energy that would be otherwise used
in the expensive testing phase for likely faulty gearboxes. By
leveraging GAN-based synthetic generation of faulty gearbox
data, our solution overcomes the low-performance issues typi-
cally exhibited by classifiers trained with imbalanced datasets.
This would lead to significant cost savings other than improv-
ing time efficiency and throughput of the assembly line.

More specifically, the paper demonstrates the effectiveness
of DGMs, and GANs in particular, in overcoming challenges
associated with data scarcity and imbalance through synthetic
data generation. We achieved significant improvements in
classifier performance using Wasserstein GANs (WGANs)
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and Conditional GANs (CTGANs). Compared to the baseline
classifier trained on the original dataset, these approaches
yielded a 6-point increase in F1-Score and a nearly 12-point
improvement in F2-Score. The larger improvement in F2-
Score is particularly important for our task of detecting broken
gearboxes, as it reduces False Negatives. At the same time, our
MLOps platform based on KubeFlow and KServe is capable
of serving 200 requests per second thus satisfying – and
significantly surpassing – the performance requirements of the
use case for the performance of trained ML models.

II. BACKGROUND AND RELATED WORK

In the last decade, data has been seen as the key driver
of progress across various industries, emphasizing its role in
sparking new ideas, insights, products, and better decision-
making. This aligns with the vision of Clive Humby’s, who
stated in 2006 that "data is the new fuel," highlighting the
need for vast amounts of high-quality information for progress
and efficiency. Additionally, thanks to the insights gained from
recent deep learning approaches, the extensive data collected
from industrial plant sensors has emerged as the predominant
driving force. However, as contemporary data-driven and ML-
powered applications begin to emerge in various industries
the reliance on substantial, high-quality data is essential.
Challenges such as data incompleteness, poor quality, and
inadequate quantity can pose significant obstacles [14]. To
address this issue various solutions can be found in literature,
including data-generation techniques [15].

A. Generative Adversarial Networks (GANs)

Generative AI has been demonstrated to be a revolutionary
field, especially with the introduction of Deep Generative
Models (DGM). These state-of-the-art models, which originate
from the fusion of generative algorithms and deep learning,
have the great capabilities to generate new, realistic data
samples that replicate the features and patterns of the training
data, called synthetic data. There are several architectural de-
signs of DGMs, such as GANs and Variational Autoencoders,
Energy-based models, Autoregressive models, and Diffusion
models. They stand out with their ability to generate data that
closely mirrors real-world data distributions. In essence, the
objective of training DGM is to grasp an unknown probability
distribution from a typically limited number of independent
and identically distributed samples. Upon successful training,
DGM can be employed to assess the likelihood of a given
sample and generate new samples resembling those from the
unknown distribution. [12]

In recent years, the popularity of Diffusion models has
surged due to their ability to generate samples of excellent
quality, especially in image generation. However, GANs still
remain the reference solution for generating tabular data [10]–
[12]. Initially introduced by Goodfellow et al. [16] leveraging
game theory concepts, GANs are based on 2 networks the
Generator and the Discriminator. The generator learns the
data distribution through unsupervised learning to produce au-
thentic adversarial samples. Simultaneously, the Discriminator
distinguishes between real and synthetic (generated) samples.

The learning process involves iterative updates to both the
generator and the discriminator. The generator function pro-
duces samples from noise input, while the discriminator tries
to distinguish real samples from the synthetic samples.

The peculiar architecture of GANs allows them to efficiently
generate data that closely mimic real examples [17]. The
use of a neural network to model the loss function allows
GAN-based models to have a lower number of parameters
compared to other DGMs, with significant advantages in terms
of higher data sampling speed and low training time [9].
The GAN capability to generate data concurrently, rather than
sequentially, also enhances their speed, making them more
applicable and effective in real-world scenarios. The lower
computational demand and high efficiency of GANs make
them a powerful and efficient tool for creating high-quality
data, that is fundamental in Industry 5.0.

Many types of GANs have been introduced in literature
such as Deep Convolutional GAN, Conditional GAN, Pix2Pix
GAN, Cycle GAN, and others [17]. One of the most inter-
esting variants is the Wasserstein GAN (WGAN), introduced
by Arjovsky et al. in 2017 [18]. WGAN proposes a new
cost function using the Wasserstein distance, also known as
the Earth mover’s distance, which is used to measure the
distance between two probability distributions. This makes
the training of WGANs generally much more stable than that
of traditional GANs and significantly reduces the occurrence
of the mode collapse phenomenon that usually makes GANs
overfit on a specific class of data and therefore, preventing
it from generating samples that belong to the targeted class.
The Wasserstein loss also provides a more meaningful measure
of convergence and thus more useful insights into generator
performance. Structurally, the network remains largely the
same, except that the activation function of the discriminator’s
output layer is replaced with a linear function instead of a
Sigmoid function.

In addition to WGAN, another GAN-based generative
model that has shown great potential is the Conditional
Tabular GAN (CTGAN) [19], which is specifically designed
to generate synthetic tabular data. CTGANs are also designed
to reduce the mode collapse phenomena [20]. For this reason,
CTGAN is particularly suited for use cases affected by data
scarcity. CTGAN innovatively introduces a ’mode-specific
normalization’ technique for processing continuous features.
This approach involves treating each feature independently.
Firstly, a variational Gaussian mixture model is fitted to the
feature. Subsequently, normalization of each value within the
feature is performed using the mean and variance of the corre-
sponding Gaussian component from the mixture. Furthermore,
CTGAN modifies the GAN’s loss function to enhance the
generation of categorical features. This modification includes
an additional term in the loss function: the cross-entropy
between the one-hot encoding of the input and that of the
generated data. This adjustment aids in conditioning the output
of the categorical features, ensuring higher fidelity in the
synthesized data. Another novelty introduced by the CTGAN
is the Training-by-Sampling process, focusing on replicating
the original dataset’s feature distribution through strategic data
sampling and conditional vector construction [20].
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ployment of a newly trained GAN typically results in enhanced
performance capabilities, necessitating the retraining of the
associated ML model with data generated by the improved
fresh GAN. This requirement underscores the need for a
more effective process management approach. By ensuring
that the ML model is trained with the most recent data, its
accuracy and applicability to the current manufacturing context
are maintained, thereby aligning with the evolving industrial
demands. On top of that, the progression of any ML project
from a proof of concept to production is often impeded by the
absence of DevOps and MLOps expertise [13].

This paper investigates the adoption of GAN-based syn-
thetic data generation and the realization of a robust MLOps
platform in the context of a real and challenging industrial
use case. We present a comprehensive solution specifically
designed for the gearbox assembly and testing line of the
Bonfiglioli EVO plant, but broadly applicable to any real-
world industrial use case. Our solution improves Bonfiglioli’s
production line by introducing an ML-based pre-testing phase,
that serves as an early filter to identify defects, thereby
conserving resources and energy that would be otherwise used
in the expensive testing phase for likely faulty gearboxes. By
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data, our solution overcomes the low-performance issues typi-
cally exhibited by classifiers trained with imbalanced datasets.
This would lead to significant cost savings other than improv-
ing time efficiency and throughput of the assembly line.

