
Pretraining GPT-style models in Hungarian

EARLY ACCESS • 2025/12

INFOCOMMUNICATIONS JOURNAL

* OTP
† Department of Digital Humanities, Eötvös Loránd University, Budapest, 

Hungary
‡ Department of Software Engineering, University of Szeged, Szeged, 

Hungary
Corresponding author: D. Nemeskey (e-mail: nemeskey.david@btk.elte.hu) 1 https://huggingface.co/mistralai/Mistral-7B-v0.3

Pretraining GPT-style models in Hungarian

Abstract—In this paper, we introduce two bilingual large lan-
guage models, named OTP-1.5B and OTP-13B, designed with a 
focus on both English and Hungarian languages. Both models 
utilize an 8k token context window and are trained on a dataset 
of 640 billion tokens, allowing the models to capture a broad 
range of linguistic nuances and generalize effectively across lan-
guages. Notably, their performance in Hungarian is on par with 
the results reported for equivalent models in English, such as 
GPT-3, marking a significant breakthrough in bilingual model 
development and evaluation. This achievement demonstrates the 
viability of scaling language models to perform robustly in less-
resourced languages like Hungarian, a critical advancement for 
linguistic diversity in AI research. In addition, we introduce new 
benchmark datasets specifically designed to evaluate Hungarian 
language capabilities, addressing a significant gap in the current 
landscape of multilingual large language model (LLM) assess-
ment. These benchmarks offer a comprehensive framework for 
measuring performance in non-English contexts, enabling more 
precise and culturally relevant evaluations of LLMs. Our mod-
els achieve state-of-the-art results in Hungarian, underscoring 
their proficiency and utility for a wide range of applications in 
both English and Hungarian language tasks.
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I. INTRODUCTION

W ITH the huge success of Transformer models [1],
better and better solutions have continuously appeared,

achieving state-of-the-art (SoTA) results on the traditional Nat-
ural Language Processing (NLP) tasks [2], such as language
understanding and generation. Among these, the encoder only
BERT model [3] (Bidirectional Encoder Representations from
Transformers) held its prominent first place for a long time
in tasks requiring textual understanding. With the discovery
of the few- and zero-shot capabilities of the GPT family of
models [4], [5], the focus has shifted to Transformer decoders.
Decoder-based models proved to be capable of solving these
kinds of tasks even in the few-shot setting, and were also better
at generating texts. The latest models (e.g., PaLM [6] or GPT-4
[7]) boast human-level performance on various benchmarks.

As most decoder-based models have been trained on En-
glish and other high-resource languages, their performance
on lower-resource languages generally lag behind. In order
to overcome this problem and to be able to fully use the
capabilities of GPT-like generative models, we decided to
develop Hungarian-specific models.
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In parallel with our development, the Hungarian Linguis-
tics Research Institute (NYTUD) also developed models and
benchmark data [8]–[10]. By building a better Hungarian-
language corpus, we were able to deliver stronger models, as
it will be seen in the discussion and comparison of results.

The goal of our project was to create a foundational
language model for public purposes that can also be used
by smaller enterprises. This could allow smaller players to
benefit from the AI revolution and exert a positive effect on
the economy. For this reason, we paid special attention to
the efficiency of the models and tried to cover all of the
capabilities that someone can effectively use in production
with the smallest possible model. This is in line with the
generic trends: while the field first saw the development of
ever larger decoder-based models (e.g., GPT3 [5], Gopher
[11] or PaLM [6]), more recently small but highly capable
models, such Llama as 3 8B [12] or Mistral 3 7B1, or even
phi-3-mini at 3.8B [13], have become the focus of attention.
The importance of these considerations was also seen in the
Mistral expert model [14] that was published recently during
the development of our models.

This research is the first milestone of a greater multi-
year project. Here, we present the development and evalua-
tion phases for our Hungarian foundation models. We will
report the results of other milestones of the project, such as
adaptation techniques and Hungarian instruction fine-tuning,
in forthcoming publications.

The rest of the paper is organized as follows. Section II
details our training corpus. Section III discusses our main
considerations concerning training and our experiments with
tokenizers, while section IV discusses our benchmark datasets.
Section V presents and discusses results. Finally, Section VI
concludes the paper and delineates possible next steps.

II. CORPUS

It has long been established that pretraining Large Language
Models requires huge amounts of textual data. In line with the
scaling laws for foundation models [15], [16], the larger the
model gets, the more massive its training corpus needs to be;
Llama 3.1, the latest LLM to be released, was trained on more
than 15 trillion tokens [12].

Still, quantity is only one side of the coin. Initially most
general-purpose models were based on web text only [4],
[5], [17], usually extracted from Common Crawl. However,
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†Department of Digital Humanities, Eötvös Loránd University, H-1088 Budapest, Hungary
‡Department of Software Engineering, University of Szeged, H-6720 Szeged, Hungary

Abstract—In this paper, we introduce two bilingual large
language models, named OTP-1.5B and OTP-13B, designed with
a focus on both English and Hungarian languages. Both models
utilize an 8k token context window and are trained on a dataset
of 640 billion tokens, allowing the models to capture a broad
range of linguistic nuances and generalize effectively across
languages. Notably, their performance in Hungarian is on par
with the results reported for equivalent models in English, such
as GPT-3, marking a significant breakthrough in bilingual model
development and evaluation. This achievement demonstrates the
viability of scaling language models to perform robustly in less-
resourced languages like Hungarian, a critical advancement for
linguistic diversity in AI research. In addition, we introduce new
benchmark datasets specifically designed to evaluate Hungarian
language capabilities, addressing a significant gap in the current
landscape of multilingual large language model (LLM) assess-
ment. These benchmarks offer a comprehensive framework for
measuring performance in non-English contexts, enabling more
precise and culturally relevant evaluations of LLMs. Our models
achieve state-of-the-art results in Hungarian, underscoring their
proficiency and utility for a wide range of applications in both
English and Hungarian language tasks.

Index Terms—Article submission, IEEE, IEEEtran, journal,
LATEX, paper, template, typesetting.

I. INTRODUCTION

W ITH the huge success of Transformer models [1],
better and better solutions have continuously appeared,

achieving state-of-the-art (SoTA) results on the traditional Nat-
ural Language Processing (NLP) tasks [2], such as language
understanding and generation. Among these, the encoder only
BERT model [3] (Bidirectional Encoder Representations from
Transformers) held its prominent first place for a long time
in tasks requiring textual understanding. With the discovery
of the few- and zero-shot capabilities of the GPT family of
models [4], [5], the focus has shifted to Transformer decoders.
Decoder-based models proved to be capable of solving these
kinds of tasks even in the few-shot setting, and were also better
at generating texts. The latest models (e.g., PaLM [6] or GPT-4
[7]) boast human-level performance on various benchmarks.

As most decoder-based models have been trained on En-
glish and other high-resource languages, their performance
on lower-resource languages generally lag behind. In order
to overcome this problem and to be able to fully use the
capabilities of GPT-like generative models, we decided to
develop Hungarian-specific models.

