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Abstract—Despite rapid advancements in the automotive 

industry, traffic safety risks persist. Addressing this challenge 
requires innovative driver assistance technologies. Common 
accidents result from driver inattention, fatigue, and stress, 
leading to issues like falling asleep at the wheel and improper 
acceleration and braking. Our study aims to contribute to 
advanced driver assistance systems that adapt to drivers' 
emotional needs, ultimately enhancing road safety. In this paper, 
we mention the result of our research to estimate drivers' emotions 
using sensors. For that purpose, we developed a sensor network 
containing sensors such as EEG, eye tracker, and driving 
simulator. We explored the relationship. As a result, we confirmed 
the relation between the driver's emotions, especially sleep 
conditions, driving speed, duration, and brain wave behavior. 
 

Index Terms—driving support system, emotion estimation, EEG, 
eye tracking, sensor network, persistent homology 
 

I. INTRODUCTION 
midst the rapid devolution of the automotive industry, the 
persistence of traffic safety risks remains a critical concern. 

Consequently, the development of intelligent and innovative 
driver assistance technologies becomes imperative. Among the 
factors contributing to traffic accidents, the most prevalent 
include falling asleep at the wheel, improper acceleration, and 
braking errors. These mishaps stem from driver inattention, 
fatigue, drowsiness, and stress, all significantly contributing to 
road accidents. In particular, the cumulative effects of fatigue 
resulting from extended periods of driving can substantially 
impair a driver's cognitive function and judgment, ultimately 
leading to drowsiness. Hence, it becomes essential to promptly 
detect driver fatigue and drowsiness during driving and institute 
appropriate measures. To address this challenge, there is a 
pressing need to develop support systems that encourage 

drivers to take breaks and enhance the in-vehicle environment 
to optimize comfort. 

Given this backdrop, our research endeavors to objectively 
assess driver fatigue by gathering an extensive array of data, 
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encompassing ElectroEncephaloGraphy (EEG), heart rate, eye 
movements, and driving activities, all obtained through driving 
simulators. We aim to scrutinize this data meticulously, with 
the expectation of delivering valuable insights that can enhance 
driver safety and mitigate the risk of traffic accidents. 

It is worth noting, however, that while EEG holds promise as 
an excellent indicator of emotional states, practical limitations 
arise when attempting to employ EEG sensors during driving. 
Additionally, EEG sensors may provide limited accuracy in 
measuring neural activity related to emotions occurring beyond 
the upper layers of the brain. [1].  

The remaining part of this paper is structured as follows.  
Section 2 introduces a variety of related research.  We explain 
the research goal, problems, and objectives in Section 3.  The 
sensors and network we used in the research are explained in 
Section 4.  Section 5 explains the detailed experiment result, 
and discuss and analyze the result in Section 6.  Finally, we 
present our conclusions in Section 7. 

II. POSITIONING AND THE RELATED WORKS OF THE PAPER 

Numerous studies have been undertaken to predict driver 
fatigue by examining the correlation between drivers' biological 
signals and their eye movements. 

A. Relationship between this study and Cognitive 
Infocommunications 
This paper proposes and uses a sensor system to estimate a 

driver's mind state and subsequently explore the relationship 
between emotional states and driving behavior. This study 
combines artificial and natural cognitive capabilities. The 
whole system's new hybrid cognitive capabilities fall into the 
concept of Cognitive Infocommunications [2,3]. 
One of the branches of Cognitive Infocommunications focuses 

on Cognitive Mobility, which investigates the entangled 
combination of research areas such as mobility, transportation, 
vehicle engineering, social sciences, artificial intelligence, and 
Cognitive Infocommunications [4,5].  
Thus the overall new capability of the combination of the 

censoring system and the driver leads to a new capability of the 
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whole system that is to improve the driving effectiveness to 
avoid accidents and further car design outcomes.  
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B. Studies Using Heart Rate and Electrocardiogram [6] 
This study reported that during the transition from mental 

fatigue to drowsiness, the number of blinks increased and, 
conversely, the heart rate decreased. 

C. Studies utilizing gaze angle and eye rotation angle [7] 
This study used image sensors to generate computational 

models from gaze and eye rotation angles.  As a result, it was 
reported that the accuracy of measuring mental workload from 
driving was improved from eye movements. 