More specifically, the paper demonstrates the effectiveness
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data generation. We achieved significant improvements in
classifier performance using Wasserstein GANs (WGANs)
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gearboxes, as it reduces False Negatives. At the same time, our
MLOps platform based on KubeFlow and KServe is capable
of serving 200 requests per second thus satisfying – and
significantly surpassing – the performance requirements of the
use case for the performance of trained ML models.

II. BACKGROUND AND RELATED WORK

In the last decade, data has been seen as the key driver
of progress across various industries, emphasizing its role in
sparking new ideas, insights, products, and better decision-
making. This aligns with the vision of Clive Humby’s, who
stated in 2006 that "data is the new fuel," highlighting the
need for vast amounts of high-quality information for progress
and efficiency. Additionally, thanks to the insights gained from
recent deep learning approaches, the extensive data collected
from industrial plant sensors has emerged as the predominant
driving force. However, as contemporary data-driven and ML-
powered applications begin to emerge in various industries
the reliance on substantial, high-quality data is essential.
Challenges such as data incompleteness, poor quality, and
inadequate quantity can pose significant obstacles [14]. To
address this issue various solutions can be found in literature,
including data-generation techniques [15].

A. Generative Adversarial Networks (GANs)

Generative AI has been demonstrated to be a revolutionary
field, especially with the introduction of Deep Generative
Models (DGM). These state-of-the-art models, which originate
from the fusion of generative algorithms and deep learning,
have the great capabilities to generate new, realistic data
samples that replicate the features and patterns of the training
data, called synthetic data. There are several architectural de-
signs of DGMs, such as GANs and Variational Autoencoders,
Energy-based models, Autoregressive models, and Diffusion
models. They stand out with their ability to generate data that
closely mirrors real-world data distributions. In essence, the
objective of training DGM is to grasp an unknown probability
distribution from a typically limited number of independent
and identically distributed samples. Upon successful training,
DGM can be employed to assess the likelihood of a given
sample and generate new samples resembling those from the
unknown distribution. [12]

In recent years, the popularity of Diffusion models has
surged due to their ability to generate samples of excellent
quality, especially in image generation. However, GANs still
remain the reference solution for generating tabular data [10]–
[12]. Initially introduced by Goodfellow et al. [16] leveraging
game theory concepts, GANs are based on 2 networks the
Generator and the Discriminator. The generator learns the
data distribution through unsupervised learning to produce au-
thentic adversarial samples. Simultaneously, the Discriminator
distinguishes between real and synthetic (generated) samples.

The learning process involves iterative updates to both the
generator and the discriminator. The generator function pro-
duces samples from noise input, while the discriminator tries
to distinguish real samples from the synthetic samples.

The peculiar architecture of GANs allows them to efficiently
generate data that closely mimic real examples [17]. The
use of a neural network to model the loss function allows
GAN-based models to have a lower number of parameters
compared to other DGMs, with significant advantages in terms
of higher data sampling speed and low training time [9].
The GAN capability to generate data concurrently, rather than
sequentially, also enhances their speed, making them more
applicable and effective in real-world scenarios. The lower
computational demand and high efficiency of GANs make
them a powerful and efficient tool for creating high-quality
data, that is fundamental in Industry 5.0.

Many types of GANs have been introduced in literature
such as Deep Convolutional GAN, Conditional GAN, Pix2Pix
GAN, Cycle GAN, and others [17]. One of the most inter-
esting variants is the Wasserstein GAN (WGAN), introduced
by Arjovsky et al. in 2017 [18]. WGAN proposes a new
cost function using the Wasserstein distance, also known as
the Earth mover’s distance, which is used to measure the
distance between two probability distributions. This makes
the training of WGANs generally much more stable than that
of traditional GANs and significantly reduces the occurrence
of the mode collapse phenomenon that usually makes GANs
overfit on a specific class of data and therefore, preventing
it from generating samples that belong to the targeted class.
The Wasserstein loss also provides a more meaningful measure
of convergence and thus more useful insights into generator
performance. Structurally, the network remains largely the
same, except that the activation function of the discriminator’s
output layer is replaced with a linear function instead of a
Sigmoid function.

In addition to WGAN, another GAN-based generative
model that has shown great potential is the Conditional
Tabular GAN (CTGAN) [19], which is specifically designed
to generate synthetic tabular data. CTGANs are also designed
to reduce the mode collapse phenomena [20]. For this reason,
CTGAN is particularly suited for use cases affected by data
scarcity. CTGAN innovatively introduces a ’mode-specific
normalization’ technique for processing continuous features.
This approach involves treating each feature independently.
Firstly, a variational Gaussian mixture model is fitted to the
feature. Subsequently, normalization of each value within the
feature is performed using the mean and variance of the corre-
sponding Gaussian component from the mixture. Furthermore,
CTGAN modifies the GAN’s loss function to enhance the
generation of categorical features. This modification includes
an additional term in the loss function: the cross-entropy
between the one-hot encoding of the input and that of the
generated data. This adjustment aids in conditioning the output
of the categorical features, ensuring higher fidelity in the
synthesized data. Another novelty introduced by the CTGAN
is the Training-by-Sampling process, focusing on replicating
the original dataset’s feature distribution through strategic data
sampling and conditional vector construction [20].
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However, the presence of misclassified examples in the
training set could impact the CTGAN generation performance.
Since CTGANs are designed to condition the generator’s
output, their process can be adversely affected by biases and
inaccuracies stemming from these misclassified data points in
the original dataset. As a result, CTGANs may learn to gener-
ate an increased number of false positives and negatives. This
highlights the importance of clean and accurately classified
training data for the effective functioning of CTGANs.

B. Machine Learning Operations (MLOps)

MLOps is a relatively new discipline that emerged when
machine learning models began to be deployed in production
environments. It can be seen as a specialization of DevOps,
which focuses on software development principles and prac-
tices. However, MLOps is specifically oriented towards the
automation of ML workflows. [21]. A cardinal aspect is
automation where possible because automating an end-to-end
ML pipeline helps avoid manual tasks and reduces delays [22].
However, there also could be some manual steps and tasks
to be done. For example, when the model performance goes
down, below a certain threshold, a retraining process is trig-
gered and as a result, a specialized ML engineer could decide
whether to approve the update for the deployment. Another
crucial MLOps aspect is the guarantee of reproducibility and
repeatability of the experiments other than versioning of the
models, code, and data [21].

In literature it is possible to find various works on the
ML life-cycles [23], [24] but some activities are consistently
mentioned. These common activities include data engineering,
model engineering, operations, and support tools, as detailed
by Faubel et al. [25]. Firstly, data engineering comprises
activities that are exclusively related to data like data collec-
tion, analysis, and preparation. Secondly, model engineering
refers to all the steps that serve to create a model. This step
includes activities like model building, training, evaluation,
selection, and packaging. All the activities mentioned before
can be either performed manually or in an automated way. The
operations part aims to maintain the quality of the model in a
real-world scenario. Operations include continuous integration
and continuous deployment (CI/CD), model testing, deploy-
ment, and monitoring. Lastly, support tools provide services
like versioning, infrastructure management, and automation.
Infrastructure management is a key component of an MLOps
system and must address various challenges. These challenges
include the heterogeneity of both hardware (CPUs, GPUs,
etc.) and software (operating systems, ML modules, libraries,
etc.), the lack of standards due to costly legacy machines and
their inability to communicate with newer systems, resource
management, which involves the efficient allocation and uti-
lization of computational resources to optimize performance
and cost, and scalability, as the infrastructure must expand
to accommodate the increasing size and complexity of ML
models [25].