Corresponding author: D. Nemeskey (email: nemeskey.david@btk.elte.hu)

In parallel with our development, the Hungarian Linguis-
tics Research Institute (NYTUD) also developed models and
benchmark data [8]–[10]. By building a better Hungarian-
language corpus, we were able to deliver stronger models, as
it will be seen in the discussion and comparison of results.

The goal of our project was to create a foundational
language model for public purposes that can also be used
by smaller enterprises. This could allow smaller players to
benefit from the AI revolution and exert a positive effect on
the economy. For this reason, we paid special attention to
the efficiency of the models and tried to cover all of the
capabilities that someone can effectively use in production
with the smallest possible model. This is in line with the
generic trends: while the field first saw the development of
ever larger decoder-based models (e.g., GPT3 [5], Gopher
[11] or PaLM [6]), more recently small but highly capable
models, such Llama as 3 8B [12] or Mistral 3 7B1, or even
phi-3-mini at 3.8B [13], have become the focus of attention.
The importance of these considerations was also seen in the
Mistral expert model [14] that was published recently during
the development of our models.

This research is the first milestone of a greater multi-
year project. Here, we present the development and evalua-
tion phases for our Hungarian foundation models. We will
report the results of other milestones of the project, such as
adaptation techniques and Hungarian instruction fine-tuning,
in forthcoming publications.

The rest of the paper is organized as follows. Section II
details our training corpus. Section III discusses our main
considerations concerning training and our experiments with
tokenizers, while section IV discusses our benchmark datasets.
Section V presents and discusses results. Finally, Section VI
concludes the paper and delineates possible next steps.

II. CORPUS

It has long been established that pretraining Large Language
Models requires huge amounts of textual data. In line with the
scaling laws for foundation models [15], [16], the larger the
model gets, the more massive its training corpus needs to be;
Llama 3.1, the latest LLM to be released, was trained on more
than 15 trillion tokens [12].

Still, quantity is only one side of the coin. Initially most
general-purpose models were based on web text only [4],
[5], [17], usually extracted from Common Crawl. However,

1https://huggingface.co/mistralai/Mistral-7B-v0.30000–0000/00$00.00 © 2021 IEEE

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Pretraining GPT-style models in Hungarian
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unfiltered web datasets are known to exhibit significant quality
issues [18], so a lot of effort has gone into creating clean web
text corpora [4], [17], [19]. Augmenting web text with smaller
but higher quality data sources such as books, news, legal and
scientific texts, etc. has also been shown to have a positive
effect on downstream performance [20]. As a consequence,
most LLMs use a mix of cleaned web data and other, better
curated data sources.

When compiling the pretraining dataset for our model, we
also aimed at a large, diverse corpus. Unfortunately, smaller
languages have neither the web presence, nor the amount of
literary sources English does. Hungarian has only about 5B
words in any OSCAR [21] release and, with the exception
of mC4 [22], is missing from most large-scale multilin-
gual collections as well, such as ROOTS [23] or Occiglot-
Fineweb [24]. This prompted us to look for sources not yet
tapped into by earlier Hungarian efforts [8], [25].

Our corpus consists of three main sub-corpora supplemented
by a collection of miscellaneous, smaller datasets. The three
main components are:

1) Web text from Common Crawl;
2) Books and papers from electronic libraries and reposi-

tories;
3) News items from online media outlets.
These sub-corpora are discussed in the following sections.

A. Web Text

We compiled our web text corpus from all Common Crawl
dumps until the end of 2023. We followed the procedure
outlined in [25] with a few modifications. As in the paper,
all documents under the .hu top level domain (TLD) were
downloaded. However, the distribution of Hungarian texts on
the web does not correspond to the .hu domain. First, there
are substantial Hungarian minorities in neighboring countries,
chiefly in Romania and Slovakia; second, many businesses
and organizations use the original TLDs, such as .com.
Consequently, we also downloaded the .ro and .sk TLDs
and added the top 1000 domains that had a large ratio of
Hungarian pages according to OSCAR.

The downloaded pages were filtered for boilerplate using
JusText [26]. Since JusText does not seem to catch JavaScript
and cookie warning popups, these have been removed in
a separate step with a few hand-crafted regular expression
rules. We opted for this solution because the texts followed
a relatively small number of templates and we wanted to
avoid removing pages whose main content was the JavaScript
language itself. The resulting documents were filtered by
language on the document level. Finally, all documents shorter
than 500 characters (as opposed to the 1500 in [25]) were
discarded.

The data was deduplicated on both the URL and document
level. As shown in Table I, out of all the cleaning steps,
deduplication had the largest effect on the size of the corpus:
about 67% of the index and 52% of the filtered documents
were found to be redundant. Language filtering had minimal
effects on the .hu domain, but it is responsible for the huge
drop in document number between rows 2 and 3 in the table.

Curiously, while we have a separate language filtering step
included in row 4, most of the filtering had already been done
by JusText. The difference is that our method is paragraph-
based and leaves the rest of the document intact. After all
filtering steps, we end up with roughly a quarter of the
downloaded data.

B. Books and papers

1) Data sources: The second largest part of our corpus
consists of edited documents (mostly books and academic
journals) collected from publicly available electronic docu-
ment repositories. Maintained by universities and research
institutes, these repositories provide a so-called OAI-PMH
[27] endpoint. OAI-PMH is a standard protocol for automatic
metadata retrieval. Simple HTTP requests can be used to make
queries, which are answered with a list of documents and their
metadata. The metadata also includes where the document
itself is available. This allows the documents to be downloaded
automatically.

A great number of repositories providing metadata through
the OAI-PMH protocol are harvested by the Scientific Docu-
ment Common Search Service2, which provides searching and
browsing in the contents of Hungarian archives. We collected
the endpoints and some basic information from here. The same
service provides a collection of Hungarian journals qualified
by the Committee for Repository Qualification (OJS/OCS
Search Engine); this collection was also included in our sub-
corpus.

For harvesting OAI-PMH we created our own Python script.
Based on the experience we gained in the process, we have
continuously improved and enhanced this code. We also saved
basic data from the files for later identification.

In addition, we collected data from the Hungarian Elec-
tronic Library3, both from its e-book collection and from the
Electronic Periodicals Archive4. A separate script selected and
downloaded the files from the library’s FTP server.

2) Processing downloaded files: These services mostly
store the material in PDF format, so part of our job was to
process them. The PDF files include born-digital documents
exported in PDF format by different text processing software,
as well as documents originally published in printed format
and later digitized. Most of the digitized files also contain a
text layer created by optical character recognition (OCR). We
used PyMuPdf [28] to process the PDF files. This allowed us to
export various formats (including TXT, JSON, ALTO XML)
from the documents. JSON and ALTO XML5 files contain
some useful layout information which helped in document
processing.

Similarly to the previous sub-corpus, we deduplicated the
documents and performed language detection, both at docu-
ment and paragraph levels. We used fasttext [29] for language
detection and we filtered files which contained mostly foreign
language text.

2https://tudokk.mtak.hu/
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2) Books and papers from electronic libraries and reposi-

tories;
3) News items from online media outlets.
These sub-corpora are discussed in the following sections.

