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Abstract — In the last ten years there were intensive research-
es to find new methods for handling internet image processing
and distributed databases. One of the many methods is the
Mojette transform (MT). The MT is used mainly in image
processing applications, but can be used also for distributed
databases also. The MT implemented under different operating
systems and for different processors presented in helps the
performance analyses of the MT and also let to conclude the need
for reconfigurable hardware implementation. The Mojette
Transformation Tool (MTTool) is an implementation of MT and
inverse MT (IMT) in .Net environment. The software deve-
lopment provides us with the endless possibility of different
variations of the MT implementation in a shorter time frame and
on lower costs. Also the testing with such a tool is much easier
and it’s also better for demonstration and training purposes.
There is also analyzed the hardware implementation of MT and
IMT based on Field Programmable Gate Arrays (FPGA) using
reconfigurable platform. The paper tries to conclude the ne-
cessity for hardware implementation for real time processing.
The paper outline the development work in order to create an
embedded reconfigur-able hardware based on FPGA board.

Index Terms — Mojette Transform, MTTool, image pro-
cessing, distributed databases, FPGA, embedded systems,
MoTIMoT co-processor

I. INTRODUCTION

The Mojette Transform (MT) is originated from France
where J-P. Guédon named it according an old French class of
white beans, which were used to teach children computing
basics of arithmetic with simple addition and subtraction [1-5].
He named MT after the analogy of beans and bins. The bins
contain the sum of pixel values of the respective projection
line [1]. There are several different variations of MT appli-
cations nowadays which are used in different areas such as
tomography [2], internet distributed data bases [3], encoding,
multimedia error correction [4,5,7], or The Mojette Transform
Tool (MTTool) which was created for testing purposes, by the
way it can also be used for demonstrations and training
purposes as well.

However the MTTool development isn’t finished yet we
already gained many experiences with it, and we see how it
could become more helpful for further projects both in soft-
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ware and in hardware development in the area of MT applica-
tions. So the main purpose to build such an environment was
that with the help of it we could try to compare the software
implementation of the MT later on with the hardware imple-
mentations.

In the first section we introduce the mathematical back-
ground of the MT and the IMT briefly and this is followed by
the description of the transforms implementation in several
versions, concentrated not on the stodgy programming stuff
rather on a basic description.

Next we share some of our test results which were focusing
on the time consumption of the MT and IMT and after that we
also introduce the differences between the first and the other
versions from the Graphical User Interface point of view il-
lustrated with some figures as well.

Until today the aim of the researches was software imple-
mentation of the MT and IMT [1-5,7]. This kind of implemen-
tation can be used only on still images, because they cannot
process the data in real-time. Motion pictures, video streams
and distributed data bases require run-time processing of the
frames. Only specialized hardware or embedded systems with
real-time operating systems can ensure this.

This paper presents one implementation method to im-
plement the MT and IMT in Field Programmable Gate Array
(FPGA) using reconfigurable platform.

II. MOIETTE AND INVERSE MOIETTE TRANSFORM

A. Mojette Transform

The main idea behind the Mojette transform- MT (simi-
larly to the Radon transform) is to calculate a group of pro-
jections on an image block [5]. The MT [1,11,16,17] projects
the original digital 2D image:

F={F(i,j);i=1...N;j=1,...M}
to a set of K discrete 1D projections with:
M={M, (1):k=1..K:l1=1..1;} o)

MT is an exact discrete Radon transform defined for a set § =
{(pw. qi). k = 1,...,K] specific projections angles:

MK["]ZPrOj(PA-'Qk'bf]Z[Z}C, F[i9j)§(br_iqﬂ-_jpi-}
i.jlEeL (3)

(1
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where proj (pwqiby) defines the projection lines py, ¢, and J(x)
is the Dirac delta in the form:

]‘l- —_— :0
s(x)={Y =

0,if _x=1 @
and
L={(E,j);b‘,—qu—jpk ZO} )

is a digital bin in the direction &, and on the set b,

So the projection operator sums up all pixels values which
centers are intersected by the discrete projection line /. The
restriction of angle 6, leads both to a different sampling and to
a different number of bins in each projection (p;, g;). For a
projection defined by #;, the number of bins n; can be calcu-
lated by:

n!.=(N—l)|p:. ©

The direct MT is depicted in Fig. 1 for a 4x4 pixel image. The
set of three directions S={(-1,2),(1,1),(0,-1)} is resulting 20
bins.
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Fig.1. The set of three projections computed from a 4x4 image.