In greater detail, an MLOps pipeline necessitates various
technical components, as detailed in work by Kreuzberger et
al. [21]. This comprehensive list includes certain ML-related

components such as a feature store, a model registry, and a
metadata store. Moreover, to adhere to CI/CD principles, a
source code repository and a CI/CD component are required.
Furthermore, to enable automated workflow (pipeline) an or-
chestration component is essential. Lastly, it is usually needed
to include a model serving component and an infrastructure
orchestrator. In particular, the infrastructure orchestrator plays
a crucial role in providing the required computation resources.
Depending on the level of automation of an MLOps pipeline
application, it can be classified using MLOps maturity models.
The most widely used are those developed by Google and
Microsoft. Google’s model comprises three levels. Starting
from 0 denoting no automation, progressing to level 1 with ML
pipeline automation, and culminating at level 2, with CI/CD
Pipeline automation. [26]. In contrast, the Microsoft model
consists of five levels and its structure includes both MLOps
and DevOps aspects.

Today, MLOps in Industry 4.0 still is in the initial adoption
phase, as highlighted by Faubel et al. in [25] but the develop-
ment and use of AI in the various branches are increasing ex-
ponentially [27]. This is particularly evident when considering
small and medium-sized enterprises (SMEs) that have recently
embarked on their digital transition journey or find themselves
in the middle of a transition phase [4]. Notably, SMEs often
struggle with a limited IT workforce and insufficient expertise
in the ML sector, as well as limited financial resources
to effectively build ML-powered applications. Therefore, it
is crucial to choose a suitable strategy. Adopting Google’s
MLOps level one may introduce unnecessary complexity and
a steep learning curve for these businesses. Moreover, the
physical nature of the production environment introduces
additional challenges and constraints, such as safety concerns
as illustrated in [13]. As a pragmatic alternative, SMEs may
benefit more from a lower level of automation that prioritizes
simplicity, aligning better with their operational capacity and
limited skill sets. Considering that SMEs represent 99% of
all businesses in the EU as refereed by the “Annual Report
on European SMEs 2022/2023” published by the European
Union, developing an approachable set of standards and best
practices could have a significant societal impact in a relatively
short time.

III. BONFIGLIOLI INDUSTRIAL USE CASE

Bonfiglioli (https://bonfiglioli.com) is a leading manufactur-
ing company that designs and manufactures a wide range of
gear motors, drive systems, planetary gear motors, reducers,
and inverters with over 130 years of experience. Bonfiglioli is
increasingly adhering to Industry 5.0 best practices, and imple-
menting efficient and environmentally sustainable processes.

Within the wide range of manufacturing lines that Bon-
figlioli is running, and constantly improving, the gearbox
assembly and testing line located in the EVO Plant represents
a particularly interesting one. This line utilizes sophisticated
machinery for automated precision assembly and thorough
testing processes. The assembly line is composed of three
workstations (WS) as illustrated in Fig. 1. WS1 - Differential
Assembly is responsible for the assembly of the differential
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part of the gearbox. It collects data on insertion forces and
tightening torque. WS2 - Gearbox Assembly similarly en-
gages in the assembly process, here focusing on the entire
gearbox. It gathers data on insertion forces and tightening
torque, akin to the WS1 station. WS3 - End-of-Line Testing
is the last station of the plant, which receives the assembled
gearbox and implements the testing phase.

In turn, WS3 consists of two distinct machines. The first
one is dedicated to generating cycle data through specific
stress tests on the component under examination. This involves
conducting two phases of static analysis at 800 revolutions
per minute (RPM) and two phases of ramp analysis at 11,000
RPM. These tests are critical for assessing the component’s
performance under varying operational conditions. Concur-
rently, a second machine operates to monitor vibrational data.
This machine is specifically tasked with tracking vibration
levels as various RPM thresholds are surpassed. The data
collected from this machine is crucial for understanding the
vibrational characteristics of the component under different
operational speeds, which is vital for ensuring its reliability
and structural integrity.

To further improve the efficiency of the Bonfiglioli EVO
gearbox assembly and testing line, the manufacturing process
has been extended by integrating a pretesting phase, positioned
between WS2 and WS3, that offers substantial benefits in
enhanced sustainability and reduced costs. The pretesting
phase serves as an early filter to identify defects, thereby
conserving resources and energy that would be otherwise used
in the more expensive final testing phase. It aids in minimizing
waste by detecting quality issues at an earlier stage, allowing
for rectification or recycling before extensive testing. Not only
do the added early quality checks ensure higher overall product
quality, aligning with sustainable manufacturing practices by
reducing environmental impact, an aspect increasingly vital in
today’s market, but they also improve the overall good output
of the assembly line. The realization of an effective pretesting
phase requires addressing the issue of training an accurate
classifier using an imbalanced dataset collected from the WS1
and WS2 machines. At the same time, there is the need to
design and develop an MLOps platform capable of deploying,
running, monitoring, and managing and updating ML models.

The dataset collected from WS1 and WS2 is centered
around two processes: tightening torques and press-fit forces.
The roughly 700 metrics contained by the dataset are critical as
they directly impact the assembled gearbox’s functionalities.
An accurate and multi-step evaluation process, conducted in
collaboration with domain experts, has led to the identification
and prioritization of 66 key features deemed most influential
on the gearbox’s final performance and readiness. Based on
these input features and the output of the tested gearboxes
from the WS3 testing machine, we managed to construct the
final dataset used to to train the ML pretest classifier.

However, naively training a classifier using the imbalanced
dataset led to suboptimal performance. More specifically,
using a logistic regression model we obtained a relatively
high number of False Negatives, as discussed in Section IV-B.
To address this issue, we designed a GAN-based synthetic
generator for faulty component data.

Fig. 1: Bonfiglioli gearbox assembly line at the EVO plant.

A. Design of GAN-based Synthetic Data Generation

Like with all artificial neural network-based solutions, the
model architecture represents a critically important factor for
the effectiveness of Generative Adversarial Networks (GANs).
Model architecture design involves many decisions, starting
from the number of layers and the number of neurons in
each layer for both the Generator and Discriminator networks,
as well as the activation function, the possible adoption of
regularization constraints, the tuning of hyperparameters, etc. –
all factors that can significantly affect a model’s performance.
Hence, employing an automated tool for the training process of
a GAN can markedly improve its effectiveness, making such
a tool an essential aid for practitioners.