A. Web Text

We compiled our web text corpus from all Common Crawl
dumps until the end of 2023. We followed the procedure
outlined in [25] with a few modifications. As in the paper,
all documents under the .hu top level domain (TLD) were
downloaded. However, the distribution of Hungarian texts on
the web does not correspond to the .hu domain. First, there
are substantial Hungarian minorities in neighboring countries,
chiefly in Romania and Slovakia; second, many businesses
and organizations use the original TLDs, such as .com.
Consequently, we also downloaded the .ro and .sk TLDs
and added the top 1000 domains that had a large ratio of
Hungarian pages according to OSCAR.

The downloaded pages were filtered for boilerplate using
JusText [26]. Since JusText does not seem to catch JavaScript
and cookie warning popups, these have been removed in
a separate step with a few hand-crafted regular expression
rules. We opted for this solution because the texts followed
a relatively small number of templates and we wanted to
avoid removing pages whose main content was the JavaScript
language itself. The resulting documents were filtered by
language on the document level. Finally, all documents shorter
than 500 characters (as opposed to the 1500 in [25]) were
discarded.

The data was deduplicated on both the URL and document
level. As shown in Table I, out of all the cleaning steps,
deduplication had the largest effect on the size of the corpus:
about 67% of the index and 52% of the filtered documents
were found to be redundant. Language filtering had minimal
effects on the .hu domain, but it is responsible for the huge
drop in document number between rows 2 and 3 in the table.

Curiously, while we have a separate language filtering step
included in row 4, most of the filtering had already been done
by JusText. The difference is that our method is paragraph-
based and leaves the rest of the document intact. After all
filtering steps, we end up with roughly a quarter of the
downloaded data.

B. Books and papers

1) Data sources: The second largest part of our corpus
consists of edited documents (mostly books and academic
journals) collected from publicly available electronic docu-
ment repositories. Maintained by universities and research
institutes, these repositories provide a so-called OAI-PMH
[27] endpoint. OAI-PMH is a standard protocol for automatic
metadata retrieval. Simple HTTP requests can be used to make
queries, which are answered with a list of documents and their
metadata. The metadata also includes where the document
itself is available. This allows the documents to be downloaded
automatically.

A great number of repositories providing metadata through
the OAI-PMH protocol are harvested by the Scientific Docu-
ment Common Search Service2, which provides searching and
browsing in the contents of Hungarian archives. We collected
the endpoints and some basic information from here. The same
service provides a collection of Hungarian journals qualified
by the Committee for Repository Qualification (OJS/OCS
Search Engine); this collection was also included in our sub-
corpus.

For harvesting OAI-PMH we created our own Python script.
Based on the experience we gained in the process, we have
continuously improved and enhanced this code. We also saved
basic data from the files for later identification.

In addition, we collected data from the Hungarian Elec-
tronic Library3, both from its e-book collection and from the
Electronic Periodicals Archive4. A separate script selected and
downloaded the files from the library’s FTP server.

2) Processing downloaded files: These services mostly
store the material in PDF format, so part of our job was to
process them. The PDF files include born-digital documents
exported in PDF format by different text processing software,
as well as documents originally published in printed format
and later digitized. Most of the digitized files also contain a
text layer created by optical character recognition (OCR). We
used PyMuPdf [28] to process the PDF files. This allowed us to
export various formats (including TXT, JSON, ALTO XML)
from the documents. JSON and ALTO XML5 files contain
some useful layout information which helped in document
processing.

Similarly to the previous sub-corpus, we deduplicated the
documents and performed language detection, both at docu-
ment and paragraph levels. We used fasttext [29] for language
detection and we filtered files which contained mostly foreign
language text.

2https://tudokk.mtak.hu/
3https://www.mek.oszk.hu/
4https://www.mek.oszk.hu/
5https://www.loc.gov/standards/alto/
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avoid removing pages whose main content was the JavaScript
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than 500 characters (as opposed to the 1500 in [25]) were
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about 67% of the index and 52% of the filtered documents
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effects on the .hu domain, but it is responsible for the huge
drop in document number between rows 2 and 3 in the table.

Curiously, while we have a separate language filtering step
included in row 4, most of the filtering had already been done
by JusText. The difference is that our method is paragraph-
based and leaves the rest of the document intact. After all
filtering steps, we end up with roughly a quarter of the
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journals) collected from publicly available electronic docu-
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institutes, these repositories provide a so-called OAI-PMH
[27] endpoint. OAI-PMH is a standard protocol for automatic
metadata retrieval. Simple HTTP requests can be used to make
queries, which are answered with a list of documents and their
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itself is available. This allows the documents to be downloaded
automatically.

A great number of repositories providing metadata through
the OAI-PMH protocol are harvested by the Scientific Docu-
ment Common Search Service2, which provides searching and
browsing in the contents of Hungarian archives. We collected
the endpoints and some basic information from here. The same
service provides a collection of Hungarian journals qualified
by the Committee for Repository Qualification (OJS/OCS
Search Engine); this collection was also included in our sub-
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For harvesting OAI-PMH we created our own Python script.
Based on the experience we gained in the process, we have
continuously improved and enhanced this code. We also saved
basic data from the files for later identification.

In addition, we collected data from the Hungarian Elec-
tronic Library3, both from its e-book collection and from the
Electronic Periodicals Archive4. A separate script selected and
downloaded the files from the library’s FTP server.

2) Processing downloaded files: These services mostly
store the material in PDF format, so part of our job was to
process them. The PDF files include born-digital documents
exported in PDF format by different text processing software,
as well as documents originally published in printed format
and later digitized. Most of the digitized files also contain a
text layer created by optical character recognition (OCR). We
used PyMuPdf [28] to process the PDF files. This allowed us to
export various formats (including TXT, JSON, ALTO XML)
from the documents. JSON and ALTO XML5 files contain
some useful layout information which helped in document
processing.

Similarly to the previous sub-corpus, we deduplicated the
documents and performed language detection, both at docu-
ment and paragraph levels. We used fasttext [29] for language
detection and we filtered files which contained mostly foreign
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5https://www.loc.gov/standards/alto/

INVITED PAPER, PRE-REVIEW VERSION.

https://tudokk.mtak.hu/
https://www.mek.oszk.hu/
https://www.mek.oszk.hu/
https://www.loc.gov/standards/alto/


Pretraining GPT-style models in Hungarian

EARLY ACCESS • 2025/14

INFOCOMMUNICATIONS JOURNAL

TABLE I
Effects of the different filtering and deduplicating steps on the .hu domain in CC.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

TABLE I: Effects of the different filtering and deduplicating steps on the .hu domain in CC.

Dataset Documents Characters

Index 2 146 224 445 N/A
Deduplicated index 704 743 407 N/A
Boilerplate filtering 205 370 228 929 812 129 807
Language & length filtering 124 514 464 804 876 536 633
Deduplication 59 848 839 241 572 118 452

The layout information allowed us to identify repetitive
parts from texts, e.g., to filter headers and footers. As com-
monly used OCR procedures are not capable of interpreting
complex layout information, mathematical formulas, diagrams,
table of contents, tables etc. are presented as text fragments in
the exported text. Thus, these had to be filtered out as well.