The MT can be performed by directly addition of the image
pixel values in grey scale images and for bitmaps we can add
the different bitmap color table values.

B. Inverse Mojette Transform

Computing Inverse Mojette Transform (IMT), bins are back-
projected. A single pixel-bin correspondence must be found at
each iteration cycle in order to reconstruct a pixel value. When
it has been done, this pixel value is substituted in the adequate
coordinate of a blank image and subtracted from the corres-
ponding bins in each projection of the original image. To find
this single pixel-bin correspondence examination of the pro-
jections of unary image is necessary. The bin values in those
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projections show the number of pixels which are stored in the
given bin. Therefore the modification of the unary projections
has to be done parallel (Fig.2). The IMT is iterating this pro-
cess until the image is completely reconstructed. For the re-
construction both projection sets needed (one is the MT of the
image and the other is the MT of a unary image where each
pixel value is 1). Fig.3 shows the first step of the reconst-
ruction process.

P =110 (11, 009)

Fig.2. Mojette Transform on integers.
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Fig.3. Inverse Mojette Transform — first step.

C. Condition of Reconstruction

The key of the transform with regard to the controlled re-
dundancy is that the number of computed projections can be
larger than we need for the reconstruction (inverse transform).
Thus, we can control a first step of redundancy with the num-
ber of projections. The question is then to know how many
projections and which projections give an adequate set to re-
construct the image (i.e. compute the Inverse Mojette Trans-
form). The result for rectangular image was given by Katz in
[6].

According to the Katz’s Lemma [6] image of dimension
KxL can be reconstructed with the Mf set of directions (p;, qi),
i=1,2, ..., Lif

M-—.

K=<P=

!
p| or L<Q =Yg ©)
i=l1

i=1

where K and L are the dimensions of the image p; the hori-
zontal projection coordinate (x axis) and q; the vertical pro-
jection coordinate (y axis).

The condition of reconstruction ensures that the number of
bins (Np) is greater than the number of pixels (N,) therefore
the number of equations will be larger than the number of un-
known variables during the reconstruction process. At the
same time the condition of reconstruction answers the ques-
tion whether is any projection in the projection set which is
unnecessary to reconstruct the original image.

MT for binary image of simply binary data is defined with
the operations ,,AND” and ,,XOR” respectively instead of the
multiplication ,,*”” and addition ,,+” [1,5,11].
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III. MOJETTE TRANSFORM IN MTTOOL

In MTTool the implementation of the MT was applied in
three different ways [15-17]. This is due to the fact that this
application is still in development and the three different ways
were constructed not in the same time but in the last years.

TABLEI
MT IMPLEMENTATION AND IT’S MAIN DIFFERENCES
Nr. amage Projections MT and IMT
Format
| oM p={1-13,-3}); Addition and
g={quarter of the subtraction
image size }
N p={2.-2}; g={1} and Addition and
2 BMP p=(3.-32); g={1) subtraction
p={2,-2}: q={1} .
3 BMP and p=(3,-3.2): g={1) Matrix

A. The First Version

In the first release the declaration of some rules, which had
to be somehow flexible and at the same time they shouldn’t be
very complex was one of the hardest to decide. We had to
declare the image sizes with which we had to work later and to
look for useful relation between the picture size and the
vectors we use in the MT and IMT. After calculating with
several file sizes, it was clear we had to choose it so, that it
should be easy to remember and have something common
with all the other images as well. We decided to take the
picture size 2"x2" where n is equal to 8 and 9, but can be
changed later on easily. So the picture size is 256 x 256 and
512 x 512. In the Picture Preview we can open and display any
kind of PGM or BMP file it doesn’t matter which size the
picture got, but some of the images are increased or decreased

to fit on the screen.
TABLEII
IMAGE DISPLAY

Original size Displayed size Ratio
1600 x 1200 400 x 300 0,25
1599 x 1199 799 x 599 0,5
1024 x 768 512 x 384 0.5