In this specific case, Optuna (https://optuna.readthedocs.io/)
was employed to systematically search for the optimal con-
figuration of architecture and hyperparameters. For example,
aspects such as the number of layers in each network, the
number of neurons in each layer, the size of the input noise
vector, the number of training epochs, and the size of the
training batch are defined using the capabilities of the opti-
mizer. Specifically, Optuna requires upper and lower bounds
for the hyperparameter search space and, based on an objective
function that needs to be minimized (or maximized), the search
for the optimal combination of hyperparameters is done by
selecting one of various heuristics given at the disposition of
the users of Optuna. The parametric model of the GAN at
hand has been specified and passed to Optuna as follows: The
generator is composed of an input layer of the same size as the
noise, which ∈ [10, 500], 𝑁𝑁 hidden layers with 𝑁𝑁 ∈ [1, 5], and
many neurons in each layer that ∈ [32, 512]. The activation
function chosen for each hidden layer is LeakyReLU, to
avoid the dying ReLU phenomenon, where neurons become
inactive and stop learning, effectively rendering them useless
by causing the gradient to become zero. The output layer, on
the other hand, has a size equal to the number of features in
the dataset, as it is required to produce synthetic output data.
The activation function for the output layer is Tanh, suitable
as the dataset is initially normalized between -1 and 1. As for
the optimizer, RMSProp has been selected, as often proposed
in literature due its adaptive Learning Rate, Convergence
Speed and stability even on very nonstationary problems [18].
Regarding the discriminator, the only changes are in the input
layer, which has a size equal to the number of features in
the data, as its function is to receive input data and decide
whether it is synthetic or not. The output layer has a size of 1
and utilizes a linear activation function. Regarding the training,

Fig. 1: Bonfiglioli gearbox assembly line at the EVO plant.
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each layer for both the Generator and Discriminator networks,
as well as the activation function, the possible adoption of
regularization constraints, the tuning of hyperparameters, etc. –
all factors that can significantly affect a model’s performance.
Hence, employing an automated tool for the training process of
a GAN can markedly improve its effectiveness, making such
a tool an essential aid for practitioners.

In this specific case, Optuna (https://optuna.readthedocs.io/)
was employed to systematically search for the optimal con-
figuration of architecture and hyperparameters. For example,
aspects such as the number of layers in each network, the
number of neurons in each layer, the size of the input noise
vector, the number of training epochs, and the size of the
training batch are defined using the capabilities of the opti-
mizer. Specifically, Optuna requires upper and lower bounds
for the hyperparameter search space and, based on an objective
function that needs to be minimized (or maximized), the search
for the optimal combination of hyperparameters is done by
selecting one of various heuristics given at the disposition of
the users of Optuna. The parametric model of the GAN at
hand has been specified and passed to Optuna as follows: The
generator is composed of an input layer of the same size as the
noise, which ∈ [10, 500], 𝑁𝑁 hidden layers with 𝑁𝑁 ∈ [1, 5], and
many neurons in each layer that ∈ [32, 512]. The activation
function chosen for each hidden layer is LeakyReLU, to
avoid the dying ReLU phenomenon, where neurons become
inactive and stop learning, effectively rendering them useless
by causing the gradient to become zero. The output layer, on
the other hand, has a size equal to the number of features in
the dataset, as it is required to produce synthetic output data.
The activation function for the output layer is Tanh, suitable
as the dataset is initially normalized between -1 and 1. As for
the optimizer, RMSProp has been selected, as often proposed
in literature due its adaptive Learning Rate, Convergence
Speed and stability even on very nonstationary problems [18].
Regarding the discriminator, the only changes are in the input
layer, which has a size equal to the number of features in
the data, as its function is to receive input data and decide
whether it is synthetic or not. The output layer has a size of 1
and utilizes a linear activation function. Regarding the training,
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Fig. 2 illustrates the data augmentation workflow using
WGAN. The goal was to generate examples belonging to
the minority class. For this reason, the workflow includes
WGAN training, data generation and filtering steps. The latter
is needed due to the presence of mislabeled examples in the
training set and the WGAN’s poor performance in generating
categorical data. In detail, the steps are the following:

1) From the parametrically defined model, hyperparameter
optimization is performed, minimizing the objective
function.

2) The WGAN that achieves the minimum value of the
objective function is stored in the Model Registry.

3) The best performing WGAN is used to generate a
synthetic dataset much larger than the original one

4) A K-means model is trained on the original dataset to
identify the centroids of two clusters, which presumably
correspond to the two classes of gearboxes: ‘good’ and
‘broken’.

5) Once the centroid of the minority class is identified,
the synthetic data are filtered measuring the Euclidean
distance between each example of the minority class
centroid. Empirically, it has been found that even a sim-
ple approach such as the Euclidean distance has given
good results. This process retains at least 𝑁𝑁 example
less distant than 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 from the centroid. 𝑁𝑁 represents
the difference between the number of examples in the
majority and minority classes in the original dataset,
and 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 is the empirically chosen maximum distance
a point can have from the centroid to be classified as
belonging to the minority class.

6) The synthetic filtered data is used to balance the initial
dataset.

Moreover, for comparison purposes, we tested a second
straightforward GAN-based model, called. CTGAN. It was
configured specifically to generate examples belonging to the
minority class. Specifically, were used the Synthetic Data Vault
(SDV) [28] CTGAN implementation. SDV is a comprehensive
Python library tailored for generating tabular synthetic data
and offers various synthesizers including the CTGAN model.

B. Kubeflow

We implemented the MLOps platform on top of Kubeflow
(https://kubeflow.org/), an MLOps framework developed and
maintained by Google. Kubeflow aims to make it easier for
organizations to develop, deploy, and manage ML workloads.
Kubeflow includes Katib for hyper-parameters tuning, KServe
for model serving, Jupyter Hub, and Kubeflow pipeline. It is
possible to interact with these features through a web-based
GUI. Due to Kubeflow’s architecture, which is micro-services
oriented and based on Kubernetes, it can be seamlessly in-
tegrated with other software components operating on top of
Kubernetes. In addition, Kubeflow can be installed in every
cloud or a local single-node Kubernetes cluster.

Using Kubeflow Pipelines (KFP) [29] it becomes possible
to build and execute portable and scalable ML workflows.
A pipeline is represented as a Directed Acyclical Graph,
where each node is a component. At runtime, each compo-
nent execution corresponds to a single container. Components
can be exported for later use, in YAML format. This way,
components are highly portable and facilitate code reuse.
Pipelines are programmable using KFP SDK that lets easily
convert a Python function into a container component using
a simple Domain Specific Language. Another way to create a
component is by using a custom Docker image, permitting the
inclusion of different programming languages in the pipeline.
From the pipeline SDK users can define, save, and execute
pipelines. This allows triggering execution programmatically,
enabling continuous training strategy. Kubeflow, also, provides
a simple method to pass data between each step using its
artifact store. An artifact is every object created during the
execution. For example, an artifact could be a dataset or a set
of metrics. For each artifact, metadata information is saved
in a MySQL database, while the object is saved in a MinIO
object-store. Therefore, the artifact store uses both MySQL
and MinIO as backends.

C. MLOps Pipeline Implementation

1) Runtime Environment: For all of these reasons and
the features stated above, Kubeflow has been chosen as the
MLOps framework for testing deployment. The decision was
made to deploy Kubeflow using raw manifests on a Kubernetes
single-node cluster. Specifically, the Kubernetes environment
chosen was MicroK8s, favored for its straightforward instal-
lation process and valuable add-ons. The Kubernetes node
utilized was configured with 16 virtual CPUs, 32GB of RAM,
and 50GB of storage memory.