C. ELTE-DH Web Harvesting Corpus

The ELTE-DH Web Harvesting Corpus [30] consists of
Hungarian news portals from Hungary and the neighboring
countries. The corpus is created to demonstrate a well-defined
crawling workflow specialized in archiving text content from
all available articles of the selected news portals for digital
humanities purposes. In contrast to the crawl(er)s available at
that time (e.g., Common Crawl), the configuration is tailored
for the actual state of the select portal to facilitate minimal
resource usage by not retrieving duplicate or non-mandatory
content (e.g., images, scripts, external content) if possible.
Keeping these goals in mind, the operators could be certain
that all available articles and nothing unnecessary is down-
loaded from a portal without exception. The homogeneity of
the downloaded content made it possible to extract text and
metadata at a precision which makes the corpus gold standard
quality. The downloaded material is then published in the
Zenodo.org6 repository, which assigns a separate DOI to each
dataset, and a meta-trend viewer is created to allow getting
further insights into the corpus without technical skills [31].

The Web Harvesting Corpus was crawled between 2018 and
2022. It consists of more than 20 portals, with some of them
spanning back to over 20 years. At about 6 million news items
published from 1996 to 2020, it is the smallest of the three
main sub-corpora listed in Section II; see Table II. However, it
is also of comperatively higher quality than Common Crawl,
so any incidental duplication between the two were resolved
in favor of the Web Harvesting Corpus.

D. Miscellaneous datasets

We also included a set of small, yet high quality datasets
in our training mix:

• Anonymized court rulings7 (Court);
• A collection of parliamentary speeches downloaded from

parlament.hu (HuParl);
• The Hungarian monolingual part of the OpenSubtitles8

corpus [32] (OpenSubtitles);

6https://zenodo.org
7https://eakta.birosag.hu/anonimizalt-hatarozatok
8http://www.opensubtitles.org/

• The Hungarian Wikipedia9 (Wikipedia) taken from
WebCorpus 2 [25].

E. Corpus statistics

Table II shows the final composition of our pretraining
corpus. As can be seen, even heavily deduplicated, web text
accounts for a little over three fourth of the corpus, with
better edited sources making up the rest. Looking at the length
distribution of the documents, two outliers emerge: Wikipedia
documents seem to be on the short side, which points to a
possible problem with text extraction. On the other end of the
spectrum, the HuParl documents each contain the minutes of
a parliamentary sitting (day). We found no easy way to divide
these into smaller parts, so they were included as-is.

All in all, our pretraining corpus is the largest Hungarian
corpus to date. Compared to earlier efforts [8], [25], it contains
a larger ratio of academic, legal and literary texts. While it has
fewer news items than in [8], given the inherently duplicative
nature of the genre, the actual coverage should be similar.

III. METHODS

A. Selection of training data

The scaling laws of LLMs, which try to establish the amount
of data needed to train models of certain sizes, have been
revised multiple times during the last few years. When our
project started, the consensus was along the lines of the
Chinchilla study [16], which suggested a corpus of a few
hundred billion tokens for pre-training a 13B model. While
this number is an order of magnitude larger than the size of
our entire Hungarian corpus, it has been shown previously that
the strategy of training for multiple epochs by repeating data
may help in data-constrained regimes [33]. Accordingly, we
upsampled our Hungarian corpus 4 times and then added an
equal amount of English text from the Pile [20].

More recent developments [34]–[36] have shown that LLMs
could greatly benefit from yet larger training corpora and
longer training than what those earlier guidelines suggested.
Unfortunately only the largest companies can afford the re-
sources required for these extended trainings.

B. Model architecture

We used the same model architecture as OpenAI did in
developing the GPT3 model [5]. The goal of the first milestone
was to acquire similar capabilities as OpenAI achieved, but in
Hungarian language.

9https://hu.wikipedia.org/wiki/Kezd%C5%91lap
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TABLE II: Sizes and ratios of the different sub-corpora

Dataset Subset Documents Words Avg. document length Percentage

Common Crawl

.hu 53 803 209 29 317 226 270 544.90

75.92%.ro 576 944 288 134 477 499.41
.sk 454 408 153 976 537 338.85
.com 3 029 769 1 756 970 221 579.90

Repo

EPA 300 790 1 611 420 639 5357.29

17.07%Books 32 830 807 341 016 24 591.56
OJS 27 702 58 105 913 2097.53
OAI 349 398 4 612 470 677 13 201.19

News 5 974 635 1 720 655 367 287.99 4.15%

Court 198 296 669 503 351 3376.28

2.86%HuParl 1707 84 756 485 49 652.31
OpenSubtitles 88 519 306 833 037 3466.30
Wikipedia 418 621 124 982 503 298.56

Sum 65 256 828 41 512 376 493 636.14 100%

C. Tokenizers

Since the model was designed to be multilingual based on
its training data, its tokenizer had to be produced accordingly.
We achieved this by sampling a smaller unit from the English
and Hungarian corpora, then using the BPE [37] algorithm to
create our dictionary containing 52k tokens. We paid special
attention to make it optimal for both Hungarian and English.
This way we can efficiently encode information for both and
converge to the bilingual distribution. During the research, we
also tried an approach suggested by our partner SambaNova,
where we modified an English tokenizer by changing the last 4
000 vocabulary elements to Hungarian. The tokenizers produce
the following fertility [38] measurements:

TABLE III: Fertility values of the tokenizers

Tokenizer Hungarian English

native for English 3.29 1.15
native for Hungarian 1.38 1.92
bilingual 1.88 1.50
modified 2.36 1.64

During the calculation, we used the RegExpTokenizer class
of the nltk library [39]. We split the sample texts from https:
//universaldependencies.org/ into words (r”\w+”). By iterating
through the list, we tokenize all the words, and then averaged
the quantities associated with the words. The lower the value,
the faster the training, since we can encode more information
in one batch.

If we modify the calculation in a much simpler way and
measure how many tokens are needed to cover a text for a
given tokenizer, or in other words, how many characters it
compresses on average, then the table looks like this:

TABLE IV: Character compression capability of each
tokenizer

Tokenizer Hungarian English

native for English 2.03 3.79
native for Hungarian 4.22 2.52
bilingual 4.02 3.78
modified 3.21 3.06

D. Hardware and training environment

We performed the training on a special hardware consisting
of 96 SN10 RDUs [40]. We used SambaStudio [41] to perform
the training. In this setup we only have control over the data;
the hardware specifics and the model architecture are fixed.

IV. BENCHMARK DATASETS

The major breakthrough of the GPT3 model was its ability
to generalize well on unseen tasks, as illustrated by several
examples in the original publication [5]. These results were
unimaginable without task-specific fine-tuning at the time.
This means that to measure the capabilities of a GPT3 model,
we need benchmarks to measure commonsense reasoning,
grammatical excellence, translation quality and logical rea-
soning. Creating a large, high-quality benchmark dataset is
a complex task and usually requires extensive research. For
this reason, we tried to find a Hungarian equivalent for a
subset of the listed measurement points, as we did not want
to unnecessarily invest enormous energy in the creation of a
new one. Fortunately, the Hungarian Research Centre for Lin-
guistics already made efforts in the direction of measurement,
so as a logical first step we examined these datasets [10].