Height < 1024 Height +180 Other

The first step in the MT after checking the restrictions is to
make a vector from the pixels of the image. To define the size
of this vector is easy, when we are following this simple rule
(1, 2" x 2"). If n=8 this results the vector (I, 65536), in which
every line contains a pixel value from the picture. Because the
PGM picture is a 256 grayscale image, a PGM file contains
just pixel values from O to 255. In case of a BMP image we
could process it three times because of the different bitmap
color table values. [13,14]

In the second step we are executing the MT. The vector p is
predefined for the four projection directions and the q vector
has the same value in each four case (quarter size of the 2" x 2"
image). We generate four files for the four different projec-
tions, these are the following:
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1) originalfilename.pgm.mojl (1, q)
2) originalfilename.pgm.mojl (-1, q)
) originalfilename.pgm.mojl (3, q)
4) originalfilename.pgm.mojl (-3, q)

From the existing MT files (mojl,..., moj4) we get the
original PGM picture with the IMT. All of the four MT files
are needed in this case to rebuild the original image comp-
letely without any error. If any of the MT files is defect or
incomplete the IMT doesn’t give back the original image.
Each of the four files is containing a vector described above.
The next step of the IMT is, to read the first and last vectors of
the third and forth MT files and put it on their place. So we
have in all four corner of the picture filled up with the valid
pixel values. Step 1, 2, 3 and 4 on the following figure:

* l3frfo Tlofs| 3
s19[1 5[5 a|7/si["
B2/ ole <Jefe/o]°
¢ Jofol ofald| 2

Fig.4. First 30 steps of the IMT.

After recreating the pixel values we only need to add the
new header for the file and the restoration of the original
image is already performed.

B. The Second and Third Version

These solutions are differing from the previous one in such
a way that these are applied on BMP images and in these cases
we are performing the MT and IMT on the three different
bitmap color table. We use the same algorithm for the three
different color maps and collecting the bins into 3 separate
files which are differing only in their extensions and of course
in their content. On the bitmap images we are using the
directions S;={(2,1),(-2,1)} and S>={(3,1),(-3,1),(2,1)} for the
block sizes 4 and 8. Although the MT is also prepared for the
block size 16 and 32 but the implementation of the IMT isn’t
done yet. In the second version we use simple addition and
subtraction different from the one mentioned in the first ver-
sion, since here we have block sizes 4 and 8§ and there we are
performing the MT and IMT on the whole image at once and
not step by step. In the third version instead of addition and
subtraction we use matrices for the MT and IMT on the above
mentioned block sizes. The MT with matrices is implemented
in the following way, where bi is the bin resulted from the
following equation:
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1
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1
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1
'

B,1[1 00000000O0O00O0OOGOO0|[aq][10
b, 101 0000000000000 O0||a| [123
b 1001 010000000000 O0|]|al] |37
| 10001 01000000000 O0||a| [137
| [00000010100000O0O0||a]| |25
b| 10000000101 00000O0||al] 319
b,{ 100 00000000T1O0T100O0||al 433
by | |0000000000010100||a] |68
B, 10000000000O0O0GO0O0T1 0||a 6
by| /0000000000000 O0O0 1|]|a,| |23
byl (000001 0000071000 O0||a] |12
by| 100001 0000010000 O0]|]|a,| 267
by| 100 0000000100000 1|]|a,| 312
byl [00000000100000T1 0|]a, 8
by| 1000 0000000O0O0O0T O O0|]|a| |45
by (000 000000000T10O0O0||a] |178] (8)

The inverse matrix for the previous example (for the 4x4
matrix size) is implemented as it’s showed on the next equa-
tion, where a; are the original values of the matrix:

@] t0o00000 0 0 0 00 0 0 0 0][n]T[10
e[ 10100000 0 00 0 0 0 0 0 0|]|b| |123
a| 1001000 1 0 0 0 0 -1 0 0 0 —1|]|b]| |25
a[10001 000 1 0 0 -1 0 0 0 -1 0||b]| |35
a| 1000000 -1 0 0 0 0 1 0 0 0 1]|]|b] |12
a| 10000000 -1 0 0 1 0 0 0 1 0|]|b]| |102
[ 10000100 0 1 0 0 0 0 -1 0 0f]|b] |25
a| (000001 0 0 0 1 0 0 -1 0 0 0[n| |24
a|[ 10000000 0 -1 000 0 0 0 0||b 2
ao| (0000000 0 0 -1 0 0 1 0 0 0][by] |78
ay| 1000000 1T 0 0 0 0 0 0 0 0 —1{|b| |25
a,| (0000000 1 0 0 0 0 0 0 -1 0|be| |23
ay| 10000000 0 0 0 0 0 0 0 0 1]/b,| [178
a,| (0000000 0 0 0 0 0 0 0 1 0]|bg| |45
as| (0000000 0 1 0 0 0 0 0 0 by| | 6
lac) 0000000 0 0 1 0 0 0 0 0 ofln][24 (g

