
INFOCOMMUNICATIONS JOURNAL

FEBRUARY 2011 • VOLUME III • NUMBER 1 39

Mojette Transform Software – Hardware Implementations
and its Applications

INFOCOMMUNICATIONS JOURNAL

40 FEBRUARY 2011 • VOLUME III • NUMBER 1

Mojette Transform Software – Hardware Implementations
and its Applications

INFOCOMMUNICATIONS JOURNAL

FEBRUARY 2011 • VOLUME III • NUMBER 1 41

Mojette Transform Software – Hardware Implementations
and its Applications

INFOCOMMUNICATIONS JOURNAL

42 FEBRUARY 2011 • VOLUME III • NUMBER 1

1

2

3

4

5

6

7

8

9

10

15

16

17

18

19

20

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

=⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1

0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
*

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

a

a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

10

123

37

137

254

319

433

68

6

234

125

267

312

8

45

178

a

a

a

a

a

a

a

a

a

a

a

a

a

a

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ (8)

The inverse matrix for the previous example (for the 4x4
matrix size) is implemented as it’s showed on the next equa-
tion, where ai are the original values of the matrix:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ − −
⎢ ⎥

− −⎢ ⎥
⎢ ⎥ −
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

=⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢
⎢ −
⎢
⎢
⎢
⎢
⎢
⎢
⎣ ⎦

1

2

3

4

5

6

7

8

9

10

15

16

17

18

19

20

10

123

25

35

12

102

252

241
*

2

78

255

23

178

45

6

234

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥⎥ ⎢ ⎥
⎢ ⎥⎥ ⎢ ⎥
⎢ ⎥⎥ ⎢ ⎥
⎢ ⎥⎥ ⎢ ⎥
⎢ ⎥⎥ ⎢ ⎥
⎢ ⎥⎥ ⎢ ⎥
⎢ ⎥⎥ ⎢ ⎥
⎢ ⎥⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ (9)

IV. EXPERIMENTS WITH MTTOOL

With the built in ZIP and Huffman coding opportunities
(Fig. 5) we can decrease the size of any vectors which are
created from the projections of MT [13-17]. The Huffman
lossless encoding and decoding algorithm was chosen due to
it’s binary block encoding attribute and not because of it’s
compression capability. Good data compression can be
achieved with Zip and Unzip which is also implemented. The
possibility of time measuring with simple tools, such as labels
or easily generated text files which are including the test
results can give us a good insight into the MT and IMT. From
these results we can estimate and predict the consumed time
on hardware implementation and also the cost of it.

Fig. 5. Logical system architecture of the MTTool.

The time measurement was applied on three different
images with three different image sizes and with three
different periods. The images were a black and white PGM

files with pixel values of 0 and 255 and the LENA.PGM. First
test ran only once, after that the second test was running for 6
times in a row, and the last test was running 24 times. Each
test was performed on the sizes of 16x16, 32x32 and on
512x512. the results of the two smallest image sizes are nearly
identical and the result were nearly always under 20 milli-
second for MT and IMT, but on the 512x512 image size we
could see the following difference:

TABLE III
TEST RESULT OF THE MT AND IMT WITH THE FIRST VERSION

IMAGE Black (512x512) White (512x512)

Minute: MT and Minute: MT and

Second: IMT in Second: IMT in

Millisecond Millisecond Millisecond Millisecond

MT start 57:14:277 0,1621528

MT end

IMT start 57:15:439 1162 0,1623032 1893

IMT end 57:15:910 471 0,1687963 561

MT start 57:22:259 0,1761806

MT end

IMT start 57:23:411 1152 0,1744792 1733

IMT end 57:23:891 480 0,1699653 550

From this we can see that the difference between the black
and the white images is more than 50 percent, when it comes
to the MT, and only 20 percent when we apply the IMT on the
Mojette files.

V. USER INTERFACE OF THE MTTOOL

Basically the MTTool program surface is bade on MDI
structure of Microsoft. The parent window contains the main
menu and nearly all child windows are opened here. The only
exception is the Help/Contents (help.html) which appears
outside from the parent window in the default internet browser
application.