A. HuLU experiences

Evaluating newly trained language models is an important
and usually elaborate task designed to understand model
performance, capabilities, and limitations. A common and
well-accepted way of evaluation is to use benchmarks which
provide a standardized framework for fair evaluation.

Benchmarks ensure that the performance of the different
models or model versions is measured in a comparable way.
For English models, probably the most widely used such
benchmarks are the GLUE [42] and SuperGLUE [43] col-
lections of language tasks. The tasks in these benchmarks
have been selected to assess a model’s ability to understand
and process language. In GLUE, tasks include – among
others – sentiment analysis, sentence similarity measurements,
and question answering exercises. SuperGLUE, aiming at
improving upon some limitations in the previous benchmark
and addressing challenges introduced by the more advanced
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C. Tokenizers

Since the model was designed to be multilingual based on
its training data, its tokenizer had to be produced accordingly.
We achieved this by sampling a smaller unit from the English
and Hungarian corpora, then using the BPE [37] algorithm to
create our dictionary containing 52k tokens. We paid special
attention to make it optimal for both Hungarian and English.
This way we can efficiently encode information for both and
converge to the bilingual distribution. During the research, we
also tried an approach suggested by our partner SambaNova,
where we modified an English tokenizer by changing the last 4
000 vocabulary elements to Hungarian. The tokenizers produce
the following fertility [38] measurements:

TABLE III: Fertility values of the tokenizers

Tokenizer Hungarian English

native for English 3.29 1.15
native for Hungarian 1.38 1.92
bilingual 1.88 1.50
modified 2.36 1.64

During the calculation, we used the RegExpTokenizer class
of the nltk library [39]. We split the sample texts from https:
//universaldependencies.org/ into words (r”\w+”). By iterating
through the list, we tokenize all the words, and then averaged
the quantities associated with the words. The lower the value,
the faster the training, since we can encode more information
in one batch.

If we modify the calculation in a much simpler way and
measure how many tokens are needed to cover a text for a
given tokenizer, or in other words, how many characters it
compresses on average, then the table looks like this:

TABLE IV: Character compression capability of each
tokenizer

Tokenizer Hungarian English

native for English 2.03 3.79
native for Hungarian 4.22 2.52
bilingual 4.02 3.78
modified 3.21 3.06

D. Hardware and training environment

We performed the training on a special hardware consisting
of 96 SN10 RDUs [40]. We used SambaStudio [41] to perform
the training. In this setup we only have control over the data;
the hardware specifics and the model architecture are fixed.

IV. BENCHMARK DATASETS

The major breakthrough of the GPT3 model was its ability
to generalize well on unseen tasks, as illustrated by several
examples in the original publication [5]. These results were
unimaginable without task-specific fine-tuning at the time.
This means that to measure the capabilities of a GPT3 model,
we need benchmarks to measure commonsense reasoning,
grammatical excellence, translation quality and logical rea-
soning. Creating a large, high-quality benchmark dataset is
a complex task and usually requires extensive research. For
this reason, we tried to find a Hungarian equivalent for a
subset of the listed measurement points, as we did not want
to unnecessarily invest enormous energy in the creation of a
new one. Fortunately, the Hungarian Research Centre for Lin-
guistics already made efforts in the direction of measurement,
so as a logical first step we examined these datasets [10].

A. HuLU experiences

Evaluating newly trained language models is an important
and usually elaborate task designed to understand model
performance, capabilities, and limitations. A common and
well-accepted way of evaluation is to use benchmarks which
provide a standardized framework for fair evaluation.

Benchmarks ensure that the performance of the different
models or model versions is measured in a comparable way.
For English models, probably the most widely used such
benchmarks are the GLUE [42] and SuperGLUE [43] col-
lections of language tasks. The tasks in these benchmarks
have been selected to assess a model’s ability to understand
and process language. In GLUE, tasks include – among
others – sentiment analysis, sentence similarity measurements,
and question answering exercises. SuperGLUE, aiming at
improving upon some limitations in the previous benchmark
and addressing challenges introduced by the more advanced
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its training data, its tokenizer had to be produced accordingly.
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create our dictionary containing 52k tokens. We paid special
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This way we can efficiently encode information for both and
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where we modified an English tokenizer by changing the last 4
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through the list, we tokenize all the words, and then averaged
the quantities associated with the words. The lower the value,
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the hardware specifics and the model architecture are fixed.
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models, includes more difficult tasks such as Common Sense
reasoning or the Winograd Schema Challenge.

For the first larger Hungarian models, the practice was to
evaluate using the Szeged Treebank [44], which is a large
manually annotated treebank for the Hungarian language. It
has multiple variations including a treebank annotated for noun
phrases and clauses, a treebank that contains a deep phrase-
structured syntactic analysis for all sentences, and a depen-
dency parsing treebank. A subcorpus of the Szeged Treebank
is the Named Entity Corpus for Hungarian dataset [45], which
has also been used in model evaluations, for example the
widely used huBERT model [46] has been evaluated in a NER
task based on this dataset.

Recently, a new benchmark, the Hungarian Language Un-
derstanding Benchmark Kit, HuLU [10] has been introduced.
Inspired by the GLUE and SuperGLUE benchmarks, HuLU
was designed to evaluate the performance of Hungarian lan-
guage models using similar tasks as in the English bench-
marks. The corpora of HuLU were selected from GLUE and
SuperGLUE, four of them (HuSST, HuCoPA, HuRTE, and
HuWNLI) are translated from the English counterparts, while
the rest (HuCOLA, HuRC, and HuCommitmentBank) are from
Hungarian sources.

We used to HuLU benchmark to evaluate earlier model
versions developed during this work, as well as the commonly
used Hungarian encoder models, namely HuBERT and PULI-
BERT-Large [47]. HuBERT’s model structure is equivalent
of the structure of the English BERT-Base model, while
PULI-BERT-Large is a Megatron [48] BERT large model.
HuBERT and the PULI-BERT models were augmented with
the necessary head layers for classification or multiple choice
tasks and fully fine-tuned for the task at hand. We used the
corresponding Hugging Face10 libraries for the fine-tuning
experiments.

Since our main purpose in this work is to develop a larger
language model based on the GPT model architecture, we
also investigated the HuLU tasks with a selection of such
models available for the Hungarian language. In these training
experiments, we fine-tuned only the top layer of the models,
and kept the language model weights frozen. Prompt-based
zero/one/few-shot learning was also applied, where samples
were selected randomly from the training split of the corre-
sponding dataset.

As one can see in Tables V and VI, there are a few
discrepancies when comparing the accuracies obtained with
the different models. First, for the translated corpora – HuSST
and HuCoPA – the Hungarian BERT-like models significantly
underperform the English BERT models that are fine-tuned
for the corresponding English corpora, SST and CoPA. This
behavior could be caused by several factors, such as the
language difference, the particularities in task definition and
the underlying machine learning task, and the differences in
the number of examples in the training and evaluation datasets.
Furthermore, Table V shows the scaling of accuracies with
increasing model sizes. In all Hungarian cases, the BERT-Base

10https://huggingface.co/

variant outperforms the large variant, which could be caused
by the limited size of training samples in the benchmark sets.