2) Kubeflow Pipeline: The ML pipeline is implemented via
KFP version 2, leveraging the Python KFP SDK. The pipeline
is made of various components, as illustrated in Fig. 3. The
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Fig. 2 illustrates the data augmentation workflow using
WGAN. The goal was to generate examples belonging to
the minority class. For this reason, the workflow includes
WGAN training, data generation and filtering steps. The latter
is needed due to the presence of mislabeled examples in the
training set and the WGAN’s poor performance in generating
categorical data. In detail, the steps are the following:
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optimization is performed, minimizing the objective
function.
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a point can have from the centroid to be classified as
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Moreover, for comparison purposes, we tested a second
straightforward GAN-based model, called. CTGAN. It was
configured specifically to generate examples belonging to the
minority class. Specifically, were used the Synthetic Data Vault
(SDV) [28] CTGAN implementation. SDV is a comprehensive
Python library tailored for generating tabular synthetic data
and offers various synthesizers including the CTGAN model.

B. Kubeflow

We implemented the MLOps platform on top of Kubeflow
(https://kubeflow.org/), an MLOps framework developed and
maintained by Google. Kubeflow aims to make it easier for
organizations to develop, deploy, and manage ML workloads.
Kubeflow includes Katib for hyper-parameters tuning, KServe
for model serving, Jupyter Hub, and Kubeflow pipeline. It is
possible to interact with these features through a web-based
GUI. Due to Kubeflow’s architecture, which is micro-services
oriented and based on Kubernetes, it can be seamlessly in-
tegrated with other software components operating on top of
Kubernetes. In addition, Kubeflow can be installed in every
cloud or a local single-node Kubernetes cluster.

Using Kubeflow Pipelines (KFP) [29] it becomes possible
to build and execute portable and scalable ML workflows.
A pipeline is represented as a Directed Acyclical Graph,
where each node is a component. At runtime, each compo-
nent execution corresponds to a single container. Components
can be exported for later use, in YAML format. This way,
components are highly portable and facilitate code reuse.
Pipelines are programmable using KFP SDK that lets easily
convert a Python function into a container component using
a simple Domain Specific Language. Another way to create a
component is by using a custom Docker image, permitting the
inclusion of different programming languages in the pipeline.
From the pipeline SDK users can define, save, and execute
pipelines. This allows triggering execution programmatically,
enabling continuous training strategy. Kubeflow, also, provides
a simple method to pass data between each step using its
artifact store. An artifact is every object created during the
execution. For example, an artifact could be a dataset or a set
of metrics. For each artifact, metadata information is saved
in a MySQL database, while the object is saved in a MinIO
object-store. Therefore, the artifact store uses both MySQL
and MinIO as backends.

C. MLOps Pipeline Implementation

1) Runtime Environment: For all of these reasons and
the features stated above, Kubeflow has been chosen as the
MLOps framework for testing deployment. The decision was
made to deploy Kubeflow using raw manifests on a Kubernetes
single-node cluster. Specifically, the Kubernetes environment
chosen was MicroK8s, favored for its straightforward instal-
lation process and valuable add-ons. The Kubernetes node
utilized was configured with 16 virtual CPUs, 32GB of RAM,
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KFP version 2, leveraging the Python KFP SDK. The pipeline
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Fig. 2 illustrates the data augmentation workflow using
WGAN. The goal was to generate examples belonging to
the minority class. For this reason, the workflow includes
WGAN training, data generation and filtering steps. The latter
is needed due to the presence of mislabeled examples in the
training set and the WGAN’s poor performance in generating
categorical data. In detail, the steps are the following:

1) From the parametrically defined model, hyperparameter
optimization is performed, minimizing the objective
function.

2) The WGAN that achieves the minimum value of the
objective function is stored in the Model Registry.

3) The best performing WGAN is used to generate a
synthetic dataset much larger than the original one

4) A K-means model is trained on the original dataset to
identify the centroids of two clusters, which presumably
correspond to the two classes of gearboxes: ‘good’ and
‘broken’.

5) Once the centroid of the minority class is identified,
the synthetic data are filtered measuring the Euclidean
distance between each example of the minority class
centroid. Empirically, it has been found that even a sim-
ple approach such as the Euclidean distance has given
good results. This process retains at least 𝑁𝑁 example
less distant than 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 from the centroid. 𝑁𝑁 represents
the difference between the number of examples in the
majority and minority classes in the original dataset,
and 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 is the empirically chosen maximum distance
a point can have from the centroid to be classified as
belonging to the minority class.

6) The synthetic filtered data is used to balance the initial
dataset.

Moreover, for comparison purposes, we tested a second
straightforward GAN-based model, called. CTGAN. It was
configured specifically to generate examples belonging to the
minority class. Specifically, were used the Synthetic Data Vault
(SDV) [28] CTGAN implementation. SDV is a comprehensive
Python library tailored for generating tabular synthetic data
and offers various synthesizers including the CTGAN model.

B. Kubeflow

We implemented the MLOps platform on top of Kubeflow
(https://kubeflow.org/), an MLOps framework developed and
maintained by Google. Kubeflow aims to make it easier for
organizations to develop, deploy, and manage ML workloads.
Kubeflow includes Katib for hyper-parameters tuning, KServe
for model serving, Jupyter Hub, and Kubeflow pipeline. It is
possible to interact with these features through a web-based
GUI. Due to Kubeflow’s architecture, which is micro-services
oriented and based on Kubernetes, it can be seamlessly in-
tegrated with other software components operating on top of
Kubernetes. In addition, Kubeflow can be installed in every
cloud or a local single-node Kubernetes cluster.

Using Kubeflow Pipelines (KFP) [29] it becomes possible
to build and execute portable and scalable ML workflows.
A pipeline is represented as a Directed Acyclical Graph,
where each node is a component. At runtime, each compo-
nent execution corresponds to a single container. Components
can be exported for later use, in YAML format. This way,
components are highly portable and facilitate code reuse.
Pipelines are programmable using KFP SDK that lets easily
convert a Python function into a container component using
a simple Domain Specific Language. Another way to create a
component is by using a custom Docker image, permitting the
inclusion of different programming languages in the pipeline.
From the pipeline SDK users can define, save, and execute
pipelines. This allows triggering execution programmatically,
enabling continuous training strategy. Kubeflow, also, provides
a simple method to pass data between each step using its
artifact store. An artifact is every object created during the
execution. For example, an artifact could be a dataset or a set
of metrics. For each artifact, metadata information is saved
in a MySQL database, while the object is saved in a MinIO
object-store. Therefore, the artifact store uses both MySQL
and MinIO as backends.

C. MLOps Pipeline Implementation

1) Runtime Environment: For all of these reasons and
the features stated above, Kubeflow has been chosen as the
MLOps framework for testing deployment. The decision was
made to deploy Kubeflow using raw manifests on a Kubernetes
single-node cluster. Specifically, the Kubernetes environment
chosen was MicroK8s, favored for its straightforward instal-
lation process and valuable add-ons. The Kubernetes node
utilized was configured with 16 virtual CPUs, 32GB of RAM,
and 50GB of storage memory.