IV. EXPERIMENTS WITH MTTOOL

With the built in ZIP and Huffman coding opportunities
(Fig. 5) we can decrease the size of any vectors which are
created from the projections of MT [13-17]. The Huffman
lossless encoding and decoding algorithm was chosen due to
it’s binary block encoding attribute and not because of it’s
compression capability. Good data compression can be
achieved with Zip and Unzip which is also implemented. The
possibility of time measuring with simple tools, such as labels
or easily generated text files which are including the test
results can give us a good insight into the MT and IMT. From
these results we can estimate and predict the consumed time
on hardware implementation and also the cost of it.

lhe T Fufiman ™, y ~Fluffman ™ Inverse
ji MTTool
Transform vi Encoder /) \._Decoder Jp=l Mojette
- t \ 5 Transfonm v1
Mojette Inverse
Moje Mojette
MTTool Tmns#orm\r? J
l, — P Inverse
Mojatte Zip ‘- £ dp ™ Majette Reconstructed
Transl'orm\ra Encoder ,' . Dacoder ./ Transform v3 Image

Fig. 5. Logical system architecture of the MTTool.

Channel |

The time measurement was applied on three different
images with three different image sizes and with three
different periods. The images were a black and white PGM
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files with pixel values of 0 and 255 and the LENA.PGM. First
test ran only once, after that the second test was running for 6
times in a row, and the last test was running 24 times. Each
test was performed on the sizes of 16x16, 32x32 and on
512x512. the results of the two smallest image sizes are nearly
identical and the result were nearly always under 20 milli-
second for MT and IMT, but on the 512x512 image size we
could see the following difference:

TABLE IIT
TEST RESULT OF THE MT AND IMT WITH THE FIRST VERSION
IMAGE Black (512x512) White (512x512)
Minute: MT and Minute: MT and
Second: IMT in Second: IMT in
Millisecond | Millisecond | Millisecond | Millisecond
MT start 57:14:277 0,1621528
MT end
IMT start 57:15:439 1162 | 0,1623032 1893
IMT end 57:15:910 471 ] 0,1687963 561
MT start 57:22:259 0,1761806
MT end
IMT start 57:23:411 1152 0,1744792 1733
IMT end 57:23:891 480 | 0,1699653 550

From this we can see that the difference between the black
and the white images is more than 50 percent, when it comes
to the MT, and only 20 percent when we apply the IMT on the
Mojette files.

V. USER INTERFACE OF THE MTTOOL

Basically the MTTool program surface is bade on MDI
structure of Microsoft. The parent window contains the main
menu and nearly all child windows are opened here. The only
exception is the Help/Contents (help.html) which appears
outside from the parent window in the default internet browser
application.

At the beginning the main goal of the implementation was
to represent both the original and the restored image together
with the Mojette files which contained the bins of the Mojette
transform described in [11,13-17]. We created two image
boxes to show the “before and after” images for the user, and
we duplicated the information on the two tabbed bar to help
the users in comparing the original values, the projections and
the inverse values to each other. On the Fig. 6. we can see, the
amount of information was too much to check it visually even
if the different projections were separated not only by their
colors but also were listed after each other. Due to the image
size of 512 x 512 we had too many bins to display. Thats also
one of the many things we decided to make different versions
as well.
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Fig. 6. MT GUI of the first version.

Multiple images in multiple instances can be opened so we
are able to compare them not only by the image itself but also
by their properties as well we can see the following
information from the pictures such as: Original size, Colors
used, Pixel size, Size of the DIB-element, Actual size and Last
write time.