Inconsistencies also occur in Table VI, when comparing
performances for larger models, both with traditional fine-
tuning and low-shot learning. In case of foundation models,
the expectation is that few-shot outperforms one- and zero-shot
results. However, this tendency cannot be seen undoubtedly for
the HuLU benchmark tasks. For example, HuSST performs
especially poorly with all models compared to fine-tuning
experiments. Moreover, with the exception of the two exam-
ined OTP models, the 1.5B and 13B variants, all benchmarks
performed worse in few-shot experiments than in the one-shot
ones or even the zero-shot ones.

Apparently, in many cases, low-shot results are around
the random guess baseline. Other experiments show that an
exclusive English model yields very similar accuracies to those
trained on Hungarian language. Both in zero-shot and one-shot
settings, GPT2-XL gives more accurate results for HuSST than
the Hungarian models. For HuCOLA, the fine-tuned English
model also gives very similar results to Hungarian models.
Considering HuSST, the best results for zero-shot and one-shot
learning are obtained with the English model, while in the few-
shot setting the tendency is completely different, where the
best result is obtained with the largest model. There is also a
discrepancy in the PULI models. In the one-shot setting of both
HuSST and HuCOLA the 350 million parameter PULI-GPT-2
outperforms the much larger, 6.7 billion parameter size PULI-
GPT-3 model. After examining the model outputs in detail, it
can also be seen that the distribution of correct answers is not
similar either for the two PULI models.

In conclusion, based on the above results, the HuLU bench-
marks show quite a few uncertainties both in model size
scaling experiments, and also in low-shot learning experi-
ments. Since our aim is to evaluate large foundation models
as efficiently and accurately as possible, these uncertainties
are clearly unacceptable and make the development of a new
custom Hungarian benchmark necessary.

B. Handcrafted datasets

To help us compare various models of roughly similar
sizes, we required Hungarian language benchmarks which
were sensitive enough to show the fine differences between
the models. Therefore, we created small but balanced datasets.
Since we had a huge Hungarian collection of data, we decided
to start from that, instead of translating English benchmarks.
We wanted to create tasks that could be easily solved by native
Hungarian speakers but are challenging enough for moder-
ate sized models. Consequently, we had to rely on human
creativity during the creation of these datasets. We created
three such datasets: sentiment, interpretation and integrity.
Since the goal was only the evaluation measurement and
ranking without proper model training, we created 200 evenly
distributed examples for each type of datasets.

Our first benchmark set is a sentiment analysis dataset,
which was intended to be a trivial task for any Hungarian-
speaking adult, so it can serve as an entry level benchmark.
We filtered our Hungarian corpus for forum posts and extracted
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the number of examples in the training and evaluation datasets.
Furthermore, Table V shows the scaling of accuracies with
increasing model sizes. In all Hungarian cases, the BERT-Base

10https://huggingface.co/

variant outperforms the large variant, which could be caused
by the limited size of training samples in the benchmark sets.

Inconsistencies also occur in Table VI, when comparing
performances for larger models, both with traditional fine-
tuning and low-shot learning. In case of foundation models,
the expectation is that few-shot outperforms one- and zero-shot
results. However, this tendency cannot be seen undoubtedly for
the HuLU benchmark tasks. For example, HuSST performs
especially poorly with all models compared to fine-tuning
experiments. Moreover, with the exception of the two exam-
ined OTP models, the 1.5B and 13B variants, all benchmarks
performed worse in few-shot experiments than in the one-shot
ones or even the zero-shot ones.

Apparently, in many cases, low-shot results are around
the random guess baseline. Other experiments show that an
exclusive English model yields very similar accuracies to those
trained on Hungarian language. Both in zero-shot and one-shot
settings, GPT2-XL gives more accurate results for HuSST than
the Hungarian models. For HuCOLA, the fine-tuned English
model also gives very similar results to Hungarian models.
Considering HuSST, the best results for zero-shot and one-shot
learning are obtained with the English model, while in the few-
shot setting the tendency is completely different, where the
best result is obtained with the largest model. There is also a
discrepancy in the PULI models. In the one-shot setting of both
HuSST and HuCOLA the 350 million parameter PULI-GPT-2
outperforms the much larger, 6.7 billion parameter size PULI-
GPT-3 model. After examining the model outputs in detail, it
can also be seen that the distribution of correct answers is not
similar either for the two PULI models.

In conclusion, based on the above results, the HuLU bench-
marks show quite a few uncertainties both in model size
scaling experiments, and also in low-shot learning experi-
ments. Since our aim is to evaluate large foundation models
as efficiently and accurately as possible, these uncertainties
are clearly unacceptable and make the development of a new
custom Hungarian benchmark necessary.

B. Handcrafted datasets

To help us compare various models of roughly similar
sizes, we required Hungarian language benchmarks which
were sensitive enough to show the fine differences between
the models. Therefore, we created small but balanced datasets.
Since we had a huge Hungarian collection of data, we decided
to start from that, instead of translating English benchmarks.
We wanted to create tasks that could be easily solved by native
Hungarian speakers but are challenging enough for moder-
ate sized models. Consequently, we had to rely on human
creativity during the creation of these datasets. We created
three such datasets: sentiment, interpretation and integrity.
Since the goal was only the evaluation measurement and
ranking without proper model training, we created 200 evenly
distributed examples for each type of datasets.

Our first benchmark set is a sentiment analysis dataset,
which was intended to be a trivial task for any Hungarian-
speaking adult, so it can serve as an entry level benchmark.
We filtered our Hungarian corpus for forum posts and extracted10 https://huggingface.co/
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TABLE V: Reference fine-tuning experiments for a selection of HuLU tasks with the HuBERT and PULI-BERT-Large
models. All values are accuracies.

Model HuSST HuCoPA HuRTE HuCOLA
Acc F1 Acc F1 Acc F1 Acc F1

HuBERT 0.743 0.657 0.640 0.639 0.757 0.747 0.891 0.821
PULI-BERT-Large 0.724 0.598 0.570 0.570 – – 0.849 0.745

BERT-Basea 0.935 – 0.740 – 0.664 – 0.521 –
BERT-Largea 0.949 – 0.706 – 0.701 – 0.605 –
a Results obtained for the corresponding English benchmark with the English BERT model

variants base and large.

TABLE VI: Evaluating several larger GPT-like models using
the HuLU benchmarks. All values are accuracies.