2) Kubeflow Pipeline: The ML pipeline is implemented via
KFP version 2, leveraging the Python KFP SDK. The pipeline
is made of various components, as illustrated in Fig. 3. The
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initial component retrieves the latest version of the dataset
stored in a CSV file from a Kubernetes volume and transfers
it to Kubeflow’s artifact store for subsequent utilization. This
step is also responsible for acquiring the pre-trained GAN.
The serialized GAN can be stored in the same volume as
the dataset, or a specialized model registry, such as Mlflow.
The adoption of a model registry offers many advantages, in-
cluding decoupling the GAN development processes from the
classifier training phase. Subsequently, the dataset undergoes
preprocessing where the meaningless features are deleted and
inputs are separated from outputs. Concurrently, the newest
GAN available in the model registry is retrieved and used to
generate a synthetic dataset. The synthetic dataset is filtered
to keep only the examples belonging to the minority class and
is used to balance the real dataset.

In the subsequent steps, the classifier, specifically a Logistic
Regression model (LogReg), is trained on the enriched and
balanced dataset. LogReg was specifically chosen for its
inherently interpretable nature which is of great importance for
manufacturing applications that require thoroughly evaluating
and possibly certifying decision-making elements. However,
other ML classifiers, including Decision Trees, Support Vector
Machines, Gradient Boosting Machines, etc., could be used.
After the training the model undergoes evaluation, and metrics
are exported for comparative analysis through the Kubeflow
dashboard. As a final step, the model is deployed into pro-
duction using Kubeflow’s built-in serving framework: KServe
(https://kserve.github.io). KServe offers a Kubernetes Custom
Resource Definition to enable out-of-the-box deployment of
trained models onto various widely used serving runtimes,
such as TFServing, TorchServe, Triton, and many others.

A scikit-learn inference service has been deployed using
the KServe Python SDK. The predictor is configured with a
minimum and a maximum number of replicas set at, respec-
tively, 1 and 10. Additionally, constraints for the predictor pod
resources have been defined, limiting it to use 0.5 CPU and 0.5
GB of memory. Finally, as shown in Fig. 3, the model can be
saved in the model registry, to prepare it for subsequent utiliza-
tion. This practice serves several purposes, including tracking
the model and facilitating further evaluation. Additionally, the
stored model can be deployed into production at a later stage.

(a) WGAN (b) CTGAN

Fig. 4: Original data and synthetic data plotted after the
reduction to 2 dimensions with PCA.

IV. EXPERIMENTAL EVALUATION

Let us demonstrate how WGAN and CTGAN adoption
can improve the performance of the pre-testing phase in the
Bonfiglioli assembly line.

A. GANs Performance

Starting with a visual comparison of the synthetic data
generated by the two trained GANs. Fig. 4 illustrates this
relationship. To create this visualization comparison, Dimen-
sionality Reduction was employed. In detail, the Principal
Component Analysis (PCA) algorithm was used to reduce the
dimensionality of the dataset from 66 features which were
heavily cleaned into 2 dimensions. The PCA has managed to
create 2 distinct clusters, the left one is denser presenting the
good gearboxes while the right cluster represents the broken
gearboxes. For Both WGAN and CTGAN, We can observe
the positioning of the synthetic data and the original data.
We can observe that the CTGAN has successfully created a
distribution that closely matches the original, dividing the data
into two clusters that resemble the original clusters.

Secondly, for a more precise and detailed comparison of the
two GANs performances, we employed a range of distance
and similarity metrics that best describe data distributions.
These metrics were selected due to their superior capability
to elucidate the differences in the data distributions created
by each GAN, offering a deep and thorough analysis of their
respective performances. A brief description of each used met-
ric: Starting with the Wasserstein distance (WD) indicating a
close similarity between the original and synthetic datasets. A
second metric is Kolmogorov-Smirnov (KS) D statistic, which
represents the maximum difference between two empirical
cumulative distribution functions. The larger the D value, the
more significant the difference between the two distributions,
the actual gearboxes and the synthetic gearboxes. The KS D
statistic is based on the KS test which was used to compare the
differences in probability distribution features data between the
actual gearboxes and the generated synthetic gearboxes. The
KS-complement (KS-C) was a supplementary index of the KS
test, and its value equaled 1 − (𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷). The Correlation
Similarity (CS) has been computed. This metric measures the
correlation between a pair of numerical columns and computes
the similarity between the real and synthetic data. A score
closer to 1.0 shows a perfect pairwise correlation. Finally, we
measured the Jensen Shannon distance (JS), an alternative to
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the positioning of the synthetic data and the original data.
We can observe that the CTGAN has successfully created a
distribution that closely matches the original, dividing the data
into two clusters that resemble the original clusters.

Secondly, for a more precise and detailed comparison of the
two GANs performances, we employed a range of distance
and similarity metrics that best describe data distributions.
These metrics were selected due to their superior capability
to elucidate the differences in the data distributions created
by each GAN, offering a deep and thorough analysis of their
respective performances. A brief description of each used met-
ric: Starting with the Wasserstein distance (WD) indicating a
close similarity between the original and synthetic datasets. A
second metric is Kolmogorov-Smirnov (KS) D statistic, which
represents the maximum difference between two empirical
cumulative distribution functions. The larger the D value, the
more significant the difference between the two distributions,
the actual gearboxes and the synthetic gearboxes. The KS D
statistic is based on the KS test which was used to compare the
differences in probability distribution features data between the
actual gearboxes and the generated synthetic gearboxes. The
KS-complement (KS-C) was a supplementary index of the KS
test, and its value equaled 1 − (𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷). The Correlation
Similarity (CS) has been computed. This metric measures the
correlation between a pair of numerical columns and computes
the similarity between the real and synthetic data. A score
closer to 1.0 shows a perfect pairwise correlation. Finally, we
measured the Jensen Shannon distance (JS), an alternative to
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saved in the model registry, to prepare it for subsequent utiliza-
tion. This practice serves several purposes, including tracking
the model and facilitating further evaluation. Additionally, the
stored model can be deployed into production at a later stage.
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measure the distance between two probability distributions. All
the previously presented distance metrics were applied feature-
wise between original and synthetic datasets to then calculate
the mean of the scores.

A summary table of compression metric results between the
two GANs can be seen in Table I. The results demonstrate a
marginally superior performance of the CTGAN compared to
the WGAN, confirming the observations made in earlier visual
comparison. An important evaluation of the inference time
is crucial. The WGAN model has achieved 0.14 seconds to
generate 1,000 samples and 0.32 seconds for 10,000 samples.
Conversely, the CTGAN model was slower, requiring 0.24 sec-
onds for 1,000 samples and 0.53 seconds for 10,000 samples,
possibly due to its distinct architecture. However, both models
exhibited swift inference performance.

TABLE I: GANs Performance.

KS-C CS WD JS
WGAN 0.759 0.922 0.024 0.309
CTGAN 0.799 0.931 0.022 0.261

B. Classifier Prediction Performance
The last crucial test was to test how much the LogReg model

improved by augmenting the original dataset with the synthetic
data. The test was done as follows: Firstly, the cleaned original
dataset was split into training and testing sets. Subsequently,
the training dataset was augmented with the WGAN using
the methodology described earlier (see section III-A). Three
LogRegs were trained, one on just the original training set,
a second with a WGAN-augmented training dataset, and a
third one with the conditioned CTGAN-augmented training
set. The confusion matrix of the results is shown in Fig. 5.
The number of False Negatives has been reduced to zero in
the case of WGAN and near zero in the case of CTGAN, this
is due to the presence of mislabeled in the generated synthetic
data as explained in the section II-A. More comprehensive and
detailed metrics are reported in Table II.