Later on we developed the Mojette transform in a different
way and this gave us the opportunity to create a new interface
as well for them (Fig. 7). On an image we can perform the
Mojette Transform (Block) with the help of the following
child window, where all the steps are visible for a better
overview. First we have to choose between two differently
based Mojette Transform type such as Algorithm and Matrix.
After that we can choose from the predefined Block sizes,
which we want to use to perform the MT. Here we will
automatically see the Number of blocks, Number of
projections, the Projections and the number of bins used for
the chosen Block size. If both parameters are set we can click
the Next button. As soon as we pushed the Next button we
will see the result of the MT with the created Red, Green and
Blue bin values grouped together and ordered by the blocks.
Here we can check the values of each Block where the MT
was performed, and see what are the bin values stored in these
Blocks.

Mojette block window (Fig. 7) represents the blocked ver-
sion of the MT. As it can be seen we can choose between
Matrix and Algorithm versions with different blck sizes from
4 up to 32 from this and from the hardcoded Projections the
other values are calculated.

Although this information is also stored in a file we are
reading it out from the memory. With the help of Show button
and the X and Y values we can choose and display the diffe-
rent Blocks and bin values. By hitting the Next button we can
create the bin file which contains all the data presented in the
step before. Here we have the opportunity to add error to the
Blocks, which will result vertical lines in the reconstructed
image from the faulty bin file. However we can only see this
error on the image if we reconstruct the bin into a BMP file
with the IMT which can transform the bin file automatically,
so we don’t need to set the IMT like we had to do it with the
MT.
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Fig. 8. Information about the restored BIN file in the Inverse MT window.

The Inverse Mojette (Block) window (Fig. 8) shows us
some information about the restored image, we can see that
the restored image on the right contains error. This was caused
in the Mojette Transform phase where we overwrite the value
0 in the ‘Max. errorbins/block’ field to add some noise to the
Mojette Transform. We can also gain information about the
MT which was performed on the image.

VI. LOWPOWER -LOW COMPLEXITY HW DESIGN
METHODOLOGY FOR SELECTED ALGORITHM- MT
AND IMT

Power consumption is a very important question of our
days. Many energy saving technologies and techniques were
developed in different fields. The spread of portable compu-
ters and communication devices inspires the developers to
design low power consumption devices (CPUs, storage de-
vices, etc.) [8]. In the computer technology there are several
options when low power consumption devices are needed
(DSPs, uPs). One of these options is using field programmable
gate arrays (FPGAs) [9]..

The “MOTIMOT” co-processor denotes the hardware imp-
lementation of the direct and inverse Mojette transform as co-
processing elements of an embedded processor [12,16,17].
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To construct a new hardware for a special task is difficult
and expensive both in time and costs [8,10]. Estimating the
hardware and software needs to implement a MOTIMOT
processing system there is necessary to map the tasks what
such a system should implement. These tasks are not limited
to the direct and inverse Mojette transformation, but also pos-
ses embedded computer functions with or without (depends on
the application) real time operating system kernel. Fig.9 shows
the functional block scheme of the MoTIMoT co-processor.
Both of the Virtex II PRO and Virtex IV FPGAs (FPGAs used
for implementation) contain an embedded power PC 405
RISC processor (PPC) [9]. This general purpose processor can
manage the MoTIMoT hardware, its driver and the incoming
and outgoing data. The MT and IMT blocks are connected to
the PPC via the processor local bus (PLB).

PLB: Processer Local Bus

Power

PC . Mojette
| 1o Transform
{ PLB
} Inverse
Mojette
Transform
PLB

External OnBoard Memory
(512 MB)

MoTIMoT co-processor

Fig.9. Block schema of MoTIMoT co-processor.

Probably calculation of MT or IMT of an image is not
necessary in the same time, therefore only one of the confi-
guration files is loaded into the device. At this point we can
use the advantage of partial run-time reconfiguration.

The images are received in real-time thru an Ethernet
connection or from a digital camera connected to the platform
via an USB port, after processing the image or the frames
these are returned to the sender or sent to a client (PC, PDA,
etc.). On the motherboard there is an external onboard me-
mory with the size of 512 MB. In our days this resource is
available on almost any mobile devices. There are several
types of cellular phones which contain place for a micro se-
cure digital card.