D. Studies Using Gaze Angle and Eye Rotation Angle [8]. 
This study has shown that blinking decreased with task load 

during driving.  However, another paper [9] has found the 
opposite result, that blinking increases with increasing task load, 
and there still needs to be a clear answer regarding how it can 
be used. 

Furthermore, numerous studies have explored the monitoring 
of driver emotions using sensors as a means to prevent risk-
taking behavior. These investigations involved using multiple 
driving simulators to simulate realistic driver interactions and 
estimated driver emotions based on driving performance data. 
However, these studies did not directly detect emotional data to 
validate the accuracy of their measurements [10]. In [11], 
researchers developed a sensor network to establish a mapping 
relationship among various sensor data to monitor driver 
emotions. This approach incorporated metrics such as heart rate, 
skin conductance, skin temperature, and facial expressions. 
Nevertheless, the research did not address driving performance 
data closely tied to driving behavior. [12] introduced a non-
intrusive emotion recognition system designed for car drivers, 
employing a thermal camera to enhance Advanced Driver 
Assistance Systems (ADAS). However, it's important to note 
that this system has yet to be tested in actual driving conditions, 
which leaves room for further exploration and validation. 

Prior research efforts have explored various avenues in the 
realm of emotion recognition for drivers. For instance, in [13], 
an approach centered around facial expressions was introduced. 
This approach leveraged a comprehensive on-road driver facial 
expression dataset, encompassing diverse road scenarios and 
corresponding driver facial expressions during driving. 
Meanwhile, [14] devised a methodology that combines Local 
Binary Pattern (LBP) features with facial landmark features to 
detect driver emotions. This method further employed a 
supervised machine learning algorithm, specifically a support 
vector machine, to classify different emotions effectively. 

Additionally, [15] put forward an innovative approach, 
introducing a custom-created Convolutional Neural Network 
(CNN) feature learning block to enhance the performance of an 
existing 11-layer CNN model. This augmentation resulted in an 
improved and faster R-CNN face detector capable of accurately 
identifying the driver's face. However, it's essential to note that 
these studies primarily focused on processing facial image data 
for driver emotion recognition. They did not delve into aspects 
such as body motion or explore the intricate relationship 
between driver emotion and driving performance data.  

III. OUTLINE OF THIS STUDY 

A. Research Goal 
This research aims to estimate drivers' emotions during 

driving to prevent car accidents. 

B. Problems and Objectives of the research 
 While several studies have explored the estimation of driver 

emotions through means such as brain waves and other bio-
signals, there are two notable challenges to consider. Firstly, 
relying solely on EEG may be problematic due to potential 
variations caused by the experimental environment, introducing 
an element of risk. Secondly, the practicality of measuring EEG 
by having drivers wear sensors while driving is a concern. 

To address these issues, we aim to identify alternative 
sensors that are easy to use, robust, and cost-effective. We will 
compare these potential sensors with popular vital sensors 
commonly employed for health monitoring, as well as sensors 
integrated into vehicles but not worn by individuals. By 
examining these options, we can explore the feasibility of 
replacing EEG with more practical sensor solutions for emotion 
detection in a driving context. 

IV. SENSORS 
We implemented a sensor network for driver emotion 

monitoring around a driving simulator.  In this section, we 
would like to explain each sensor and outline the network.  

A. Driving simulator 
To achieve the goal of estimating the driver's emotions by 

using a drive recorder and analyzing the relation between driver 
emotions and behavior during driving, we collect driving 
performance data from the driving simulator such as speed, 
accelerator pedal degree, brake pedal pressure, steering angle, 
and distance from the start.  

 
Fig. 1.  EEG sensor (headband) [13]   

 

 
   Fig. 2  Eye tracking device [16] 
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B. EEG sensor 
We used an EEG sensor to estimate the mind state of a driver. 

Typically, EEG sensors are large devices with many electrodes 
used in hospitals, but using such devices in a car or a driving 
simulator is not easy [16]. So, we have developed a wearable 
EEG sensor that can acquire data for several hours without 
stress, as shown in Figure 1. This EEG sensor has BLE and 
sends data in real time.  The sampling rate is 512 Hz.  In this 
experiment, we used M5Stack Core2 [18] as a receiver of the 
EEG signal, and the data is written on an SD card in the receiver 
device. The EEG sensor can output the information listed in 
Table 1. In addition, our sensor can output two additional 
information: Attention (concentration, similar to Beta wave) 
and Mediation (relaxing, similar to Alpha wave) [19].  