Although CTGAN showed better performance in similarity
metrics, WGAN, enhanced with unsupervised filtering, re-
sulted in more effective classifier training. These results are
attributed to the process of managing mislabeled data points
in the dataset. A data augmentation by CTGAN failed to
resolve and, in some cases, might worsen the situation by
generating mislabeled data points introducing more biases
and errors into the process. The final results showcase the
achievement of the goal of reducing the number of incorrectly
classified broken gearboxes (False Negative) and improving
the performance of the classifier model in terms of key metrics
such as Recall, F2 score, and the G-mean. This improvement
underscores the enhanced ability of the model to accurately
identify and classify gearbox conditions, marking a noteworthy
advancement in predictive capabilities. In the light of zero
waste tolerance, we can conclude that WGAN fits better in
this specific use case, despite CTGAN performing similarly.
C. Classifier Serving Performance

To assess the performance of KServe, an observability stack
has been deployed, specifically, the one integrated into Mi-

TABLE II: LogReg Model performance metrics [30].

Original dataset WGAN
augmented

CTGAN
augmented

Accuracy 0.90 0.91 0.92
Precision 0.65 0.64 0.66

Recall 0.81 1.00 0.95
F1 Score 0.72 0.78 0.78
F2 Score 0.77 0.90 0.88
G-Mean 0.86 0.95 0.93

(a) trained with WGAN bal-
anced augmented dataset

(b) trained with CTGAN bal-
anced augmented dataset

(c) trained with original imbal-
anced dataset

Fig. 5: Comparison between confusion matrices of LogReg
classifiers trained with different datasets.

croK8s has been used. This stack incorporates Prometheus for
metrics scarping and Grafana for visualization. Additionally,
an open-source load testing tool, Locust (https://locust.io/),
was employed in the evaluation process. Key metrics, such as
response time, number of pods, and pod resource consumption,
were selected to provide meaningful insight into the perfor-
mance characteristics of the KServe deployment.

Initially, a Locust test, with a peak of 20 users sending
10 requests per second (RPS), was started. This way, the
inference service had to handle, approximately, 200 RPS.
While in an idle state, only one pod is instantiated, as the
RPS increased, the KServe autoscaler dynamically deployed
new pods, ultimately reaching a total of 4 pods. Moreover,
analyzing the resource usage revealed an equitable distribu-
tion of requests between each pod. Nonetheless, the Locust
dashboard indicated that the 95th percentile of requests were
served in less than 56ms. This test indicates how Kubernetes-
backed KServe can easily scale in response to increasing
load, maintaining efficient resource usage, as well as good
performance under heavy load conditions.

V. CONCLUSIONS & FUTURE WORK

Machine Learning (ML) presents a plethora of compelling
and high-impact applications in Industry 5.0, although the

(a) trained with WGAN balanced 
augmented dataset

(b) trained with CTGAN balanced 
augmented dataset

(c) trained with original balanced 
augmented dataset

Fig. 5: Comparison between confusion matrices of LogReg classifiers 
trained with different datasets.
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Fig. 3: Kubeflow MLOps pipeline.

initial component retrieves the latest version of the dataset
stored in a CSV file from a Kubernetes volume and transfers
it to Kubeflow’s artifact store for subsequent utilization. This
step is also responsible for acquiring the pre-trained GAN.
The serialized GAN can be stored in the same volume as
the dataset, or a specialized model registry, such as Mlflow.
The adoption of a model registry offers many advantages, in-
cluding decoupling the GAN development processes from the
classifier training phase. Subsequently, the dataset undergoes
preprocessing where the meaningless features are deleted and
inputs are separated from outputs. Concurrently, the newest
GAN available in the model registry is retrieved and used to
generate a synthetic dataset. The synthetic dataset is filtered
to keep only the examples belonging to the minority class and
is used to balance the real dataset.

In the subsequent steps, the classifier, specifically a Logistic
Regression model (LogReg), is trained on the enriched and
balanced dataset. LogReg was specifically chosen for its
inherently interpretable nature which is of great importance for
manufacturing applications that require thoroughly evaluating
and possibly certifying decision-making elements. However,
other ML classifiers, including Decision Trees, Support Vector
Machines, Gradient Boosting Machines, etc., could be used.
After the training the model undergoes evaluation, and metrics
are exported for comparative analysis through the Kubeflow
dashboard. As a final step, the model is deployed into pro-
duction using Kubeflow’s built-in serving framework: KServe
(https://kserve.github.io). KServe offers a Kubernetes Custom
Resource Definition to enable out-of-the-box deployment of
trained models onto various widely used serving runtimes,
such as TFServing, TorchServe, Triton, and many others.

A scikit-learn inference service has been deployed using
the KServe Python SDK. The predictor is configured with a
minimum and a maximum number of replicas set at, respec-
tively, 1 and 10. Additionally, constraints for the predictor pod
resources have been defined, limiting it to use 0.5 CPU and 0.5
GB of memory. Finally, as shown in Fig. 3, the model can be
saved in the model registry, to prepare it for subsequent utiliza-
tion. This practice serves several purposes, including tracking
the model and facilitating further evaluation. Additionally, the
stored model can be deployed into production at a later stage.
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Fig. 4: Original data and synthetic data plotted after the
reduction to 2 dimensions with PCA.
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Let us demonstrate how WGAN and CTGAN adoption
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Bonfiglioli assembly line.

A. GANs Performance

Starting with a visual comparison of the synthetic data
generated by the two trained GANs. Fig. 4 illustrates this
relationship. To create this visualization comparison, Dimen-
sionality Reduction was employed. In detail, the Principal
Component Analysis (PCA) algorithm was used to reduce the
dimensionality of the dataset from 66 features which were
heavily cleaned into 2 dimensions. The PCA has managed to
create 2 distinct clusters, the left one is denser presenting the
good gearboxes while the right cluster represents the broken
gearboxes. For Both WGAN and CTGAN, We can observe
the positioning of the synthetic data and the original data.
We can observe that the CTGAN has successfully created a
distribution that closely matches the original, dividing the data
into two clusters that resemble the original clusters.