Model HuSST HuCOLA HuWNLI HuRTE

LM head only fine-tuning
PULI-GPT-2 [47] 60.17 78.46 46.66 55.96
PULI-GPT-3 [47] 65.06 78.90 36.66 62.96
GPTrio [9] 64.97 79.23 50.00 62.55
OTP 1.5B 31.33 77.80 51.66 48.55
OTP 13B adapted 58.28 77.58 48.33 56.79
GPT2-XL[4] 19.39 78.35 30.00 51.85

Zero-shot
PULI-GPT-2 3.69 71.76 43.33 55.14
PULI-GPT-3 19.48 21.54 43.33 55.97
GPTrio 10.30 31.21 46.67 55.14
OTP 1.5B 2.83 74.51 46.67 55.56
OTP 13B adapted 3.44 25.60 44.44 55.00
GPT2-XL 40.17 21.54 46.67 55.56

One-shot
PULI-GPT-2 20.06 69.23 40.00 51.85
PULI-GPT-3 3.43 64.84 43.33 57.20
GPTrio 31.93 69.01 40.00 47.74
OTP 1.5B 33.30 67.25 43.33 52.67
OTP 13B adapted 20.17 69.45 58.33 47.74
GPT2-XL 33.39 69.23 48.33 46.91

Few-shot
PULI-GPT-2 12.10 30.77 45.00 54.32
PULI-GPT-3 19.57 43.85 45.00 55.97
GPTrio 29.36 65.38 46.67 50.62
OTP 1.5B 37.77 75.71 45.00 54.73
OTP 13B adapted 43.78 76.70 50.00 45.27
GPT2-XL 9.79 46.91 48.33 46.91

comments. We pre-categorized the comments by using a list of
words for positive and negative sentiments. Naturally, the sole
appearance of positive or negative words is not enough to prop-
erly categorize posts, so the result of the pre-categorization
was thoroughly reviewed by human annotators.

The second benchmark was a more complex task of cat-
egorizing a text passage into a pre-determined list of topics
(public life, sport, lifestyle, science, economy). The aim here
was to measure the ability of the model to recognize the
general meaning of texts. We created this dataset from the
news portal section of our corpus, and interpreted the tags
attached to news articles as the categories of this task. The
results were also overseen and validated by humans.

Our third benchmark was inspired by the HellaSwag [49]
dataset, which measures the model’s ability to find a suitable
continuation for a given text. Compared to HellaSwag, our
benchmark dataset is a much more difficult task, as it contains
longer text than HellaSwag for both prompts and answers, and

logical reasoning is required to solve its tasks. We created
this dataset from so-called choose-your-own-adventure books.
The essence of this kind of literature is that it is divided into
several short numbered chapters which do not progress linearly
and the reader’s decisions determine the development of the
story. In other words, the chapters of the book are basically
the nodes of a directed graph. Since we are aware of the
possible directions from one node to another, we were able
to automatically generate the benchmark dataset. However, we
found chapters which were too short to use or not clear enough
to categorize even for native speakers, so we filtered those out.

Based on our experiences, the production and expansion of
high-quality benchmark data is a time-consuming process and
requires a lot of attention, as well as human validation.

A representative and meaningful evaluation can only be
created with high-quality data. We were able to evaluate and
rank our models with these datasets. However, the last task was
too difficult for our current models, so we also set a future goal
for improvement that we would like to achieve with further
model developments.

C. Translated datasets
With the datasets presented above we were able to analyze

the Hungarian language capabilities of the models, but the
goal of the project was to train a GPT3 level model. In
order to evaluate this model, we had to be able to measure
performances on similar tasks used for the validation of the
original GPT3 model. Therefore, we translated the first 200
examples of the most widely used English datasets measur-
ing commonsense reasoning into Hungarian in an analogous
manner to previous datasets. We included the Winogrande
[50], PiQA [51] and Lambada [52] datasets. We first tried
to speed up the translation by automatically pre-translating
the tasks using the NYTUD machine translator model [53].
Unfortunately, our experience was that Google Translate was
significantly better despite the fact that its results had to be
rewritten by native speakers. It is worth noting that creating
a Hungarian version of Lambada was particularly challenging
because of how Hungarian conjugation works.

D. LM eval harness integration
To ensure that our performance measurements are strictly

deterministic and reproducible, as well as parallel to those
used by the scientific community, we integrated them into the
lm-eval-harness11 project [54].

11https://github.com/EleutherAI/lm-evaluation-harness
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comments. We pre-categorized the comments by using a list of
words for positive and negative sentiments. Naturally, the sole
appearance of positive or negative words is not enough to prop-
erly categorize posts, so the result of the pre-categorization
was thoroughly reviewed by human annotators.

The second benchmark was a more complex task of cat-
egorizing a text passage into a pre-determined list of topics
(public life, sport, lifestyle, science, economy). The aim here
was to measure the ability of the model to recognize the
general meaning of texts. We created this dataset from the
news portal section of our corpus, and interpreted the tags
attached to news articles as the categories of this task. The
results were also overseen and validated by humans.

Our third benchmark was inspired by the HellaSwag [49]
dataset, which measures the model’s ability to find a suitable
continuation for a given text. Compared to HellaSwag, our
benchmark dataset is a much more difficult task, as it contains
longer text than HellaSwag for both prompts and answers, and

logical reasoning is required to solve its tasks. We created
this dataset from so-called choose-your-own-adventure books.
The essence of this kind of literature is that it is divided into
several short numbered chapters which do not progress linearly
and the reader’s decisions determine the development of the
story. In other words, the chapters of the book are basically
the nodes of a directed graph. Since we are aware of the
possible directions from one node to another, we were able
to automatically generate the benchmark dataset. However, we
found chapters which were too short to use or not clear enough
to categorize even for native speakers, so we filtered those out.

Based on our experiences, the production and expansion of
high-quality benchmark data is a time-consuming process and
requires a lot of attention, as well as human validation.

A representative and meaningful evaluation can only be
created with high-quality data. We were able to evaluate and
rank our models with these datasets. However, the last task was
too difficult for our current models, so we also set a future goal
for improvement that we would like to achieve with further
model developments.

C. Translated datasets
With the datasets presented above we were able to analyze

the Hungarian language capabilities of the models, but the
goal of the project was to train a GPT3 level model. In
order to evaluate this model, we had to be able to measure
performances on similar tasks used for the validation of the
original GPT3 model. Therefore, we translated the first 200
examples of the most widely used English datasets measur-
ing commonsense reasoning into Hungarian in an analogous
manner to previous datasets. We included the Winogrande
[50], PiQA [51] and Lambada [52] datasets. We first tried
to speed up the translation by automatically pre-translating
the tasks using the NYTUD machine translator model [53].
Unfortunately, our experience was that Google Translate was
significantly better despite the fact that its results had to be
rewritten by native speakers. It is worth noting that creating
a Hungarian version of Lambada was particularly challenging
because of how Hungarian conjugation works.

D. LM eval harness integration
To ensure that our performance measurements are strictly
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used by the scientific community, we integrated them into the
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to categorize even for native speakers, so we filtered those out.

Based on our experiences, the production and expansion of
high-quality benchmark data is a time-consuming process and
requires a lot of attention, as well as human validation.

A representative and meaningful evaluation can only be
created with high-quality data. We were able to evaluate and
rank our models with these datasets. However, the last task was
too difficult for our current models, so we also set a future goal
for improvement that we would like to achieve with further
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goal of the project was to train a GPT3 level model. In
order to evaluate this model, we had to be able to measure
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V. RESULTS AND DISCUSSION

Our first milestone was to create a model comparable to
GPT2 in size and architecture, before moving onto the realm
of larger models. Such a small model allowed faster iterations
with the option of testing various approaches. Since the GPT2
was trained on 40 GB of data, we thought that Webcorpus2
[25] would be sufficient for training when used in 2 epochs.
Unfortunately, we could not approach the perplexity score of
8.83 even in general loss, which was the score of the OpenAI’s
1.5B model in Lambada task. Data quality is critical in each
phase of the trainings, and since OpenAI filtered their training
data, we assumed that the poor result of our training was due
to the quality of the scraped Hungarian data.