C. Eye tracker 
We utilized an eye tracker, specifically the Pupil Core [20], to 

monitor eye movements accurately, as illustrated in Figure 2. 
This device provides us with the precise x and y coordinates of 
the gaze, enabling us to simultaneously capture video footage 
of the surrounding scenery and the movement of the eyeball. 

D. Network 
As shown in Figure 3, we established a sensor network for 

data collection, with certain components connected via 
Bluetooth Low Energy (BLE [21]) for real-time data 
transmission. In contrast, other components, such as sensors 
connected on  Controller Area Network (CAN [22])  in the 
driving simulator, remained offline for security considerations.  

V. EXPERIMENT AND RESULT ANALYSIS 

A. Experiment Design 
We set two test courses in the driving simulator. One is Tokyo 

Metropolitan Highway (C1), and another is a road in the center 
of Paris. The details of the setting are shown in Table 1.  In the 
C1 course, we changed the brightness during driving from 
daytime to evening. In Paris, we used Simulation of Urban 
Mobility (SUMO) [23] to provide some interference to drivers, 
such as traffic and unexpected behavior of pedestrians. 

On August 9 and 21, 2023, and November 22, 2023, two 
students of Chuo University (20 years old, and 2years old, 
owning a driver's license) drove C1 and Paris.  The duration of 
each driving test was 45 minutes.  As per our experiences, after 
30 minutes, a driver starts to feel fatigued, so we set 45 minutes.  
In this paper, we label each trial as 20230809-C1-1, C1-2, Paris-
1, Paris-2, 20230821-C1-1, C1-2, Paris-1, Paris-2, and 
20231122-Paris-5.  

Before and after driving, the test driver answered PANAS 
(The Positive and Negative Affect Schedule [24]) with 10 
Positive and 10 Negative questions to record the mental state.  
As shown in Figure 4, the score of negative questions increased 
in all cases, indicating that the test driver consistently reported 
feeling fatigued after 45 minutes of driving.  

B. Fatigue from distance and time 
Figure 5 presents the relationship between the number of 

rounds and the duration of a single round of driving. Notably, 
it becomes evident that, after several rounds, the lap time 
increased by approximately 20%. This observation suggests 

 
Fig. 3.  The system diagram 

TABLE Ⅱ.  Brain waves [19] 

Frequency 
band name 

Frequency Brain states 

Delta 0.5–4 Hz Sleep 
Theta 4–8 Hz Deeply relaxed, inward focused 
Alpha 8–12 Hz Very relaxed, passive attention 

Beta 12–35 Hz Anxiety dominant, active, 
external attention, relaxed 

Gamma Over35 Hz Concentration 
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TABLE Ⅰ.  Test course in the driving simulator 
 

Course Time/round SUMO Brightness change (in 45 min) 

Tokyo Metropolitan 
Highway C1 

About 10 
min No 

0-10 min    4:00 PM,  10-20 min  6:00 PM 
20-30 min  7:00 PM,  30-40 min  7:30 PM 
40-45 min  8:00 PM (with road lighting) 

Paris City Area Course About 6 min Traffic and 
Pedestrian crossing road No 

Fig. 1.  

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

3 

B. EEG sensor 
We used an EEG sensor to estimate the mind state of a driver. 

Typically, EEG sensors are large devices with many electrodes 
used in hospitals, but using such devices in a car or a driving 
simulator is not easy [16]. So, we have developed a wearable 
EEG sensor that can acquire data for several hours without 
stress, as shown in Figure 1. This EEG sensor has BLE and 
sends data in real time.  The sampling rate is 512 Hz.  In this 
experiment, we used M5Stack Core2 [18] as a receiver of the 
EEG signal, and the data is written on an SD card in the receiver 
device. The EEG sensor can output the information listed in 
Table 1. In addition, our sensor can output two additional 
information: Attention (concentration, similar to Beta wave) 
and Mediation (relaxing, similar to Alpha wave) [19].  

C. Eye tracker 
We utilized an eye tracker, specifically the Pupil Core [20], to 

monitor eye movements accurately, as illustrated in Figure 2. 
This device provides us with the precise x and y coordinates of 
the gaze, enabling us to simultaneously capture video footage 
of the surrounding scenery and the movement of the eyeball. 