A.  Low complexity system design for stepping window method

Fig. 10 shows the symbolic logic circuitry of MT on a 4x4
image. The input registers (IRy,, x =1, ., 4 y=1, ... 4
contain the values of pixels of the image while the output re-
gisters (OR;;, i = 1, .., 3; j = 1, .., max_bin_number;) contain
the values of bins. Three projection lines (1,1; -1,1; 1,2) gives
an adequate set of bins and the set of projections meets the
reconstruction criteria. The Mojette operator is the XOR logic
operator and the different colour (greenscale) of the line
means separate the three projection lines and their bins. Fig.
10 represents the MT of a 4x4 pixel size image. This size do
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not meet with real image sizes of coarse, even so the 4x4 pixel
size window is usable in the stepping window method. The
register size depends on the width of input data (byte, word,
double word) but notice that the larger the data width the more
hardware resources are required.

The symbolized logic circuit of the reconstruction (IMT) is
depicted in Fig.11. The pixels can calculated in two ways. At
first every pixel value calculable from bin values only and
secondly a pixel value is calculable from bin values and the
already calculated pixel values. The second version gives
more simple (low-complexity) hardware. In Fig. 11 the input
registers (IR) contain the bin-values, the output registers (OR)
contain the original pixel-values, while the IMT operator is the
XOR as in the MT was. The number of registers is the same in
both cases (MT and IMT).

As a matter of fact the number of input registers can be
smaller than the number of bins because of the redundancy.

The single pixel-bin correspondences (most of projection
lines contain some) give the original pixel value without any
calculation this is called zero level. Other bins contain more
pixel values. The number of XOR operations need to be per-
formed on them to get the original pixel value is the number of
its level. In this case there are five levels from zero to four. In
software solution it means a cycle (*for”) from zero to five
and every cycle contains another cycle (“for™) from one to ny,
where ny; is the number of bins on the same level. If the
window is chosen larger the number of level will increase with
it. Using the already calculated pixel values the complexity of
the whole system will increase also of course. However
increasing of complexity will be slower then when only the
bin values are used in the calculations.
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Fig.10. Logical model of the MT on a 4x4 image
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Fig.11. Symbolized logic circuitry of a 4x4 size image reconstruction

Definitely there is a window size limit (WSL) for every FPGA
chip. The WSL is the block size what the given FPGA can
process in parallel. The WSL depends on the number of logic
cells in the given chip and other resources. To enlarge the
window size above to the WSL more FPGA chips must be
applied. Next figure (Fig.12) shows a MT/IMT computing
system. The data source means image or other types of data
pre-processing before the MT is not necessary. Post-process-
ing after the MT can be any kind of lossless compression
method to decrease the redundancy. Data sink can be a storage
device (e.g. PC). In the decoding process the data source is the
file of projection lines. Pre-processing is necessary (uncom-
press the files). Post processing is not necessary here. The data
sink in this case is the user’s application.

As it is shown in Fig. 12 when larger window size must
chosen then one need to multiply the WSL hardware. The sub-
picture limited by the broken line shows a multi-chip MT/IMT
system. The distribution and merge of data (by the multiplexer
and demultiplexer units) also managed by an FPGA chip or if
the hardware resources of the FPGA chip allows it, can ma-
naged by the on-chip general purpose processor (eg.: the PPC
in the Xilinx Virtex II Pro FPGA). A four FPGA solution of
the stepping window method for MT is depicted in Fig. 13.
The sub-window size is fit to the possibilities of the given
FPGA and can not be larger than the WSL.
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Fig. 12 MT/IMT system block-schema
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Fig.13. Stepping window method with four FPGAs

With this method the window size (area) equal to the
window size limit (area) multiplied by four (if n FPGAs are in
use of course the WSL will be multiplied by n). It results
shorter computing time but larger power consumption. To find
the balance between the power consumption and speed, it is
necessary to known where the algorithm of the Mojette trans-
form will be used.

B. Low complexity system design for sliding window method

The sliding window method differs to the stepping window
method in its basic. At the stepping window method as it is
suggested by its name, there are no common pixels of the
windows in two neighbor steps. Contrarily the sliding window
method moves the window only with one row or column
(depends on the direction of processing) forward. It means
most of the pixels are common in two windows, which are
neighbors of each other.

Another difference compared to the stepping window me-
thod that while at the stepping window method the MT/IMT
computing is one single step, the MT/IMT computing has two
parts at the sliding window method. First part is to calculate
the final value of the given bins/pixels and calculate the next
temporal value of the other bins/pixels in the window and
second part is to move the data: write out the final values,
move the temporal values into the corresponding registers and
read in new data.