Secondly, for a more precise and detailed comparison of the
two GANs performances, we employed a range of distance
and similarity metrics that best describe data distributions.
These metrics were selected due to their superior capability
to elucidate the differences in the data distributions created
by each GAN, offering a deep and thorough analysis of their
respective performances. A brief description of each used met-
ric: Starting with the Wasserstein distance (WD) indicating a
close similarity between the original and synthetic datasets. A
second metric is Kolmogorov-Smirnov (KS) D statistic, which
represents the maximum difference between two empirical
cumulative distribution functions. The larger the D value, the
more significant the difference between the two distributions,
the actual gearboxes and the synthetic gearboxes. The KS D
statistic is based on the KS test which was used to compare the
differences in probability distribution features data between the
actual gearboxes and the generated synthetic gearboxes. The
KS-complement (KS-C) was a supplementary index of the KS
test, and its value equaled 1 − (𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷). The Correlation
Similarity (CS) has been computed. This metric measures the
correlation between a pair of numerical columns and computes
the similarity between the real and synthetic data. A score
closer to 1.0 shows a perfect pairwise correlation. Finally, we
measured the Jensen Shannon distance (JS), an alternative to
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backed KServe can easily scale in response to increasing
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end-to-end integration of ML-powered applications in the
industrial scenario still presents many challenges. To address
those issues, we realized a robust framework that automatically
rebalances datasets by incorporating synthetic data generated
by GANs, thus allowing to improve the performance of ML
model training. Specifically, by employing a WGAN, we
succeeded in training a binary classifier that can distinguish
between good and broken gearboxes. This framework con-
tributes meaningfully to Industry 5.0, particularly in terms of
sustainability and Zero Defect Manufacturing. Furthermore,
we realized a robust architectural pipeline for orchestrating the
ML model deployment, serving, and update – thus ensuring
levels of error resilience that are suited for the industrial
environment. While our framework was designed for, and
validated on, a real-life manufacturing line – namely the
Bonfiglioli EVO gearbox assembly and testing line – it is
of wide applicability. Looking ahead, we aim to measure
the results of using synthetic data in Industry 5.0, such
as estimating cost savings and throughput improvements in
the assembly line and the acceleration that can be given to
creating next-generation ML-based applications. Additionally,
we plan to enhance the lifecycle management of the generated
synthetic data, thereby extending the reproducibility of the ML
models beyond on-the-fly generation. Finally, we also intend
to explore more advanced unsupervised and semi-supervised
anomaly detection techniques to identify broken gearboxes.
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end-to-end integration of ML-powered applications in the
industrial scenario still presents many challenges. To address
those issues, we realized a robust framework that automatically
rebalances datasets by incorporating synthetic data generated
by GANs, thus allowing to improve the performance of ML
model training. Specifically, by employing a WGAN, we
succeeded in training a binary classifier that can distinguish
between good and broken gearboxes. This framework con-
tributes meaningfully to Industry 5.0, particularly in terms of
sustainability and Zero Defect Manufacturing. Furthermore,
we realized a robust architectural pipeline for orchestrating the
ML model deployment, serving, and update – thus ensuring
levels of error resilience that are suited for the industrial
environment. While our framework was designed for, and
validated on, a real-life manufacturing line – namely the
Bonfiglioli EVO gearbox assembly and testing line – it is
of wide applicability. Looking ahead, we aim to measure
the results of using synthetic data in Industry 5.0, such
as estimating cost savings and throughput improvements in
the assembly line and the acceleration that can be given to
creating next-generation ML-based applications. Additionally,
we plan to enhance the lifecycle management of the generated
synthetic data, thereby extending the reproducibility of the ML
models beyond on-the-fly generation. Finally, we also intend
to explore more advanced unsupervised and semi-supervised
anomaly detection techniques to identify broken gearboxes.
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end-to-end integration of ML-powered applications in the
industrial scenario still presents many challenges. To address
those issues, we realized a robust framework that automatically
rebalances datasets by incorporating synthetic data generated
by GANs, thus allowing to improve the performance of ML
model training. Specifically, by employing a WGAN, we
succeeded in training a binary classifier that can distinguish
between good and broken gearboxes. This framework con-
tributes meaningfully to Industry 5.0, particularly in terms of
sustainability and Zero Defect Manufacturing. Furthermore,
we realized a robust architectural pipeline for orchestrating the
ML model deployment, serving, and update – thus ensuring
levels of error resilience that are suited for the industrial
environment. While our framework was designed for, and
validated on, a real-life manufacturing line – namely the
Bonfiglioli EVO gearbox assembly and testing line – it is
of wide applicability. Looking ahead, we aim to measure
the results of using synthetic data in Industry 5.0, such
as estimating cost savings and throughput improvements in
the assembly line and the acceleration that can be given to
creating next-generation ML-based applications. Additionally,
we plan to enhance the lifecycle management of the generated
synthetic data, thereby extending the reproducibility of the ML
models beyond on-the-fly generation. Finally, we also intend
to explore more advanced unsupervised and semi-supervised
anomaly detection techniques to identify broken gearboxes.

REFERENCES

[1] R. Venanzi et al., “Enabling adaptive analytics at the edge with the Bi-
Rex Big Data platform,” Computers in Industry, vol. 147, p. 103876,
2023. doi: https://doi.org/10.1016/j.compind.2023.103876

[2] A. Frankó et al., “Applied Machine Learning for IIoT and Smart Produc-
tion Methods to Improve Production Quality, Safety and Sustainability,”
Sensors, vol. 22, no. 23, 2022. doi: https://doi.org/10.3390/s22239148

[3] E. Jantunen et al., “Maintenance 4.0 World of Integrated Information,”
in Enterprise Interoperability VIII. Springer International Publishing,
2019. doi: doi.org/10.1007/978-3-030-13693-2_6

[4] A. E. Frankó et al., “A Survey on Machine Learning based Smart Main-
tenance and Quality Control Solutions,” Infocommunications Journal,
vol. 13, no. 4, pp. 28–35, 2021. doi: 10.36244/ICJ.2021.4.4

[5] P. Varga et al., “Data-Driven Workflow Execution in Service Oriented
IoT Architectures,” in 2018 IEEE 23rd International Conference on
Emerging Technologies and Factory Automation (ETFA), vol. 1, 2018.
doi: 10.1109/ETFA.2018.8502665 pp. 203–210.

[6] L. Alzubaidi et al., “A survey on deep learning tools dealing with
data scarcity: Definitions, challenges, solutions, tips, and applications,”
Journal of Big Data, vol. 10, no. 1, 2023. doi: 10.1186/s40537-023-
00727-2

[7] T. B. Nyíri et al., “What can we learn from Small Data,” In-
focommunications Journal, vol. 15, no. SI, pp. 27–34, 2023. doi:
10.36244/ICJ.2023.5.5

[8] M. Fogli et al., “Chaos Engineering for Resilience Assessment of Digital
Twins,” IEEE Transactions on Industrial Informatics, vol. 20, no. 2, pp.
1134–1143, 2024. doi: 10.1109/TII.2023.3264101

[9] S. Bond-Taylor et al., “Deep Generative Modelling: A Comparative
Review of VAEs, GANs, Normalizing Flows, Energy-Based and Au-
toregressive Models,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 44, no. 11, p. 7327–7347, Nov. 2022. doi:
10.1109/tpami.2021.3116668

[10] S. De et al., “Deep Generative Models in the Industrial Internet of
Things: A Survey,” IEEE Transactions on Industrial Informatics, vol. 18,
no. 9, pp. 5728–5737, 2022. doi: 10.1109/TII.2022.3155656

[11] D. Ezeh et al., “An SDN Controller-Based Framework for Anomaly De-
tection Using a GAN Ensemble Algorithm,” Infocommunications Jour-
nal, vol. XV, no. 2, pp. 29–36, June 2023. doi: 10.36244/ICJ.2023.2.5

[12] L. Ruthotto et al., “An introduction to deep generative modeling,”
05 2021. [Online]. Available: https://onlinelibrary.wiley.com/doi/full/10.
1002/gamm.202100008
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