D. Network 
As shown in Figure 3, we established a sensor network for 

data collection, with certain components connected via 
Bluetooth Low Energy (BLE [21]) for real-time data 
transmission. In contrast, other components, such as sensors 
connected on  Controller Area Network (CAN [22])  in the 
driving simulator, remained offline for security considerations.  

V. EXPERIMENT AND RESULT ANALYSIS 

A. Experiment Design 
We set two test courses in the driving simulator. One is Tokyo 

Metropolitan Highway (C1), and another is a road in the center 
of Paris. The details of the setting are shown in Table 1.  In the 
C1 course, we changed the brightness during driving from 
daytime to evening. In Paris, we used Simulation of Urban 
Mobility (SUMO) [23] to provide some interference to drivers, 
such as traffic and unexpected behavior of pedestrians. 

On August 9 and 21, 2023, and November 22, 2023, two 
students of Chuo University (20 years old, and 2years old, 
owning a driver's license) drove C1 and Paris.  The duration of 
each driving test was 45 minutes.  As per our experiences, after 
30 minutes, a driver starts to feel fatigued, so we set 45 minutes.  
In this paper, we label each trial as 20230809-C1-1, C1-2, Paris-
1, Paris-2, 20230821-C1-1, C1-2, Paris-1, Paris-2, and 
20231122-Paris-5.  

Before and after driving, the test driver answered PANAS 
(The Positive and Negative Affect Schedule [24]) with 10 
Positive and 10 Negative questions to record the mental state.  
As shown in Figure 4, the score of negative questions increased 
in all cases, indicating that the test driver consistently reported 
feeling fatigued after 45 minutes of driving.  

B. Fatigue from distance and time 
Figure 5 presents the relationship between the number of 

rounds and the duration of a single round of driving. Notably, 
it becomes evident that, after several rounds, the lap time 
increased by approximately 20%. This observation suggests 
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B. EEG sensor 
We used an EEG sensor to estimate the mind state of a driver. 

Typically, EEG sensors are large devices with many electrodes 
used in hospitals, but using such devices in a car or a driving 
simulator is not easy [16]. So, we have developed a wearable 
EEG sensor that can acquire data for several hours without 
stress, as shown in Figure 1. This EEG sensor has BLE and 
sends data in real time.  The sampling rate is 512 Hz.  In this 
experiment, we used M5Stack Core2 [18] as a receiver of the 
EEG signal, and the data is written on an SD card in the receiver 
device. The EEG sensor can output the information listed in 
Table 1. In addition, our sensor can output two additional 
information: Attention (concentration, similar to Beta wave) 
and Mediation (relaxing, similar to Alpha wave) [19].  

C. Eye tracker 
We utilized an eye tracker, specifically the Pupil Core [20], to 

monitor eye movements accurately, as illustrated in Figure 2. 
This device provides us with the precise x and y coordinates of 
the gaze, enabling us to simultaneously capture video footage 
of the surrounding scenery and the movement of the eyeball. 

D. Network 
As shown in Figure 3, we established a sensor network for 

data collection, with certain components connected via 
Bluetooth Low Energy (BLE [21]) for real-time data 
transmission. In contrast, other components, such as sensors 
connected on  Controller Area Network (CAN [22])  in the 
driving simulator, remained offline for security considerations.  

V. EXPERIMENT AND RESULT ANALYSIS 

A. Experiment Design 
We set two test courses in the driving simulator. One is Tokyo 

Metropolitan Highway (C1), and another is a road in the center 
of Paris. The details of the setting are shown in Table 1.  In the 
C1 course, we changed the brightness during driving from 
daytime to evening. In Paris, we used Simulation of Urban 
Mobility (SUMO) [23] to provide some interference to drivers, 
such as traffic and unexpected behavior of pedestrians. 
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that a driver's concentration tends to decline after experiencing 
fatigue, resulting in a slowdown in driving speed.  

C. Fatigue from changing brightness 
Figure 6 illustrates the connection between brightness levels 

and changes in emotion detected through EEG. As the driving 
rounds progress, the road becomes darker, and a corresponding 
decrease in driver concentration is evident. This pattern is 
consistent with the trends observed in C1 driving data.  
Conversely, during driving experiences in Paris, there was no 
significant decline in attention levels. Hence, we can infer that 
darkness has a detrimental impact on a driver's attentiveness, 
potentially contributing to increased fatigue and decreased 
concentration during nighttime driving scenarios.  