Our Hungarian data increased considerably after the arrival
of Webcorpus3, however after tokenization, we saw that we
are far below the guidelines [5], [16], [55], in terms of training
corpus. Our goal was to create a dataset twice the size of the
corpus used for training GPT3. In order to achieve this, we
created a mixture where the Hungarian corpus was used for
4 epochs, and after each Hungarian part we inserted English
texts from The Pile [20]. We shuffled the dataset sectionally,
and finally we got a bilingual dataset with 640B tokens. This
did not cause overfitting [33], but it did increase the Hungarian
capabilites of the models, and it also increased the complexity
of the training as we trained the model to achieve bilingualism.

With this bilingual corpus, we trained a model with 1.5
billion parameters and 1024 context window, which produced
very good benchmark numbers compared to previous tests.
The model is labelled as OTP-1.5B-1k.

We also made an experiment where we took a model
previously trained on an English-only corpus (300B to-
kens of the C4 corpus) and did a continual pretraining to
adapt it to Hungarian language. This model is labelled as
OTP-13B-2k-adapted. Before the continual pretraining,
we modified its tokenizer to have a bit better support for
the Hungarian language: the last 4 000 of the original 52
000 tokens were replaced with Hungarian ones. The continual
pretraining corpus contained the Webcorpus3 (84B token) and
an equal amount of English text. The goal was to shorten the
training time and thus the environmental impact by using an
”off-the shelf” checkpoint.

We found that the English capabilities of the model decrease
drastically during a pure Hungarian training. When using a
bilingual corpus with the language ratio of 1:1, the Hungarian
capabilities can be built up with little degradation happening
to the English capabilities. When using a Hungarian to English
ratio of 3:1, less compute is needed to achieve the results, at
the cost of weaker capabilities at the end [56].

The results were not bad, but we were not satisfied with
the improvements when compared to the 1.5B model. Also,
the Byte Pair Encoding (BPE) merge rules were strongly
suboptimal to the Hungarian language. So we decided to train
a larger model from scratch. At the same time, we planned
to extend the context window of the models to prepare them
for future RAG use cases. We modified our training strategy
because we divided the entire training into 2 parts [57]. One
when we did the main part of the training with 500B tokens in

2k context window and another when we trained the model to
be able to handle 8k context windows with larger sequences
that contained 140B tokens. With the help of the strategy, we
expected stable [58] training. We first validated this method
by training a 1.5 billion parameter model, OTP-1.5B-8k.
It is worth noting here that the training of the 13B model
OTP-13B-8k took 4 months to complete.

This approach, using the same bilingual corpus, achieved
better results than adapting a pre-trained English model,
and also had a larger context window. It was trained on
roughly 25% more tokens than the combined English-only
and bilingual training of the previous model, but even more
importantly, its token vocabulary was optimized from the very
beginning for these languages, instead of being modified just
for the continual pretraining, so as expected, it outperformed
the adapted model. For this reason, we believe that much better
results can be achieved in adaptation as well if we approach
the training with a vocabulary that is close to optimal for each
language.

Evaluation metrics obtained for the presented benchmarks
are summarized in Tables VII and VIII. Total averages are
presented in Table IX.

In terms of general capabilities, it can be said that bilin-
gualism developed in parallel due to the training data; this
phenomenon can also be seen in the results of the NYTUD
model.

We experienced a slight difference in performance between
our models and GPT3, and we assumed that it could be
derived from two differences. On the one hand, our models are
bilingual, and their training goal was twice as complex as that
of the GPT3 model. On the other hand, the Hungarian corpus
is still a small dataset compared to the English materials,
moreover, its general quality may have been lower compared to
the GPT3’s training data. If we examine the numbers from the
perspective of the quality of two target languages and focusing
on the Hungarian capability, our model gives much better
results compared to GPT3, and at the time of development it
produced SOTA results in Hungarian. Moreover, quite notably,
the 1.5 billion parameter model approached the results of
NYTUD’s 7 billion parameter model.

Even with a smaller corpus, better results can be achieved
with a different training strategy. It is proven by the 8k
extension and by the results of the Phi3 models, where
they achieved the same performance with much less data
than their competitors [13]. We believe that optimizing the
composition and sequence of training data during pre-training
or adaptation may be an important research in the future to
reduce environmental impact and training costs.

Results from hand-crafted datasets, shown in Table X, sug-
gest that we should convert them to generative measurement,
as simple discriminative measurement can greatly bias the
results.

Llama2 showed promising values in the results, but it seems
that it is suboptimal for the Hungarian language due to its high
perplexity value, and the tokenization algorithm also broke
the Hungarian text into very small parts. Since it achieved
very good results on the MMLU [59] benchmarks when it
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TABLE VII: Evaluation results in Hungarian

Hungarian

Model Lambada (ppl) Lambada (acc) PiQA Winogrande Average

OTP 1.5B 1k 7.33 60.50 66.00 53.00 59.83
OTP 13B 2k adapted 5.42 61.00 69.00 55.50 61.83
OTP 1.5B 8k 6.88 61.00 62.50 55.00 59.50
OTP 13B 8k 4.94 65.50 72.50 63.00 67.00
NYTUD GPTrio 7B 6.58 59.50 70.00 55.50 61.67
GPT3 13B - - - - -
GPT3 175B 11.63 0.00 66.50 53.50 40.00
Llama2 7B 35.11 45 58.5 53.5 52.33

TABLE VIII: Evaluation results in English

English

Model Lambada (ppl) Lambada (acc) PiQA Winogrande Average

OTP 1.5B 1k 7.60 56.20 68.93 56.67 60.60
OTP 13B 2k adapted 4.71 65.38 76.88 63.93 68.73
OTP 1.5B 8k 6.97 56.74 69.64 57.22 61.20
OTP 13B 8k 4.23 67.16 75.73 62.98 68.62
NYTUD GPTrio 7B 6.73 59.97 71.55 55.01 62.18
GPT3 13B 3.56 72.50 78.50 67.90 72.97
GPT3 175B 3.00 76.2 80.50 70.20 75.63
Llama2 7B 3.39 73.89 79.11 68.98 74.00

TABLE IX: Aggregated average scores achieved on the four
datasets, per language and combined

Model Hungarian English Combined

OTP 1.5B 1k 59.83 60.60 60.22
OTP 13B 2k adapted 61.83 68.73 65.28
OTP 1.5B 8k 59.50 61.20 60.35
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Despite the results, these models still lag behind the latest
LLMs in terms of general skills and knowledge. Building a
larger, more capable model would require a larger Hungarian
corpus and more powerful hardware, both of which are beyond
our means. Therefore, in the future we are going to focus our
research capacities on model adaptation and instruction fine-
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While we addressed the problem of the lack of benchmarks
in this paper to some extent, the Hungarian LLM scene could
benefit from Hungarian equivalents to some of the benchmarks
used in LLM leaderboards (such as the )12. We leave such work
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