Fig. 14 shows the symbolic logic circuitry of the sliding
window method where p; = {1, -1, 3, -3} and q; = 1. The
virtual image size is defined by P and Q where Q =4 and P =
file size/Q. This means that the size of sliding window is
chosen independently the file size. The size of sliding window
is given by the hardware resources (number of logic circuits,
memory, etc.) of the given FPGA.

Note if q is chosen larger (q=2) the logic circuitry and the
size of sliding window (number of registers) will be multiplied
by the new q value. When larger window size is required then
the WSL, more FPGAs can be used. Four FPGAs using sys-
tem is depicted in Fig. 15.
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Fig. 14 Symbolic logic circuitry for sliding window method.

Each of the FPGAs contain the same logic circuitry and the
size of WSL is the same but the virtual WSL of the whole
system is four times larger then the WSL of an individual
FPGA. Every FPGA processes a four word width data stream
transparently, so the whole system processes a sixteen word
width data stream. The projection coordinate q is equal to one
in every projection of every FPGA, therefore the correspond-
ing projection lines are merged into one line. Four FPGAs and
four projection lines give sixteen projection lines. The merge
of the mentioned projections will result four bin vectors where
the resultant q coordinate is equal to four (q,=4). This way the
permanently processed data width is multiplied by four. The
IMT computing system will reconstruct the original data
whether it contains only one FPGA (a larger one) or four
FPGAs.

Fig. 16 shows the merge process after the MT computing.
Every FPGA has four outputs (four bin vectors). As it is
depicted in the above mentioned figure the corresponding bin
vectors of the FPGAs are merged into one bin vector.

C. IMT

The logic circuitry of the IMT compared with the MT
shows that the reconstruction process is more complicated.
There are single-pixel bin correspondences which result pixel
values very simply but the bins of every other projection line
need correction. It is necessary, because the bin value cor-
rections generate new single-pixel bin correspondences and
ensures the continuity of the reconstruction process.

The symbolic logic circuitry of the IMT computing SLW
co-processor is depicted in Fig. 17. The picture does not show
the total system only a part of it. In the image Pi (i=1..8)
means the reconstructed pixel values, PLi (i=1..4) are the
projection lines, while the rectangles above them represents
the bins of the projection lines. In the image “tr” means
temporary register which are necessary for the second step, the
bin value correction. The outputs of Unit 1 are the reconst-
ructed pixel values and it has an enable input. Unit 2 gives the
bin values after the correction and works with the same enable
signal as the Unit 1. In the image (Fig. 17) the bit correction
unit is depicted only for one projection line but the other three
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units are very similar. After the bin correction the new values
are stored in temporary registers.

In the second phase the correct bin values from the
temporary registers are written back to the original registers.
The third phase is to slide the window. Move the values of the
register forward by two places, and read in new data.

The MT and IMT functions are implemented as separate
hardware co-processors of the main processor. This is possible
in two ways. The main processor can be an off-chip or an on-
chip solution. The implemented algorithms are realized as
separate co-processors and they work either in parallel or
using run-time reconfiguration (This method was not tested
yet) using relatively low working frequencies (100-300 MHz).
This way can be obtained very high processing speeds.
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Fig.16. Merge process.

| Unit 1

" [l
| En [ (3
P[] A [ BN
o
i b i i
T [l 1| e
2 "2 Lo I 2
3 | - i3 [
| e ind i
ws |\ s
. 6 ir6 ~ T
7 | 3 tr
H v i 5
r - - B Unit 2
o z Ut 2 » 10
w =11
Control [ F]
Circuit (5L
PL4 FL2 FL )

Fig.17. Symbolic logic circuitry for IMT (SLW)

VII. CONCLUSIONS

The paper outlined the different ways, how the MT and
IMT is currently implemented in the MTTool. In the MTTool
software version more tests should be performed to get more
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accurate results, and possible directions should be introduced
in near future how the MT should be implemented in a hard-
ware platform. There was presented the hardware imple-
mentation of MT and IMT in FPGAs using parallel imple-
mentation of the Mojette algorithm. For complex 256x256 size
images the MT/IMT can be implemented using multiple
FPGA chips as MoTIMoT co-processor.
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