At the beginning the main goal of the implementation was
to represent both the original and the restored image together
with the Mojette files which contained the bins of the Mojette
transform described in [11,13-17]. We created two image
boxes to show the “before and after” images for the user, and
we duplicated the information on the two tabbed bar to help
the users in comparing the original values, the projections and
the inverse values to each other. On the Fig. 6. we can see, the
amount of information was too much to check it visually even
if the different projections were separated not only by their
colors but also were listed after each other. Due to the image
size of 512 x 512 we had too many bins to display. That‘s also
one of the many things we decided to make different versions
as well.

Mojette Transform Software – Hardware Implementations
and its Applications

INFOCOMMUNICATIONS JOURNAL

FEBRUARY 2011 • VOLUME III • NUMBER 1 43

Fig. 6. MT GUI of the first version.

Multiple images in multiple instances can be opened so we
are able to compare them not only by the image itself but also
by their properties as well we can see the following
information from the pictures such as: Original size, Colors
used, Pixel size, Size of the DIB-element, Actual size and Last
write time.

Later on we developed the Mojette transform in a different
way and this gave us the opportunity to create a new interface
as well for them (Fig. 7). On an image we can perform the
Mojette Transform (Block) with the help of the following
child window, where all the steps are visible for a better
overview. First we have to choose between two differently
based Mojette Transform type such as Algorithm and Matrix.
After that we can choose from the predefined Block sizes,
which we want to use to perform the MT. Here we will
automatically see the Number of blocks, Number of
projections, the Projections and the number of bins used for
the chosen Block size. If both parameters are set we can click
the Next button. As soon as we pushed the Next button we
will see the result of the MT with the created Red, Green and
Blue bin values grouped together and ordered by the blocks.
Here we can check the values of each Block where the MT
was performed, and see what are the bin values stored in these
Blocks.

Mojette block window (Fig. 7) represents the blocked ver-
sion of the MT. As it can be seen we can choose between
Matrix and Algorithm versions with different blck sizes from
4 up to 32 from this and from the hardcoded Projections the
other values are calculated.

Although this information is also stored in a file we are
reading it out from the memory. With the help of Show button
and the X and Y values we can choose and display the diffe-
rent Blocks and bin values. By hitting the Next button we can
create the bin file which contains all the data presented in the
step before. Here we have the opportunity to add error to the
Blocks, which will result vertical lines in the reconstructed
image from the faulty bin file. However we can only see this
error on the image if we reconstruct the bin into a BMP file
with the IMT which can transform the bin file automatically,
so we don’t need to set the IMT like we had to do it with the
MT.

Fig. 7. Mojette transform (Block) window.

Fig. 8. Information about the restored BIN file in the Inverse MT window.

The Inverse Mojette (Block) window (Fig. 8) shows us
some information about the restored image, we can see that
the restored image on the right contains error. This was caused
in the Mojette Transform phase where we overwrite the value
0 in the ‘Max. errorbins/block’ field to add some noise to the
Mojette Transform. We can also gain information about the
MT which was performed on the image.

VI. LOW POWER – LOW COMPLEXITY HW DESIGN
METHODOLOGY FOR SELECTED ALGORITHM- MT

AND IMT

Power consumption is a very important question of our
days. Many energy saving technologies and techniques were
developed in different fields. The spread of portable compu-
ters and communication devices inspires the developers to
design low power consumption devices (CPUs, storage de-
vices, etc.) [8]. In the computer technology there are several
options when low power consumption devices are needed
(DSPs, μPs). One of these options is using field programmable
gate arrays (FPGAs) [9]..

The “MOTIMOT” co-processor denotes the hardware imp-
lementation of the direct and inverse Mojette transform as co-
processing elements of an embedded processor [12,16,17].

Mojette Transform Software – Hardware Implementations
and its Applications

INFOCOMMUNICATIONS JOURNAL

44 FEBRUARY 2011 • VOLUME III • NUMBER 1

Mojette Transform Software – Hardware Implementations
and its Applications

INFOCOMMUNICATIONS JOURNAL

FEBRUARY 2011 • VOLUME III • NUMBER 1 45

Mojette Transform Software – Hardware Implementations
and its Applications

INFOCOMMUNICATIONS JOURNAL

46 FEBRUARY 2011 • VOLUME III • NUMBER 1

Mojette Transform Software – Hardware Implementations
and its Applications

INFOCOMMUNICATIONS JOURNAL

FEBRUARY 2011 • VOLUME III • NUMBER 1 47

Mojette Transform Software – Hardware Implementations
and its Applications