D. Relation between EEG and eye tracking 
Figure 7 illustrates the link between Gamma brainwaves and 

eye blinks. Our analysis of Paris data revealed a consistent 
pattern: when Gamma fell below 1.0E7, indicating reduced 
brainwave activity, the driver often lost concentration, leading 
to eye blinks or closures (below the red line in Figure 7). This 
suggests Gamma changes are a valuable indicator of tiredness, 
especially sleepiness, aligning with the driver's drowsiness in 
the latter part of the round. Additionally, this finding 
underscores the significance of eye tracking as a reliable 
method for monitoring the driver's movements and quantifying 
their level of fatigue while actively engaged in driving.  

E. Relation between facial recognition and eye tracking 
Facial expressions directly reflect emotions, and body motion 

strongly associates with emotions [25]. To estimate a driver's 

stress and fatigue, we harnessed the effectiveness of a widely 
used drive recorder, capable of capturing facial expressions and 
body movements. Consequently, in this study, we amalgamated 
driving performance data from a driving simulator with facial 
expression and body motion data obtained from a drive recorder 
for a comprehensive correlation analysis.  

For facial expression recognition and head motion 
measurements, we utilized MediaPipe Face Mesh [26], with 
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prior video image preprocessing carried out using OpenCV [27]. 
This allowed us to visualize driving performance data 
concerning the accelerator pedal, brake, and steering, shedding 
light on their relationship with concurrent facial expressions 
and body motions. To assess the drive recorder's performance, 
we conducted a comparative analysis of emotion measurement 
results obtained through the drive recorder and those from an 
EEG sensor as our previous study [28]. This approach 
facilitates an evaluation of the drive recorder's effectiveness in 
gauging driver emotions and provides a low-cost and easily 
implementable method for collecting data on drivers' facial 
expressions through video footage was proposed.  

We analyzed the connection between facial recognition and 
eye tracking, with a specific emphasis on the occurrence of eye 
closures. In Figure 8, we present six distinct patterns of facial 
classification observed during the experiment, which, in turn, 
allow us to infer four primary emotions: (1) Neutral, (2) 
Anxiety, (3) Boredom, and (4) Fatigue. Our primary focus lies 
on fatigue as it relates to the sensation of tiredness while driving. 
Table 3 presents the number of reported fatigue feelings and 
occurrences of eye closures per 5-minute intervals.  The low p-
value obtained from the T-Test (0.4) further validates the strong 
relationship between eye movements and facial expressions, 
supporting our hypothesis that eye tracking effectively 
correlates with driver emotion, particularly in instances of 
fatigue.  

VI. DISCUSSION 
This paper aims to estimate a driver's emotion by 

investigating the relation between EEG, driving record, 
brightness, eye tracking (eye shut), and facial recognition. At 
this moment, we found the relation as shown in Figure 9. 
Unfortunately, we could not collect enough data to analyze the 
relation between these data and other data such as car operation 
(pedals, steering), heart rate, and body motion.  

Firstly, we compared the facial expression estimation of 
fatigue by face recognition (Fig. 10) and the number of eyes 

shut (= sleepiness) by eye tracker (Fig. 11). The number of eye 
closures tends to increase with each round of testing. The same 
trend is observed on different experimental days and with 
different subjects. In contrast, there is a difference in the trend 
of facial expression estimation of fatigue even when the same 
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subject is tested on the same day (Aug. 21-1 and Aug. 21-2 in 
Fig. 10). This result suggests that there is a limitation in finding 
fatigue estimation by face recognition. 

For the lap time, as shown in Figure 5, each additional lap is 
getting longer. This result suggests a similar trend between eye 
tracking data and the number of laps (= driving time).  

Then, we compared the EEG and other data. TGAM outputs 
raw data at 512 Hz and aggregated values of each brain wave 
band (Delta, Theta, Alpha, Beta, and Gamma) per second. 
However, it is difficult to read their interrelationships because 
EEG changes significantly from one second to the next. 
Therefore, we applied topological data analysis (TDA) [29] to 
analyze EEG data (Alpha, Beta, and Gamma). The basic 
technology of TDA is persistent homology. The following is an 
overview of persistent homology from [29].  
“A key mathematical apparatus in TDA is persistent homology, 

which is an algebraic method for extracting robust topological 
information from data. To provide some intuition for the 
persistent homology, let us consider a typical way of 
constructing persistent homology from data points in a 

Euclidean space, assuming that the data lie on a sub- manifold. 
The aim is to make inference on the topology of the underlying 
manifold from finite data. We consider the r-balls (balls with 
radius r) to recover the topology of the manifold, as popularly 
employed in constructing an r-neighbor graph in many 
manifold learning algorithms. While it is expected that, with an 
appropriate choice of r, the r-ball model can represent the 
underlying topological structures of the manifold, it is also 
known that the result is sensitive to the choice of r. If r is too 
small, the union of r-balls consists simply of the disjoint r-balls. 
On the other hand, if r is too large, the union becomes a 
contractible space. Persistent homology [30] can consider all r 
simultaneously, and provides an algebraic ex- pression of 
topological properties together with their persistence over r. 
The persistent homology can be visualized in a compact form 
called a persistence diagram D = {(bi , di ) ∈ R2 | i ∈ I, bi ≤ di}, 
and this paper focuses on persistence diagrams, since the 
contributions of this paper can be fully explained in terms of 
persistence diagrams. Every point (bi, di) ∈ D, called a 
generator of the persistent homology, represents a topological 
property (e.g., connected components, rings, and cavities) 
which appears at Xbi and dis- appears at Xdi in the r-ball model. 
Then, the persistence di − bi of the generator shows the 
robustness of the topo- logical property under the radius 
parameter. “ 

We used HomeCloud [31], a tool for visualizing persistence; 
we created a 3D graph of Alpha, Beta, and Gamma for the Paris 
orbit on Aug.21, 2023 (2nd trial, by driver1) and the Paris orbit 
on Nov.22, 2023 (5th trial, by driver2). The graph of persistence 
generated from the 3D data of Alpha, Beta, and Gamma is 
shown in Figure 12. Most of the points lie on the X=Y line, but 
the points away from it represent the features of the data. 
In Figure 13,  the envelopes are added for the big-picture view 

of the points. It can be seen that the shape of the envelope for 
each lap is similar, even though two drivers with different 
driving skills and different schedules are driving on different 
dates. This result indicates that some changes may be occurring 
similarly for each lap. In the future, we plan to analyze the EEG 
movements related to fatigue by analyzing the EEG in more 
detail.  

VII. CONCLUSION 
This study aims to estimate driver emotion by using several 

data that we can acquire while driving a car to prevent car 
accidents. For that purpose, we developed a sensor network 
around a driving simulator using an EEG sensor, accelerometer, 
heart rate sensor, and eye tracker.  

The paper's novel contribution is that the result displayed a 
relation between the driver's emotions, especially sleepy 

Tab. 3.  The number of fatigue and eye shut every five minutes 
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TABLE III
The number of fatigue and eye shut every five minutes.
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conditions, driving speed, driving duration (=driving distance), 
and brain wave behavior. This result will make it possible to 
realize a safety-driving support technology. 

However, at this moment, as motioned in section VI, our 
analysis was not yet sufficient because of the limited number of 
data. If we get enough data, we could understand the relation of 
information around a car to understand the driver's emotions. 

However, this study showed the effectiveness of Cognitive 
Mobility, that is a part of Cognitive Infocommunication science. 

As a further study, we need to do two things. The first is to 
analyze the data and information relation using new techniques 
such as persistent homology. The second is to acquire the 
Mental State Index, such as PANAS while trying to explain the 
mental state in language.   

Our final target is to realize a system to detect the dangerous 
mental state related to car accidents and provide information to 
change the situation using a simple wearable sensor such as a 
smartwatch and CAN data.  
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conditions, driving speed, driving duration (=driving distance), 
and brain wave behavior. This result will make it possible to 
realize a safety-driving support technology. 

However, at this moment, as motioned in section VI, our 
analysis was not yet sufficient because of the limited number of 
data. If we get enough data, we could understand the relation of 
information around a car to understand the driver's emotions. 

However, this study showed the effectiveness of Cognitive 
Mobility, that is a part of Cognitive Infocommunication science. 

As a further study, we need to do two things. The first is to 
analyze the data and information relation using new techniques 
such as persistent homology. The second is to acquire the 
Mental State Index, such as PANAS while trying to explain the 
mental state in language.   

Our final target is to realize a system to detect the dangerous 
mental state related to car accidents and provide information to 
change the situation using a simple wearable sensor such as a 
smartwatch and CAN data.  
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